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Abstract: We present a robust front-end pose classification/estimation procedure to be used in face recognition 

scenarios. A novel discriminative feature description that encodes underlying shape well and is insensitive 

to illumination and other common variations in facial appearance, such as skin colour etc., is proposed. 

Using such features we generate a pose similarity feature space (PSFS) that turns the multi-class problem 

into two-class by using inter-pose and intra-pose similarities. A new classification procedure is laid down 

which models this feature space and copes well with discriminating between nearest poses. For a test image 

it outputs a measure of confidence or so called posterior probability for all poses without explicitly 

estimating underlying densities. The pose estimation system is evaluated using CMU Pose, Illumination and 

Expression (PIE) database. 

1 INTRODUCTION 

Out of plane rotation of face has long been one of 

the bottlenecks in the face recognition area. A face 

recognition system should be able to handle 

variations in face images due to pose, illumination 

and other changes. 

Recent research direction, in handling 

variations due to pose, has been to first estimate the 

pose of the test input face and then transform it to an 

already learned reference pose (Lee and Kim, 2006). 

Pose estimation/classification is thus a very useful 

front-end processing tool for multi-view human face 

analysis. 

In 2D context, methods for face pose estimation 

are either based on landmark feature detection (Zhao 

and Gao,2006), appearance based subspace methods, 

treating the whole face as one feature vector in some 

feature subspace(Gong, 1996), or a combination of  

both (Grundig and Hellwich, 2004). The former uses 

certain localized landmarks points on the image and 

tries to estimate the pose information by modelling 

the displacement of these points across multiple 

poses. This, however, is very sensitive to accurate 

localization of landmarks and also assumes that the 

ratios of these points do not change significantly 

under different facial expressions. Sub-space 

methods, on the other hand, although avoids these 

problems of landmarks localization and modelling, 

but it assumes that inter-pose variations are always 

larger than intra-pose variations. This, generally, is 

not true since different subjects across same pose 

may have large appearance variations due to e.g. 

glasses, expressions, illumination and skin colour. 

In this paper, we propose a method which 

overcomes these problems and is robust against the 

aforementioned appearance variations across same 

pose. We introduce a novel feature descriptor; Local 

Energy based Shape Histogram (LESH), which is 

based on local energy model of feature perception. 

As stated in (kovesi, 2000), the local energy 

response of an image is obtained by using Gabor 

filtering, which gives relatively stable response in 

terms of high energy on edges corners etc. On facial 

images this will have high energy response along 

landmark facial features such as eyes, nose and lips. 

The proposed feature description models this 

energy response in terms of local filter orientations 

into a compact spatial histogram. These features 

have good discriminative ability among large pose 

variations. However, in order to discriminate 

between adjacent poses and to cater in-pose 

variations, due to other factors like glasses etc, we 
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need to learn these variations in a training phase. For 

this, we propose an efficient learning procedure 

which turns the multi-class problem into a two-class 

one by modelling a pose similarity feature space 

(PSFS) obtained from extra-pose (different pose) 

and intra-pose (same pose) similarities in the 

training phase. For a test image it outputs a measure 

of confidence or probability for all poses without 

explicitly estimating underlying densities. Our 

system is evaluated on CMU-PIE face database (Sim 

and Baker, 2002). 

In section 2 we explain our approach for the 

proposed feature extraction and description. Section 

3 describes the pose estimation and classification 

procedure in detail. With experimental results in 

section 4, we conclude in section 5 with a brief 

discussion. 

2 FEATURE EXTRACTION 

Multi-resolution Gabor based features are widely 

used and proven very useful in face recognition. 

Recently, (Baochang et all, 2007) has shown that 

local Gabor phase patterns can provide a very 

informative description and are quite useful in order 

to model the orientation of the head (Bingpeng et 

all, 2006). Another body of work exists which uses 

this phase information to compute the local energy 

content of the underlying signal, for detecting 

interest points such as corners, edges, valleys 

contours etc.  

2.1 Local Energy Model 

The local energy model developed by (Morrone and 

Owens, 1987) postulates that features are perceived 

at points in an image where the local frequency 

components are maximally in phase.  

A cos(φ (x)-φ(x))n nnE(x) = max
Aφ(x) [0,2π] nn

∑
∈ ∑

 (1) 

Where An and φn are the magnitude and phase of the 

 nth fourier component. This frequency information 

must be obtained in a way such that underlying 

phase information is preserved. For this linear phase 

filters must be used in symmetric anti symmetric 

pair. This is achieved by convolving the image with 

a bank of Gabor wavelets kernels tuned to 5 spatial 

frequencies and 8 orientations. At each image 

location, for each scale and orientation, it produces a 

complex value comprising the output of even 

symmetric and odd symmetric filter, which gives the 

associated magnitude and phase of that pixel. 

G (e , o ) = I(x, y) *ψ (z)u,v n n u,v         (2) 

Where ψu,v is the bank of Gabor kernel and u,v is 

the scale and orientation.  

Originally (Robbins and Owen, 1997) has 

proposed to use cosine of the deviation of each 

phase component from the mean phase as a measure 

of the symmetry of phase, however, this measure 

results in poor localization and is sensitive to noise. 

(Kovesi, 2000) extended this framework and 

developed a modified measure, as given in equation 

3, consisting of sine of the phase deviation, 

including a proper weighing of the frequency spread 

W and also a noise cancellation factor T. 

(3) 

W(x) A (x)(cos(φ (x) - φ(x)) - sin(φ (x) - φ(x)) ) - Tn n n n
E =

A (x) + εn n

∑

∑

⎢ ⎥⎣ ⎦
 

The normalization by summation of all 

component amplitudes makes it independent of the 

overall magnitude of the signal, making it invariant 

to illumination variations in images. For details of 

this measure see (kovesi, 2000). 

2.2 Proposed Feature Description 

The local energy analysis in the preceding section is 

intended to detect interest points in images with a 

high reliability in presence of illumination and noise. 

Hence, to detect these i2D structures (Kovesi, 2003) 

proceeds by constructing principal moments of this 

normalized energy measure, also termed as phase 

congruency. In contrast to this, we rather use this 

raw energy information and attempt to encode the 

underlying shape. This is done in a way that makes it 

invariant to scale variations but not to rotation since 

rotation is precisely what we are trying to model. 

2.2.1 LESH - Local Energy based Shape 
Histogram 

Motivated by the fact that this local orientation 

energy response varies with respect to the 

underlying shape, in our case the rotation of head 

and since local energy signifies the underlying 

corners, edges or contours, we generate a local 

histogram accumulating the local energy along each 

filter orientation on different sub-regions of the 
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image. The local histograms are extracted from 

different sub-regions of the image, and then 

concatenated together, to keep the spatial 

relationship between facial parts. 

We proceed by obtaining an orientation label 

map where each pixel is assigned the label of the 

orientation at which it has largest energy across all 

scales. 

The local histogram ‘h’ is extracted according 

to the following: 

h = w × E × δ(L - b)rr,b
∑  (4) 

Where subscript ‘b’ represents the current bin, 

‘L’ is the orientation label map, ‘E’ is the local 

energy, as computed in equation 3, and ‘w’ is a 

Gaussian weighing function centred at region ‘r’. 

This weight is used to provide soft margins 

across bins by small weighted overlap among 

neighbouring sub-regions to overcome the problems 

induced due to scale variations. In our experiments, 

for a 32x32 region, σ is set to 20 in both directions. 

As mentioned earlier, in order to keep the 

spatial relation between facial parts, we extract 8 

bins local histogram corresponding to 8 filter 

orientations on 16 image partitions, which makes it a 

128-dimentional feature vector. 

Example feature extraction and associated 

energy and orientation maps on two different 

subjects in frontal and left profile pose, from CMU-

PIE database, are shown in Figure 1. 

Figure 1 provides an intuitive look at the notion 

of similarity across same pose among different 

subjects, in terms of extracted local energy and 

LESH features. This notional similarity is validated 

empirically in section 3 by computing similarities 

between extracted LESH features. Note how they 

are quite invariant to person specific appearance 

variations. 

3 POSE ESTIMATION 

The derived LESH features in the preceding section 

provide a strong foundation on which to base our 

pose estimation framework. These features are 

robust against slight misalignment and scale 

changes, but this comes with the cost of rather loose 

description of facial landmark positions. Although 

this does not affect while discriminating among 

large pose variations such as the one shown in figure  

xo yo

2πσ

2 2 21 [(x-r ) +(y-r ) ]/σ
w = er  (5) 

 
 

 

Figure 1: Two different subjects at frontal and left profile pose. Their associated energy and orientation maps and extracted

LESH feature vectors. 

HEAD POSE ESTIMATION IN FACE RECOGNITION ACROSS POSE SCENARIOS

237



 

Figure 2: (along Rows) All 9 pose variations in CMU-PIE; pose 1(right profile) to pose 9 (left profile) views; (Along

columns) 7 imaging conditions; illumination and expression variations. 

1, but discriminating among nearest pose changes, 

by simply looking at similarity scores, is quite error 

prone. Also, other variations, such as glasses, 

expressions and to some extent illumination 

(shadows), hinder a direct matching of these features 

to decide on pose. 

We therefore, learn these variations across 

same pose from a training procedure in a novel way. 

In particular, we lay down an effective classification 

procedure that attempts to model these in pose 

variations and performs quite well in discriminating 

among slight pose variations. 

Before explaining our pose estimation 

framework, we introduce the facial database used in 

our experiments. 

3.1 PIE Database 

We used a subset of PIE database to evaluate our 

pose estimation algorithm. The portion of PIE 

database, we used, consists of 21 illumination 

differences of 68 subjects at 9 poses. Where 4 

different illumination variations (out of 21) and 3 

PIE expression variations per subject per pose are 

considered, see figure 2 for an example. 

Following the PIE naming convention 

illumination variations correspond to flash 01, 04, 13 

and 14, which captures well the extent of 

illumination variations present, and expression 

variations are neutral, smiling and blinking at frontal 

lighting. 15 subjects are used for training and rest of 

53 subjects for testing, amounting to 3339(7x53x9) 

test examples. 

In such scenarios one can expect that there will 

be a huge overlap between nearest poses in the 

derived feature space. We therefore introduce a new 

classification framework which overcomes this and 

models well the in-pose variations due to large 

illumination and expression changes. 

3.2 Proposed Approach 

For the reasons stated earlier, we solve the pose 

estimation as a classification problem from a 

machine learning point of view. Instead of directly 

modelling the extracted features and solve it as a 

multiclass problem, we rather use similarity scores 

of these features within same pose and among 

different poses. This implies construction of a new 

feature space based on these computed similarities. 

Such an approach has huge benefit in that it 

effectively turns a multiclass problem into a binary 

two-class one while still representing well all the in-

pose variations. We model this new feature space. 
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3.2.1 Pose Similarity Feature Space 

We transform the whole problem into a new feature 

space termed as pose similarity feature space 

(PSFS). This PSFS is derived by computing 

similarities between LESH features, coming from 

same pose examples and similarities between 

features from all the different pose examples. 

As measure of similarity, we use modified K-L 

divergence which is numerically stable, symmetric 

and robust with respect to noise and size of 

histogram bins. It actually gives a measure of 

dissimilarity between two histograms. Thus low 

values means more similar. It is defined as 

h k
i,r i,r

d(H, K) = η (h log + k log )r i,r i,rr i m m
i,r i,r

∑ ∑  (6) 

Where, subscript ‘r’ runs over total number of 

regions(partitions) and ‘i’ over number of bins in 

each corresponding local histogram h and k, see 

section 2.2.1, ‘m’ is the corresponding bin’s mean 

and ‘ηr’ is used as a provision to weigh each region 

of the face while computing similarity scores. This 

could be used, for instance, in overcoming the 

problems due to expressions, by assigning a lower 

weight to regions that are mostly affected. In our 

experiments, for now, this η is set to 1. 

For each example in our training set, we 

compute these similarities with the rest of the 

examples in the same pose on derived LESH 

features. Concatenating them, give rise to an intra 

pose ‘IP’ (same pose) similarity vector. Similarly 

computing these similarities for each example with 

all other examples in a different pose give rise to an 

extra pose ‘EP’ similarity vector. Thus each example 

is now represented in a PSFS as a function of its 

similarities by these IP or EP vectors. 

Note however, the dimensionality of this PSFS 

is a direct function of the total number of examples 

per pose in the training set. Therefore to put upper 

limit on the dimensionality of this derived PSFS and 

also to generate many representative IP and EP 

vectors for a test face, as explained shortly, we 

partition our training sets into some disjoint subsets 

in such a way that each subset has same number of 

subjects in each pose. To understand it better, 

consider, for example, our training set comprising of 

15 subjects, where each subject is in 7 different 

illumination and expression imaging conditions in 

each of the 9 poses, see figure 2. Therefore we have 

15x7(105) examples per pose. 

Deriving a PSFS directly means a 105 

dimensional feature space, while partitioning it into 

some disjoint subsets, such as each subset has all the 

15 subjects but in some different combination of the 

imaging condition, would yield a 15 dimensional 

features space while still representing all the 

variations we want to model. 

3.2.2 Formal Description of our Approach 

Formally, our approach is that we first partition the 
training set into ‘k’ disjoint subsets (all N training 
examples per pose per subset), the subsets are 
disjoint in terms of the 7 imaging conditions (chosen 
such as each subject is at a different imaging 
condition in that subset). 

In each subset, we then compute for each 

example, its similarity to the rest of the examples in 

the same pose on derived LESH features. Thus for 

‘N’ examples per pose, we compute ‘N-1’ 

similarities for each example, concatenating them, 

give rise to a ‘N-1’ dimensional intra-pose (IP) 

similarity feature vector for each of the N examples. 

Extra-pose (EP) vectors are obtained similarly by 

computing these similarities between each example 

in one pose with n-1 examples in a different pose by 

leaving the same subject each time. 

Thus we will have  IP samples and 

 EP samples for training. Where 

‘N’ is number of examples/pose and ‘P’ is total 

number of pose. 

Although there will be a large number of EP 

samples as compared to IP in the derived PSFS but 

we note that, IP samples tend to have low values as 

compared to EP and form a compact cluster in some 

sub-space of the PSFS. 

This is validated in Figure 3 which shows a 3-D 

scatter plot of IP and EP samples from one of the 

subset, by randomly choosing 3 features from IP and 

EP similarity vectors. Note that IP samples are 

depicted from all of the 9 poses while only those EP 

samples are depicted which are computed among 

large pose variations, such as between frontal and 

left/right profile view or between left and right 

profile view. The scatter plot is shown in logarithmic 

scale for better viewing. 

Figure 3 provides an intuitive look at how the 

problem is easily separable when there are large 

pose variations, while EP samples coming from 

nearest pose examples can be seen as causing a 

marginal overlap with the IP class. 

The training set is used as a gallery and thus for 

a test face, computing its similarity with all of the 

examples in each pose in each subset of the gallery 

produces many representative similarity vectors for 

that test image. Therefore there is a good chance that 

more of the similarity vectors, coming from where 

the pose of the test face and gallery are same, falls in 
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Figure 3: 3-D scatter plot of IP and EP vectors from one

of the subset. IP samples are drawn by randomly choosing 

3 features from IP vectors from all of the 9 poses, while

EP samples are depicted only for large pose variations i.e.

between frontal and left or right profile or between left

and right profile view. 

the IP class as compared to those which are coming 

from even slight pose variations.  

To learn the structure of this PSFS, we 

therefore seek to separate the two classes. A simple 

AdaBoost classifier (Schapire and Singer, 1999), 

using nearest neighbour rule in each iteration, is 

trained in this feature space for this purpose. That 

provides a non-linear boundary between the two 

classes.  

For a test image, k vectors are obtained for each 

pose by computing similarities from N-1 subjects in 

each pose in each training subset. All of these are 

classified to belong to either of the class. Final 

decision is then made by considering only those 

classified as IP, and assigning the label of the pose 

from which majority of these are coming. This 

probability for each pose is calculated simply by:  

# of  vectors in pose p
γ =p

total # of  vectors
 ((7) 

As stated earlier, the rational of making subsets 

of training set is now evident, as on one hand it 

limits the dimensionality of the feature space, while 

still representing well all the in-pose variations, and 

on the other hand it generates many representative 

vectors per pose for a test image, which provide us 

with a probability score and helps in overcoming the 

short comings of the classifier itself. 

4 EXPERIMENTAL SETUP AND 

RESULTS 

Each 640x480 pixel PIE image is converted to 

greyscale. A 128x128, closely cropped face part, 

which is adjusted to remove any tilt bias by using 

eye location is retained. We note that this is standard 

procedure and any state of the art face detector like 

(Kanade et all, 1998) can be used for this purpose. 

As described in the preceding section, for the 

15 training subjects we have (105)15x7 examples 

per pose. We partition them into 7 disjoint sets (each 

with 15 examples) for each pose, as described 

earlier. 

This generates a 14 dimensional PSFS by 

computing all the IP and EP vectors using LESH 

features. AdaBoost is then trained on this PSFS. 

For a test face, after extracting LESH feature, 

we compute similarities with 14 examples in each 

pose, for each training subset. This will generate one 

14 dimensional similarity vector for each 

representative pose in each subset; therefore, we will 

have 7x1x9 (63) similarity vectors. 

They are then classified as either IP or EP. 

Those which are assigned label as IP are then further 

used to compute probability scores, as described 

earlier, for each of the 9 poses. 

Final pose estimate is based on by assigning the 

pose, which has highest score. This way we hope to 

overcome the problem of any misclassified nearest 

pose EP vectors. 

Figure 4, on the next page, provides average 

estimation results for each pose. While Table 1 

summarizes the classification results obtained on all 

the 371x9(3339) test examples in a confusion 

matrix. 

The overall average estimation accuracy is 

84.06% in terms of rank-1 rates and 96.62% for 

estimates within +22.5o of accuracy. 
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Figure 4: average classification scores for each pose. 

In confusion matrix, the rows entries are indexed 

by the true pose of the input images, while column 

entries are labelled by our classification procedure-

determine pose. The entries on the diagonal indicate 

the number of correctly classified images at each 

pose. The sum of each row is 371 (an entry of 371 

on the diagonal indicates perfect classification for 

that pose). 

5 CONCLUSIONS & DISCUSSION 

We can compare our results with few of the recent 

works (Yuan and casacent, 2005) and (Patnaik and 

casasent, 2005) which use same database and 

approximately the same setup, where former 

achieved 82.4% rank-1 and later achieved 84.11% 

rank-1 and 96.44% within +22.5o, they however, 

pre- registered a test face to top 3 to 4 poses by 

using 3 landmark locations on the face and did not 

include expression variations. 

Our system achieves best recognition scores on 

full profile views, the reason, perhaps, stems from 

the fact that a face at these views is most 

distinguishable in terms of pure shape. Since our 

system is build on a pure shape representation, these 

results provides an intuitive relation if one looks at 

the corresponding cropped faces at these poses, 

figure 2. 

The performance of our method on registering a 

given face to the nearest pose (adjacent poses) is 

above 96%. It provides us with probabilities for each 

pose and that makes it very attractive from a 

practical stand point, since this can be used directly 

as our confidence in a given pose in the further face 

recognition stage. 

On concluding remarks, we have presented a 

front-end pose estimation system which functions in 

presence of illumination and expression changes. A 

new feature description that encodes the underlying 

shape well is proposed, and an efficient 

classification procedure is suggested which turns the 

multi-class problem into a binary one and solves the 

problem of discriminating between nearest poses. 

Based on this feature description, we 

introduced to generate a generic similarity feature 

space, that not only provides an effective way of 

dimensionality reduction but also provides us with 

many representative vectors for a given test feature 

vector. 

This is used in generating probability scores for 

each pose without explicitly estimating the 

underlying densities, which is very useful in later 

face recognition across pose scenarios. 

The system will be used for a subsequent 

transformation of a test face to a reference pose for 

face recognition. 

We hope that the proposed feature description 

and the notion of modelling the similarity space will 

prove very useful in similar computer vision 

problems. 
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