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Abstract

Head pose estimation has many useful applications
in practice. How to estimate the head pose automat-
ically and robustly is still a challenging problem. In
pose estimation, different pose angles can be used as
regression values or viewed as different class labels.
Thus a question is raised in our study: which is proper
for pose estimation – classification or regression? We
investigate representative classification and regression
methods on the same problem to see any difference. A
method that combines regression and classification ap-
proaches is also examined. Preliminary experiments
show some interesting results which might prompt fur-
ther exploration of related issues in pose estimation.

1. Introduction

Head pose estimation is important for many real ap-
plications, such as multi-view face recognition, focus
of attention, human computer interaction, and human-
centered scene interpretation. It is challenging to esti-
mate the head pose automatically and robustly [10]. A
general approach to head pose estimation is to learn the
head poses from a set of labelled face images with the
known pan and tilt angles as the labels [2]. Then the
learned results are applied to the unknown test face im-
ages to predict their head poses.

In head pose estimation, the training data can be
denoted as {(x1, y1), . . . , (xl, yl)},x ∈ Rn, y ∈ R2,
where xi is the representation of a face image, and yi is
a pose label, such as the horizontal and vertical angles.
When each pose label is considered as a class, the head
pose estimation is a classification problem [10] [8]. On
the other hand, the pose angles are ordered, the prob-
lem can also be thought of as a regression problem [1].
Which is proper for head pose estimation – classifica-
tion or regression? To our best knowledge, no previous

work has addressed this issue.

In this paper, we will explicitly compare the regres-
sion and classification methods for the head pose esti-
mation problem. The motivation of this study is our
recent work on human age estimation [4] [3]. We found
that the classification and regression approaches may
have very different results on human age prediction,
given the same training data. A promising method is
to combine the regressor and the classifier for the best
performance on age estimation. Here we want to inves-
tigate whether the same phenomenon could be observed
from another problem – head pose estimation. Follow-
ing the same idea as in [4], we choose to use the support
vector machine (SVM) as our classifier and the support
vector regression (SVR) method as our regressor. Both
methods have demonstrated good performance on many
real world problems.

To evaluate the head pose estimation results, we use
the Pointing’04 head pose database [2]. The reason is
that this public available database contains a large num-
ber of head poses, e.g., (-90, -75, -60, -45, -30, -15,
0, 15, 30, 45, 60, 75, 90) in horizontal direction, and
(-90, -60, -30, -15, 0, 15, 30, 60, 90) in vertical direc-
tion. Lots of previous work on head pose estimation
used only a limited number of poses, and mostly vary-
ing just in the horizontal direction [12] [6]. Li et al. [7]
used the SVM and SVR for face detection and recogni-
tion, but not for head pose estimation.

In the remaining of the paper, we first briefly review
the support vector machine and support vector regres-
sion and indicate how they are adapted to our pose es-
timation problem. Then an integration scheme, which
was first introduced in [4], was simply presented in Sec-
tion 4 and used for pose estimation. Experimental re-
sults are described in Section 6.
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2. Support Vector Machine

Given a set of training vectors belong to two separate
classes, (x1, y1), . . . , (xl, yl), where xi ∈ Rn, yi ∈
{−1, +1}, the linear SVM learns an optimal separating
hyperplane, wx + b = 0, that maximizes the margin
[11]. The SVM learning is to find the saddle point of
the Lagrange functional,

L(w, b, α) =
1
2
‖ w ‖2 −

l∑
i=1

αi {yi [(w · xi) + b] − 1}
(1)

where αi are the Lagrange multipliers. The Lagrangian
has to be minimized with respect to w, b and maximized
with respect to αi ≥ 0. The optimization is usually
transformed to its dual problem,

max
α

W (α) = max
α

{
min
w,b

L(w, b, α)
}

, (2)

and the optimal hyperplane is represented by the dual
solution, α, so

w =
l∑

i=1

αiyixi (3)

The value of b can be estimated by plugging w into the
original equation, wx + b = 0.

In testing, the classification is given by

f(x) = sign (w · x + b) , (4)

for any new data point x. If the training data are non-
separable, slack variables ξi can be introduced [11].

The standard SVMs [11] deal with the two-class
classification problem. For a multi-class classification
problem, such as the 93 classes in our head pose estima-
tion [2], there are three possible ways: 1) learning clas-
sifiers for each pair of classes, and taking a binary tree
search in testing [9] [5]; 2) training SVMs for each class
against all the remaining classes; and 3) training SVMs
for all classes simultaneously. The last two schemes are
not flexible when the number of classes changes, since
the SVMs have to be re-trained from scratch. While in
the first scheme there is no need to re-train the SVMs.
All pair-wise SVM classifiers can be trained off-line,
and only a limited number of pairs are involved in the
binary tree search in testing.

3. Support Vector Regression

The basic idea of SVR is to find a function f(x) that
has most ε deviation from the actually obtained target yi

for the training data xi, and at the same time is as flat as

possible. In other words, we do not care errors as long
as they are less than ε.

Consider the problem of approximating the set of
data D = {(x1, y1), . . . , (xl, yl)},x ∈ Rn, y ∈ R,
with a linear function,

f(x) = 〈w,x〉 + b. (5)

The optimal regression function [11] is given by

min
w,ξ

1
2 ‖ w ‖2 + C

∑l
i=1(ξ

+
i + ξ−i )

yi − 〈w,xi〉 − b ≤ ε + ξ+
i

subject to 〈w,xi〉 + b − yi ≤ ε + ξ−i (6)

ξ+
i , ξ−i ≥ 0

where constant C > 0 determines the trade-off between
the flatness of f and data deviations, and ξ+

i , ξ−i are
slack variables to cope with otherwise infeasible con-
straints on the optimization problem of (6). The ε-
insensitive loss function is defined by

Lε(x, y) =
{

0 if |f(x) − y| < ε
|f(x) − y| − ε otherwise

(7)
The primal problem of (6) can be solved more effi-

ciently in its dual formulation. A nonlinear regression
function can be obtained by using kernels [11]. Dif-
ferent kernels, such as polynomials, sigmoid, or Gaus-
sian radial basis functions, can be used depending on
the tasks. In our evaluation of head pose estimation, the
Gaussian radial basis function kernel was adopted.

The standard SVR usually deals with the regression
problem where yi is a scalar value. In our pose esti-
mation, the poses can vary by angles in both horizontal
and vertical directions. To adapt the standard SVR for
this problem without changing its formulation, we do
pose regression in two directions separately. That is, all
training data are re-grouped by horizontal angles for the
SVR learning, and then the same data are re-grouped
again by vertical angles for the SVR learning. Two dif-
ferent regression functions are learned separately. In
testing, the new input x will go through two SVR func-
tions and its pose is obtained from the two SVR outputs.

4. Combining Regression and Classification

As demonstrated in [4], a much better estimation
performance might be obtained by integrating the SVR
and SVMs for human age estimation. A method,
called Locally Adjusted Robust Regressor (LARR), was
proposed in [4] for combining the SVR and SVMs.
The key idea is to adjust the regression values de-
livered by the SVR locally so that the estimated val-
ues can be “dragged” towards the true values. The



idea of the LARR is illustrated in Figure 1. Sup-
pose the predicted value by SVR is f(x), correspond-
ing to the input data x. The point f(x) is displayed
by the black dot on the regression curve. The esti-
mated value, f(x), may be far away from the true value,
L, shown as the red dot on the true trajectory curve.
The LARR method slides the estimated value, f(x),
up and down (corresponding to greater and smaller age
values in age estimation) by checking different possi-
ble values, t ∈ [f(x) − d, f(x) + d], to see if it can
come up with a better estimation. The value d in-
dicates the range of possible values for local search.
Hopefully the true value, L, is within this range, i.e.,
L ∈ [f(x) − d, f(x) + d].
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Figure 1. Illustration of the LARR idea [4].

To use the LARR method [4] for head pose estima-
tion, we modify the local adjust behavior from one di-
mension (which is proper for age estimation) to two di-
mensions (horizontal and vertical pose angles). Specif-
ically, given an input pattern x, two SVRs are used for
estimating the horizontal and vertical angles, θv and θh,
and the two dimensional Euclidean distances are com-
puted between the estimated angles with all possible 93
poses and sorted in ascending order. Then the closest
classes are used for the local adjustment by the SVMs,
working on a much smaller number of pairs of classes.

5. Experiments

The experiments are performed on the Pointing’04
head pose database [2], which is a public database con-
taining a large span of head poses, -90 to 90 in both
horizontal and vertical directions. The data set con-
sists of 15 subjects, each performs 13 pose variations in
horizontal and 7 in vertical, together with two extreme
cases in the vertical 90 and -90 degrees. The subjects
wear glasses or not and have various skin colors. The
database is divided into the training and test sets, each
with 93 images of the same person at different poses.
There are totally 1395x2=2790 images in the database.

Table 1. MAEs in degrees.
Various Setup Vertical Horizontal Average

SVR 9.37 7.84 8.61
linear SVM 4.90 59.74 32.32
kernel SVM 4.73 59.91 32.32

LARR2 7.69 9.23 8.46
LARR4 7.91 13.34 10.63
LARR8 8.59 20.28 14.44

LARR16 7.98 30.31 19.15
LARR32 6.95 42.09 24.52
LARR64 5.18 54.92 30.05

We manually marked the nose-tips for each face im-
age, and cropped the image patch of size 18x18, similar
to that in [10]. Here our focus is to evaluate the clas-
sification and regression methods for head pose estima-
tion, the manual marking avoids possible errors caused
by misalignment. Cropped image pixel values are nor-
malized and each image patch is reshaped into a vector
of dimension 324. Then the same training data are used
for the SVM and SVR learning, and also for the LARR
method [4].

Similar to our work on age estimation [4], the per-
formance of head pose estimation is measured by two
different measures: the Mean Absolute Error (MAE)
and the Cumulative Score (CS). The MAE is defined as
the average of the absolute errors between the estimated
poses and the ground truth, MAE =

∑N
k=1 |l̂k−lk|/N ,

where lk is the ground truth pose for the test image k,
l̂k is the estimated pose, and N is the total number of
test images. The MAE is computed for the horizontal
and vertical angles separately in order to see the perfor-
mance in detail. The two MAEs can be averaged to get
the estimate of errors in both directions. We believe that
the MAEs can deliver more information than the simple
error rates, because MAEs can measure how far away
the estimated results are from the ground truth. The cu-
mulative score is defined as CS(j) = Ne≤j/N×100%,
where Ne≤j is the number of test images on which the
pose estimation makes an absolute error no higher than
j degrees.

The MAEs are shown in Table 1, from which we
can get some interesting observations. The SVR per-
forms well in either horizonal or vertical poses, while
the SVM performs better than the SVR in the horizontal
direction, but much worse in the vertical direction. The
reason may be that the distributions of the face patterns
have large overlapping in the horizonal directions but
less serious in the vertical direction, given 93 classes
to discriminate. The SVR can be viewed as a global



method that uses all input data for learning, and thus
can deal with the overlapping to some extent.

The average MAEs of SVM is 32.32 degrees which
is much higher than the 8.61 degrees of the SVR. The
SVR uses a Gaussian kernel, while the SVM uses a lin-
ear kernel. To see if non-linear SVMs could improve
the performance, we also used a Gaussian kernel for the
SVMs, but not too much difference as shown in row 3
of Table 1.

Next, we tried the LARR method with different
ranges to search. From Table 1, one can observe that
the LARR2 method gives better results than using other
different ranges. When a larger range is used to search,
the SVMs will have a pose estimate very different from
the ground truth. A smaller range really constrains the
SVMs from being trapped into a “bad” local optimum
in the binary tree search.

The cumulative scores of the linear SVM, SVR, and
the LARR2 methods are shown in Figure 2.
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Figure 2. Comparisons of the SVM, SVR,
and the LARR methods in terms of cumu-
lative scores in the vertical (top) and hor-
izontal (bottom) directions, respectively.

We summarize the main observations from our ex-
periments: 1) The SVM performs the best in the vertical
direction, but worst in the horizontal direction; 2) Lin-
ear or non-linear SVMs do not show much differences;
3) The SVR with a Gaussian kernel performs well in
both directions; and 4) the LARR method performs well
for pose estimation using small ranges to search, while

large ranges make the performance worse towards the
SVMs.

In the future, we will further investigate the related
issues by using more advanced features such as the ten-
sor model [10].

6. Conclusion

We have evaluated the classification (SVM) and re-
gression (SVR) methods for head pose estimation. Pre-
liminary experiments on the Pointing’04 database show
some interesting results. The SVR performs well in ei-
ther horizontal or vertical pose variations. The SVM
performs better in vertical direction but much worse in
the horizontal direction. The LARR method that com-
bines the SVM and SVR performs well when the lo-
cal search range is small. The interesting observations
might inspire further exploration of related issues in
head pose estimation.
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