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ABSTRACT Convolutional neural networks (CNNs) exhibit excellent performance on the head pose

estimation problem under controllable conditions, but their generalization ability in the wild needs to be

improved. To address this issue, we propose an approach involving the introduction of facial landmark infor-

mation into the task simplifier and landmark heatmap generator constructed before the feed-forward neural

network, which can use this information to normalize the face shape into a canonical shape and generate a

landmark heatmap based on the transformed facial landmarks to assist in feature extraction, for enhancing

generalization ability in the wild. Our method was trained on 300W-LP and tested on AFLW2000-3D.

The result shows that for the same feed-forward neural network when our method is used to introduce

facial landmark information into a CNN, accuracy improves from 88.5% to 99.0% and mean average error

decreases from 5.94◦ to 1.46◦ on AFLW2000-3D. Furthermore, we evaluate our method on several datasets

used for pose estimation and compare the result with AFLW2000-3D, finding that the features extracted by

a CNN could not reflect the head pose efficiently, which limits the performance of the CNN on the head pose

estimation problem in wild. By introducing facial landmarks, the CNN could extract features that reflect head

pose more efficiently, thereby significantly improving the accuracy of head pose estimation in the wild.

INDEX TERMS Head pose estimation, convolutional neural network, landmark heatmap, faceshape

normalization.

I. INTRODUCTION

Image-based head pose estimation is a challenge in the

filed of machine vision. During the last decade, various

applications, which are based on accurate head pose esti-

mation, have been developed, such as intelligent meeting

system [1], human robot interaction [2], person tracking [3],

and driver monitor system [4]–[8]. The performance of such

applications depends to a large extent on the accuracy and

robustness of the head pose estimation algorithm. At present,

though the head pose estimation algorithm exhibit excel-

lent performance under controllable conditions, it does not

show ideal performance in a wild environment (i.e., when

there is large variation in appearance and environmental

conditions) [9]. Therefore, improving accuracy and robust-

ness of the head pose estimation algorithm is of considerably

significant.

‘Head pose’ is the head’s relative orientation with respect

to the camera, and it is typically expressed in term of three
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angles (yaw, pitch and roll). To predict these angles from

a raw image, many methods have been proposed from dif-

ferent points of view, from model-based methods (geomet-

ric models [10]–[13] and deformable models [14], [15])

to appearance-based methods (classification approa-

ches [16]–[18], manifold embedding approaches [19]–[22]

and nonlinear regression approaches [9], [23], [24]). Model-

based methods use geometric information or landmark loca-

tions to estimate the head pose, while model-based methods

exhibit excellent performance in small angles; the result

of estimation relies entirely on landmarks detection perfor-

mance and the information of the image is ignored, resulting

in fragile robustness [25]. Appearance-based methods esti-

mate head pose directly from the raw image. As they take

advantage of image information, appearance-based methods

are less sensitive to partial occlusions and extreme angular

views. Nevertheless, the image contains several features and

the output variables that regressed from the features do not

necessarily correspond to the pose angle [22]; therefore

appearance-based methods have considerable potential to

make further progress in estimation accuracy.
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In view of the limitations of these two methods, a new

method based on CNN [26], [27] is proposed to improve

the accuracy and robustness of head pose estimates in the

wild by combining the advantages of these two kinds of

methods to complement each other. We use state-of-the-art

landmark detector (Dlib [28] and FAN [29]) to find facial

landmarks from the image, and then input the landmarks

location and image to the task simplifier for calculations.

The task simplifier is responsible for calculating the affine

transformation matrix that minimizes the standard deviation

between input landmarks S1 and canonical shape S0. Then the

input image is transformed based on the matrix to simplify

the head pose estimation task and improve accuracy. Land-

mark heatmap is generated in the heatmap generator based

on the transformed landmarks. Then, the landmark heatmap

is stacked with the transformed image to be input into the

feed-forward neural network. Thanks to the introduction of

landmark heatmap, feed-forward neural network can focus

on the area around facial landmarks while extracting features

from the image. Compared to appearance-based methods,

the proposed method has reduced interference from wild

environment (large variation in appearance and environmen-

tal conditions) to features extraction, so the output of con-

volution layers can express the head pose more efficiently

and the accuracy of the algorithm is improved. Because

the landmarks location does not determine the estimation

result directly, the proposed method is more robust than

model-based methods.

The main research content and contributions of this study

are as follows:

• A new method based on a convolutional neural network

for head pose estimation in the wild is proposed, which

combines the advantages of model-based methods and

appearance-based methods. The impacts of the new

architectures proposed in this study have been investi-

gated and it has been proved that these new architectures

contribute a lot to the accuracy and robustness of head

pose estimation in the wild.

• The generalization ability of the proposed method

is demonstrated by validation the method on several

datasets in the wild and compared with state-of-the-art

methods. The head pose estimation method proposed in

this paper reduces the mean average error (MAE) from

5.94◦ to 1.46◦ and improves accuracy from 88.55% to

99.00% on validation set.

• By comparing the evaluation result under control-

lable conditions with the result under wild conditions,

the main factor which causes a large difference in

performance between controllable conditions and wild

conditions is found. This is because under controllable

conditions, the background changes less and the fea-

tures extracted by CNN can express head pose more

efficiently. The main factor which limites the accuracy

of controllable condition datasets is the expressivity

of CNN.

• We add facial landmarks annotation for BIWI and

CASPEAL datasets by FAN and manually relabel the

image with large error, constructing a facial landmark

and pose dataset containing 35K images. The dataset

will be published later for research at https://github.com/

shallybrown/facial_landmark_label-

The rest of this paper is organized as follows. In Section 2,

we provide a brief overview of the literature related to head

pose estimation. In Section 3, we elaborate on the details of

the proposed method. In Section 4, we evaluate the perfor-

mance of our method on wild datasets as well as control-

lable condition datasets. Lastly, section 5 presents the study’s

conclusions.

II. RELATED WORKS

Currently, the head pose estimation problem has been investi-

gated from various perspectives and with various techniques,

such as laser pointers, camera arrays, stereo-cameras and

magnetic and inertia sensors [30]. Compared to other meth-

ods, the methods based on raw images are more feasible and

less limited. This section is limited to the methods based

on raw images, which are the most relevant methods to our

work. A completed description of all the methods available is

out of the scope of this article, so we refer the reader to the

survey [30] and the book [31].

There is a close relationship between head pose and

the distribution of facial landmarks. Huang et al. [32]

proved that under the weak perspective model the 3D

pose of a 3-point configuration is uniquely determined

up to a reflection by its projection. Under such circum-

stance, many researchers use 3D head model points and 2D

image projections correspondences to estimate head pose.

Hu et al. [10] roughly estimated head pose using the asym-

metric characteristic of the facial features and refined the

result by using a 3D-to-2D model. As the development of

face alignment [28], [33], [34], the precision, real-time and

robustness have improved, the technology has been wildly

used for head pose estimation [11]–[13]. However, since the

face model is pre-defined, and there are individual differ-

ences in the shape of the participants’ face, the model can-

not fit the completed face, this results in a certain error

in the estimation result. Though deformable models could

reduce the error by deforming the head model to adapt to

each participant [14], [15], the process of deforming requires

a significant amount of data and can be computationally

expensive.

Compared with model-based methods, appearance-based

methods make full use of image information to estimate the

head pose. Appearance-based methods can be divided into

classification methods, manifold learning methods and non-

linear regression methods. Head pose estimation is consid-

ered as a multiclass classification problem in Classification

methods [16]–[18]. Though classification methods are easy

to be implemented and have strong real-time performance,

they can only predict the approximate range of the head pose
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and suffer from the granularity of the estimated angles given

the difficulty of training two classes whose angles are very

close. So their field of applications are limited.

Manifold embedding methods use feature extraction tech-

niques to create a discriminative feature space for head

pose estimation, where the correspondence between the

feature space location and the pose is easy to establish.

Diaz-Chito et al. [19] extracted the initial features based

on conventional HOG features [35], and then projected the

features onto a feature manifold based on Generalized Dis-

criminative Common Vectors(GDCV). Finally, the head pose

is estimated from a continuous regression composed of split

fitting and multivariate local regression. Haj et al. [21] and

Drouard et al. [22] reduced the feature dimensions by pro-

jecting features to latent space and regressing the head pose

from the output of the latent space. Compared with deep

learning, manifold embedding methods use fewer comput-

ing resources and do not require a large number of training

samples. After several years of development, the precision

of manifold embedding methods has improved considerably,

but its accuracy and robustness still need to be improved for

practical applications.

Nonlinear regression methods use a labeled training set to

create a nonlinear mapping from images to poses, and CNNs

are part of these methods. Because CNNs have the ability to

reduce dimensions and extract features automatically, they

have achieved good results in various fields. At present,

several head pose estimation methods based on CNNs have

been proposed. Patacchiola and Cangelosi [9] evaluated the

performance of different CNN architectures and different

adapter gradient methods on released in-the-wild head pose

datasets. Liu et al. [23] generated a realistic head pose dataset

using rendering techniques and evaluated their CNN-based

method on synthetic as well as real data. Ahn et al. [24] pro-

posed a multi-task convolutional network for face detection,

bounding box refinement and head pose estimation. While

the use of CNN has improved the precision of head pose

estimation considerably, the excellent performance is only

exhibited in the same type of images and conditions present

in the training set due to severe overfitting to the training

set [19].

It has been demonstrated that there is a close rela-

tionship between head pose and the distribution of the

landmarks [36], [37]. Ren et al. [34] introduced head pose

into the processing of face alignment to improve the accu-

racy of face alignment. Xu and Kakadiaris [38] used global

and local CNN features to solve head pose estimation and

landmark detection tasks jointly. Similarly, introducing facial

landmarks information into the processing of head pose

estimation could also improve the accuracy of head pose

estimation theoretically. However, this method has not been

attempted to date. Given the lack of satisfactorywork, we pro-

pose a new CNN-based method for head pose estimation

according to facial landmarks location and image. Inspired

by Deep Alignment Network (DAN) [39] and Boundary-

Aware Face Alignment [40], the proposed method uses facial

landmarks to normalize face shape into a canonical shape and

generate landmark heatmap in the basis of transformed facial

landmarks to assist feature extraction. Thanks to the landmark

heatmap, the features extracted by CNN correspond better to

the pose angles, which will improve the generalization ability

of CNN-based methods. Through experiments, we analyze

the improvement of accuracy which is caused by introduc-

ing information of the facial landmarks into the CNN, and

compare the proposed method with state-of-the art head pose

estimation methods. The next section will focus on how the

proposed method introduces facial landmarks information

into the CNN.

III. PROPOSED METHOD

In this section, we firstly give an overview of the proposed

method for head pose estimation. Next sections discuss the

details of the proposed method.

A. OVERVIEW OF THE METHOD

Fig. 1 shows an overview of the proposed method for head

pose estimation. We localize the landmarks based on face

alignment techniques. According to the landmarks, a certain

area around the face is intercepted and the it is resized to

the specified size as the input of CNN. The details of this

part are described in subsection B. Our CNN consists of a

task simplifier, a heatmap generator and a feed-forward neu-

ral network. Referring to Cascade Shape Regression (CSR)

framework [33], [34], [41], the proposed method defines a

canonical face shape S0, and normalize the input face shape

S1 into canonical face by affine transformation to simplify

the head pose estimation task and improve accuracy. The

details of the task simplifier are described in subsection C.

Landmark heatmap is created in the basis of the landmarks

after affine transformation in the heatmap generator, which

are described in subsection D. The warped image is stacked

with the landmark heatmap as input for the feed-forward

neural network to estimate head pose angles. The structure

of the feed-forward neural network is shown in Fig. 2 and

described in subsection E. Subsection F details the training

procedure.

B. FACE ALIGNMENT

Given the need to use facial landmarks as the input of CNN,

we use a state-of-the-art landmark detector (Dlib [28] and

FAN [29]) to localize facial landmarks. A certain area around

the face in the input image is intercepted based on facial

landmarks information, and the face area accounts for a

quarter of the total area of the intercepted area, thereby

reducing the influence of the scale change of the face

image on the estimation accuracy of the pose. The inter-

cepted image and face key information is used as input to

our CNN.

C. FACE SHAPE NORMALIZATION

The task simplifier is responsible for aligning input face shape

S1 into a canonical shape S0 to simplify the estimation task
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FIGURE 1. Overview of the proposed head pose estimation method.

FIGURE 2. Structure of the feed-forward part of our method. The kernels are shown in the figure described as height × width × depth, stride.

and improve accuracy. Referring to Cascade Shape Regres-

sion (CSR), the canonical shape consists of n points and the

mean of these points is in the center of image, as shown

in Fig. 3. The input face shape S1 and the canonical shape

S0 consist of n points. (xn, yn) is the coordinates of the nth

point of canonical shape S0 and (wn, zn) is the coordinates of

the nth point of inpust shape S1.

To align the input face shape S1 to the canonical shape S0,

the translational component and scale component should be

removed firstly, as follows:

σ0 =

√

(x1 − x)2 + (y1 − y)2 + · · ·
n
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FIGURE 3. Schematic diagram of canonical shape S0 and input shape S1.

S ′
0 = {(

x1 − x

σ0
,
y1 − y

σ0
), · · · } (1)

σ1 =

√

(w1 − w)2 + (z1 − z)2 + · · ·
n

S ′
1 = {(

w1 − w

σ1
,
z1 − z

σ1
), · · · } (2)

(x, y) is the mean of the canonical shape S0 and (w, z) is the

mean of input shape S1. σ0 and σ1 are the root mean square

distance of S0 and S1, respectively.

Next, calculate the rotation portion of the affine matrix.

The rotation portion is an orthogonal matrix R that the most

closely maps S1 to S0, and it can be written as follows:

R = arg min
�

∥

∥�S1
′ − S0

′∥
∥

2

F
(3)

Based on the conclusion of Schönemann et al. [42]. R could

be solved as follows:

U6V
T =

[

w1
′ · · · wn

′

z1
′ · · · zn

′

]







x1
′ y1

′

...
...

xn
′ yn

′







R = VU
T (4)

(x ′
n, y

′
n) are the points of S

′
0 and (w′

n, z
′
n) are the points of S

′
1.

U6V
T is the result of singular value decomposition. The

input face shape is scaled after being rotated to the size of

canonical face shape S0. S1
′′ is the input shape after rotation

and scaling, and (w′′, z′′) is the mean of S ′′
1 , which can be

written as follows:
[

w̄′′

z̄′′

]

=
σ0

σ1
R

[

w̄

z̄

]

(5)

Finally, S ′′
1 is translated to align the mean of S ′′

1 with the

mean of S0 and the S
′′′
1 after translation is the most close to S0.

The affine transformation matrix A, which aligns the input

face shape S1 to canonical face shape S0, is defined as

A =









σ0

σ1
r11

σ0

σ1
r12 x̄ − w̄′′

σ0

σ1
r21

σ0

σ1
r22 ȳ− z̄′′

0 0 1









(6)

r11, r12, r21, r22 are the parameters of rotation matrix R.

FIGURE 4. Schematic diagram of camera coordinate system.

Fig. 4 shows the schematic diagram of the camera coordi-

nate system. Because of the affine transformation, the pose

angles after wrapping are equivalent to the angles which

continues to rotate −θ on the Z axis in the basis of original

pose angles. θ can be written as follows:

θ = tan - 1(−
r11

r12
) (7)

The datasets for head pose estimation choose the rotation

axes for Euler angle as Z-Y-X. To simplify the calculation,

we transform the rotation axes for the Euler angle fromZ-Y-X

to X-Y-Z. Rotation matrix M could be calculated from the

Euler angles of Z-Y-X. Assuming pitch is α, yaw is β and

the roll is γ under X-Y-Z for Euler angles, M is represented

by α, β, γ

M =





cos(γ ) − sin(γ ) 0

sin(γ ) cos(γ ) 0

0 0 1









cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)









1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)



 (8)
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Based on eq. 8, α, β, γ can be calculated as follows:

α = tan−1M32

M33

β = tan−1 M31
√

M2
11 +M2

21

γ = tan−1M21

M11
(9)

M32, M33, M11 and M21 are the parameters of rotation

matrix M. After affine transformation, the rotation axes for

Euler angle is X-Y-Z-Z, which is equivalent to X-Y-Z. At this

time, the Euler angles is (α, β, γ − θ ).

D. LANDMARK HEATMAP

The landmark heatmap is an image where the intensity is

highest in the locations of landmarks and it decreases with

the distance to the closest landmark. It is first proposed by

Kowalski et al. [39] and used in Deep Alignment Networks

so that the CNN can focus on the area around the land-

marks which are estimated by the previous stage to infer

landmark locations. Inspired by this, the heatmap generator

is constructed in front of the feed-forward neural network

so that the feed-forward neural network could focus on the

features around the facial landmark and reduce the error of

estimated result caused by background changes. The heatmap

is generated by eq.10.

H (x, y) =
1

1 + min(w′′′,z′′′)∈S1 ′′′ ‖(x, y) − (w′′′, z′′′)‖
(10)

H (x, y) is the intensity of Point (x, y) of heatmap and S ′′′
1 is

the input shape after affine transformation. In the proposed

method, the heatmap values are only calculated in a circle

of a certain radius around each landmark. Some samples

of original images, the results of label, warped images and

landmark heatmaps are shown in Fig. 5.

E. FEED-FORWARD NEURAL NETWORK

The overall shape of the feed-forward network is inspired

by VGG16 [43]. However, since the head pose estimation

task is relatively simple compared to the object detection

etc., the input size of other related work is generally small.

So we change the input size to 112×112 to improve the real-

time of the proposed method. The structure of feed-forward

network, kernel size, input shape and output shape are shown

in Fig. 2. The feed-forward network consists of eight convo-

lution layers along with two fully connected layers. A max

pooling layer with 2 × 2 region and 2 stride is used to

reduce dimension after each two convolution layer. With the

exception of max pooling layers and the output layer, every

layer takes the advantage of batch normalization and uses

Rectified Liner Units (ReLU) for activations to achieve the

same accuracy with fewer training steps. A dropout layer is

added before the first fully connected layer for regularization

to avoid overfitting. The Eular angle of head pose in the

range of [−π, +π ], so the output layer uses tanh function for

FIGURE 5. Sample images of the dataset relabeled based on AFLW, Biwi
head-pose dataset and intermediate results of our proposed method. The
columns show: the original images, the results we have relabeled,
the intermediate results after face shape normalization and the landmark
heatmap.

activation and is multiplied by π to normalize the result in the

range [−π, +π ].

F. TRAINING PROCEDURE

In the training procedure, the inputs of our method are

images, landmark locations and the labeled head pose. The

loss function which is used in training is defined as follows:

L =
1

Nb

Nb
∑

i=1

√

‖P − P′‖22
3

(11)

where Nb is the number of mini-batch feeds in training, P is

a vector of labeled head pose after affine transformation and

P
′ is the estimated pose.

We train our model using adaptive moment estimation

(Adam) [44]. The updated rule for Adam can be expressed

as follows:

wt+1 = wt −
lr√

m2 + ε
m1 (12)
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where wt+1 and wt are the weights at time t + 1 and t . lr is

the learning rate and ε is a small value used to avoid division

by zero. The two moments m1 and m2 are taken at time t , and

before the weights are updated, they are corrected to limit

a bias toward zero during the first steps. The moments are

regulated by two decaying factors β1 and β2. The authors

suggest that these parameters be initialized to standard values

β1 = 0.9 and β2 = 0.999. We used these values in our

experiment.

IV. EXPERIMENTS AND RESULTS

A. DATASETS AND EXPERIMENTAL SETTING

1) DATASETS

We evaluate the proposed method using six datasets as

follows:

• 300W-LP [45]: 300W [46] standardizes multiple

alignment datasets with 68 landmarks, including

AFW [47], LFPW [48], HELEN [49], IBUG [46]

and XMSVTS [50]. With 300W, Zhu et al. [45]

adapted 3DDense Face Alignment (3DDFA) to generate

61255 samples across large poses (1786 from IBUG,

5207 from AFW, 16556 from LFPW and 37676 from

HELEN. XM2VTS is not used), which is further

expanded to 122450 samples using flipping. We train

our CNN on 300W-LP.

• AFLW2000-3D [45], [51]: AFLW2000-3D contains the

first 2000 identities of the AFLW, which have been re-

annotated with 68 3D landmarks using 3DDFA [45].

There are 1306 samples in [0◦, 30◦], 462 samples in

[30◦, 60◦] and 232 samples in [60◦, 90◦].
• Biwi Dataset [52]: The dataset contains approximately

15000 images of 20 people (6 females and 14 males

−4 people were recorded twice). For each frame, a depth

image, the corresponding RGB image and the anno-

tation of face area and head pose are provided. The

absolute yaw degrees within [0◦, 75◦] and the absolute

pitch degrees within [0◦, 60◦]. We have added the label

of 68 landmarks for each frame with FAN [29] and

relabeled the frames that have not been labeled by FAN

with manually.

• CASPEAL [53]: The CASPEAL contains 21840 images

of 1040 subjects with pose annotation. For each sub-

jects, images across 21 different poses without any other

variation are included. The absolute yaw degrees within

[0◦, 60◦] and the absolute pitch degrees within [0◦, 45◦].
We have added the label of 68 landmarks for each frame

with FAN[27] and relabeled the frames that failed to be

labeled by FAN manually.

• DrivFace [6]: TheDrivFace is composed of 606 samples,

acquired over different days from 4 driver (2 women

and 2 men). The annotation contains the face bounding

box, the facial key points (eyes, nose and mouth) and a

set of labels assigning each image into 3 possible gaze

direction. The absolute yaw degrees are within [0◦, 45◦].
• Driver Pose: The Driver Pose is a new dataset proposed

by us for testing the generalization ability of the result

trained on 300W-LP. It is composed of 3426 samples,

acquired from 12 drivers (2 women and 10 men) with

three cameras from different directions. The annotation

contains the face bounding box and a set of labels assign-

ing each image into 12 possible gaze direction. There are

1256 samples in [0◦, 30◦], 1492 samples in [30◦, 60◦]
and 678 samples in [60◦, 90◦].

Some cases of these datasets are shown in Fig. 6.

2) EXPERIMENTAL SETTINGS

Without specifications, we implement our experiment in the

basis of Python code and TensorFlow framework [54] in

Ubuntu 16.04. The hardware configuration is as follows:

NVIDIA TITAN Xp graphics card, 12GB GPU memory,

i9-7900X @3.60GHz × 10 processor and 32GB RAM.

To enhance the generalization ability of the training result,

we expand the training set by panning, rotating, scaling and

mirroring randomly 20 times (except 300W-LP, the dataset

has been expanded when proposed). The input size is

112 × 112. The proposed methods in the experiment are

trained for 100 epochs using Adam optimization with a learn-

ing rate of 0.001, β1 = 0.9 and β2 = 0.999. The decay rate

is 0.96 and learning rate will be decayed after each 2 epochs

training.

We compute the mean average error (MAE) and accuracy

on validation set to compare the performance among differ-

ent method. Referring to Sundararajan and Woodard [55],

the accuracy has been measured by dividing the range

[−90◦, +90◦] into steps of ±15◦, and it is intended as the

percentage of images within 15◦ of error. TheMAE is defined

as Eq. 13. (αe, βe, γe) is the estimated Eular angle of head

pose and (αg, βg, γg) is the labeled Eular angle of head pose.

Nv indicates the number of samples in validation set.

MAE =

Nv
∑

i=1

(∣

∣αe − αg
∣

∣ +
∣

∣βe − βg
∣

∣ +
∣

∣γe − γg
∣

∣

)

3Nv
(13)

B. PERFORMANCE IMPROVEMENT BROUGHT

ABOUT BY FACIAL LANDMARKS

To investigate the influence of introducing task simplifier and

heatmap generator before feed-forward network, we validate

our method, our feed-forward network with only heatmap

generator, our feed-forward network with only task simplifier

and only our feed-forward network on the same dataset.

We perform two experiment, the one is to validate these

methods on AFLW2000-3D based on five-fold cross valida-

tion and the other one more challenging is to use the entire

300W-LP as the training set and the entire AFLW2000-3D as

the validation set. While training, we validate the result on

the whole training set and validation set after each 2 epochs

training finished and then record the loss. In the basis of the

data, we draw the loss convergence curves of training set and

validation set among different methods, the curves are shown

in Fig. 6 and Fig. 7. The mean average error in degrees and

the accuracy of training result among different methods are

shown in table1 and table2.
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FIGURE 6. Cases of datasets used in validation. Rows 1, 3, 5, 7, 9 and 10 are the original images from the CASPEAL dataset, AFLW2000-3D dataset and
BIWI dataset. Rows 2, 4, 6 and 8 are the landmarks information that was labeled for these datasets. Landmarks information will be used in our method to
improve the accuracy of head pose estimation.

Compared with head pose estimation in the basis of only

raw image, head pose estimation in the basis of affine image

exhibits better performance in the two experiments. On the

validation set, the errors of Eular angles were reduced, espe-

cially roll angle (by 2.60◦ in five-fold cross validation on

AFLW2000-3D and by 3.31◦ in trained on 300W-LP). Task

simplifier narrows the variation of head poses by rotating the

image on Z-axis. Rotating image on Z-axis mainly narrows

the variation of roll of head pose, and the contribution of

task simplifier for mean average error (MAE) is mainly

focused on the roll, which shows that narrowing the vari-

ation of head pose is beneficial to simplify the learning

task and improve the accuracy of head pose estimation.

In the condition of insufficient training data (five-fold cross
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FIGURE 7. Five-fold cross validation on ALFW2000-3D. Solid curves denote training loss, and dotted curves denote validation loss. Blue: head pose
estimation based on affine image and heatmap. Red: head pose estimation based on affine image. Green: head pose estimation based on raw image with
heatmap. Black: head pose estimation based on raw image.

FIGURE 8. Training on 300W-LP and validating on AFLW2000-3D. Solid curves denote training loss, and dotted curves denote validation loss. Blue: head
pose estimation based on affine image and heatmap. Red: head pose estimation based on affine image. Green: head pose estimation based on raw
image with heatmap. Black: head pose estimation based on raw image.

validation on AFLW2000-3D), the improvement of task

simplifier for accuracy is limited (by 4.75%). But in the

condition of sufficient training data (trained on 300W-LP

and validated on ALFW2000-3D), introducing task simpli-

fier before feed-forward network can improve the accuracy

greatly (by 7.60%). This is because the task simplifier does

not significantly reduce background interference. The CNN

still needs to be trained with a large amount of data to extract

the features that have strong correlation with head pose.

Compared with head pose estimation in the basis of only

raw image, head pose estimation in the basis of raw image

with heatmap can reduce the mean average error (MAE) of
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TABLE 1. Mean Average Error (MAE) in degrees and accuracy (% of
images with ±15◦ error) with different proposed architecture on
AFLW2000-3D (five-fold across validation).

TABLE 2. Mean Average Error (MAE) in degrees and accuracy (% of
images with ±15◦ error) with different proposed architecture on
AFLW2000-3D (trained on 300W-LP).

validation set significantly in the two experiments (by 2.16◦

in five-fold cross validation on AFLW2000-3D and by 2.89◦

in trained on 300W-LP). In addition, the introduction of

heatmap generator can greatly improve the accuracy in the

both cases of insufficient training data (five-fold cross valida-

tion on AFLW2000-3D) and sufficient training data (trained

on 300W-LP and validated on ALFW2000-3D) (by 11.75%

in the case of insufficient training data and by 8.40% in

the case of sufficient training data). Taking advantage of

heatmap generator allows obtaining a training result with

strong generalization ability in the condition of insufficient

training samples. This is due to the introduction of heatmap

map, which makes CNN focus more on the area around the

facial landmarks when extracting features and reduces the

interference of background significantly, the CNN can extract

the features that express head pose efficiently more easily.

Task simplifier improves generalization ability by simpli-

fying the learning task and heatmap generator improves gen-

eralization ability by making CNN focus on the area around

facial landmarks. Since task simplifier and heatmap generator

improve generalization ability of training result based on

different methods, the lifting effect can be superimposed to a

certain extent and the loss of validation set can be reduced fur-

ther. Introducing both task simplifier and heatmap generator

before feed-forward network, the accuracy in the condition

of insufficient training samples (five-fold cross validation on

AFLW2000-3D) is improved from 86.00% to 98.75% and

the accuracy in the condition of sufficient training samples

(trained on 300W-LP and validated on ALFW2000-3D) is

improved from 88.55% to 99.00%.

C. COMPARISON WITH STATE-OF-THE-ART METHODS

To ensure an exhaustive comparison with other state-of-the-

art methods, our method is validated using three publicly

TABLE 3. Mean Average Error (MAE) in degrees among different
methods on AFLW2000-3D. † trained on 300W-LP.

TABLE 4. Mean Average Error (MAE) in degrees among different
methods on the BIWI dataset. ∗ these methods use depth information.

TABLE 5. Angular error of pitch and yaw in degrees among different
methods on the CASPEAL dataset.

available standard datasets, AFLW2000-3D, BIWI, and

CASPEAL.

Firstly, we compare our method with other state-of-the-

art methods on AFLW2000-3D. The † indicates that the

method is trained on 300W-LP. Multi-Loss ResNet50 [25]

estimates head pose angles directly from image intensities

based on a CNN. The main task of 3DDFA [45] s to align

facial landmarks using a dense 3D model. As a result of the

3D fitting process, a 3D head pose is produced. FAN [29]

and Dlib [28] are state-of-the-art landmark detectors and

the proposed method is compared with pose estimated from

landmarks using the two landmarks detectors and ground

truth landmarks. The result is presented in Table 3.

After removing the task simplifier and heatmap genera-

tor, our method exhibits performance similar to Multi-Loss

Resnet, 3DDFA on AFLW2000-3D. This result is also in

line with the conclusion of Patacchiola and Cangelosi [9]:

when the number of convolution layers and parameters reach

a certain value, adding another convolution layer or more
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FIGURE 9. Examples of estimation of facial landmarks and head pose in DrivFace and Our dataset. Rows 1, 2, 3, and 4 are the examples of DrivFace
dataset and rows 5, 6, 7 and 8 are the examples of our dataset. Rows 1, 3, 5 and 7 show the result estimated by FAN and our method (with landmarks)
and rows 2, 4, 6, and 7 show the result estimated by FAN and our method (without lamdmarks).

parameters did not lead to any improvement. By introduc-

ing landmarks information into CNN based on the pro-

posed method, the CNN exhibits excellent performance

on AFLW2000-3D. This phenomenon further proves our

hypothesis: what limits the performance of CNNs on wild

head pose dataset is not the expressivity of CNNs, but because

the features extracted by the CNN could not reflect head pose

efficiently. Because of large variation in head poses, model-

based methods that only use landmarks information could not

exhibit excellent performance on AFLW2000-3D either. The

proposed method improves the accuracy and generalization

ability of CNN on head pose estimating problem consider-

ably by combining the advantages of both appearance-based

methods and model-based methods.

Then, we evaluate the proposed method on the BIWI

dataset with five-fold cross-validation at the video level

and compare the method with state-of-the-art methods.

We also evaluate the proposed method after removing the
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task simplifier and heatmap generator on BIWI to analyze the

influence of introducing landmarks information into the CNN

on the dataset under controllable conditions. The ∗ indicates

that depth information is used for head pose estimation in this

method. Drouard et al. [22] estimated head pose by using

the manifold embedding approach and adopted the leave-

one-out evaluation protocol at the individual person level.

Liu et al. [23] and Ruzi et al. [25] estimated head pose based

on CNN and adopted cross-validation protocol at the video

level. The result is presented in Table 4.

Because BIWI is the dataset under controllable conditions

(with little background interference), the features extracted

by CNN could reflect the head pose more efficiently. In this

case, what primarily limits the performance on validation set

theoretically is the expressivity of the CNN. The expressivity

of the CNN is mainly dependent on its number of layers.

In all methods based on CNNs listed in Table 4, the order

of expressivity from low to high is Liu et al. [23], ours, and

then Ruzi et al. [25], and the performance on BIWI from low

to high is the same as that of expressivity. The experimental

results are consistent with our estimate. Thus, introducing

landmarks information into CNNs according to the proposed

methods can not improve the performance on the datasets

under controllable conditions significantly. However, situa-

tions under controllable conditions are rare in practice and

the results trained on such datasets are less practical. Com-

pared to other methods, all methods based on CNNs exhibit

excellent performance and are shown to be promising.

Finally, we evaluate the proposed method on CASPEAL

to test the performance when only estimating a single angle.

CASPEAL is only annotated with yaw and pitch. we change

the output layer from 3 to 1 and evaluate the proposed method

on CASPEAL with five-fold validation for twice, which pre-

dicts yaw and pitch separately. EL_TT_N [57] estimates the

yaw of the head pose based on deformablemodel and is evalu-

ated on 940 subjects of CASPEAL. Diaz-Chito et al. [19] and

HPE [22] divide CASPEAL into two parts. Diaz-Chito et al.

evaluate their method on each part with two-fold cross-

validation and repeat 10 times with different random training/

testing sample choices. HPE [22] is evaluated on each part

with five-fold cross validation. Discriminative ResponseMap

Fitting (DRMF) [59] and OPENFACE [58] are also added to

the comparison for reference according to their results, but

using the best trained model provided by the authors.

The result is presented in Table 5. Compared with other

methods, the proposed method still exhibits excellent perfor-

mance when estimating a single angle of head pose.

D. VALIDATION ON UNKNOWN DATASET

To further compare the generalization ability of the proposed

method and the method after removing the task simplifier and

heatmap generator, we evaluate two methods on DrivFace [6]

and Driver Pose dataset. The both methods are trained on

300W-LP. The facial landmarks are located by FAN using the

best trained model provided by the authors.

Representative examples are shown in Fig. 9. The accura-

cies of the two methods have both reached 99.67%, because

there is no large variation of head pose and lighting conditions

on DrivFace. Driver Pose is more challenging because there

are more large poses on the dataset and larger variation in the

lighting condition. Through Fig. 9, we can intuitively find

that after introducing landmarks information into the CNN,

the accuracy of the CNN is significantly improved in the case

of large poses. By introducing landmarks information into

CNN based on the proposed method, the estimation accuracy

on Driver Pose has been improved from 87.9% to 99.3%. The

experiment shows that the proposed method could improve

the generalization ability of trained result considerably.

V. CONCLUSION

This paper presents a new method to introduce landmarks

information into a CNN for improving the accuracy of esti-

mation and the generalization ability of the trained result.

A task simplifier and a heatmap generator are constructed

before the feed-forward neural network. In the task simplifier,

the input face shape is normalized to a canonical shape based

on landmarks information to simplify the head pose estima-

tion task. A heatmap is generated in the heatmap generator to

make the CNN focus on the area around the landmarks while

extracting features and the warped image is stacked as the

input of feed-forward neural network. The validation result

on the wild head pose dataset (300W-LP andAFLW2000-3D)

shows that the proposed method can improve the accuracy

of head pose estimation in the wild considerably. Compar-

ing with validation result on the datasets under controllable

conditions (BIWI and CASPEAL), we find that what lim-

its the performance of CNN on wild head pose datasets is

that the features extracted by CNN cannot express the head

pose efficiently, given the expressivity of the CNN. After

introducing landmarks information into the CNN based on

the proposed method, the features extracted by the CNN can

reflect the head pose more efficiently. Finally, we test the

trained result of 300W-LP on DrivFace and Driver Pose. The

result shows that the trained result based on the proposed

method has superior generalization capacity. In the next step,

we are exploring how to combine the proposed method with

the face alignment method into a single neural network to

estimate the head pose during face alignment.

REFERENCES

[1] R. Stiefelhagen, ‘‘Tracking focus of attention in meetings,’’ in Proc. 4th

IEEE Int. Conf. Multimodal Interfaces, Oct. 2002, pp. 273–280.

[2] H. Salam, O.Çeliktutan, I. Hupont, H. Gunes, and M. Chetouani, ‘‘Fully

automatic analysis of engagement and its relationship to personality in

human-robot interactions,’’ IEEE Access, vol. 5, pp. 705–721, 2017.

[3] R. H. Baxter, M. J. V. Leach, S. S. Mukherjee, and N. M. Robertson,

‘‘An adaptive motion model for person tracking with instantaneous head-

pose features,’’ IEEE Signal Process. Lett., vol. 22, no. 5, pp. 578–582,

May 2015.

[4] B.-G. Lee and W.-Y. Chung, ‘‘Driver alertness monitoring using fusion

of facial features and bio-signals,’’ IEEE Sensors J., vol. 12, no. 7,

pp. 2416–2422, Jul. 2012.

VOLUME 7, 2019 48481



J. Xia et al.: Head Pose Estimation in the Wild Assisted by Facial Landmarks Based on CNNs

[5] N. Alioua, A. Amine, A. Rogozan, A. Bensrhair, and M. Rziza, ‘‘Driver

head pose estimation using efficient descriptor fusion,’’ EURASIP J. Image

Video Process., vol. 2016, p. 1–14, Jan. 2016.

[6] K. Diaz-Chito, A. Hernández-Sabaté, and A. M. López, ‘‘A reduced fea-

ture set for driver head pose estimation,’’ Appl. Soft Comput., vol. 45,

pp. 98–107, Aug. 2016. doi: 10.1016/j.asoc.2016.04.027.

[7] C. Yin and X. Yang, ‘‘Real-time head pose estimation for driver assis-

tance system using low-cost on-board computer,’’ in Proc. 15th ACM

SIGGRAPH Conf. Virtual-Reality Continuum Appl. Ind., vol. 1, 2016,

pp. 43–46.

[8] G. Borghi, R. Gasparini, R. Vezzani, and R. Cucchiara, ‘‘Embedded recur-

rent network for head pose estimation in car,’’ inProc. IEEE Intell. Vehicles

Symp., Jun. 2017, pp. 1503–1508.

[9] M. Patacchiola and A. Cangelosi, ‘‘Head pose estimation in the wild using

convolutional neural networks and adaptive gradient methods,’’ Pattern

Recognit., vol. 71, pp. 132–143, Nov. 2017.

[10] Y. Hu, L. Chen, Y. Zhou, and H. Zhang, ‘‘Estimating face pose by facial

asymmetry and geometry,’’ in Proc. 6th IEEE Int. Conf. Autom. Face

Gesture Recognit., May 2004, pp. 651–656.

[11] P. Martins and J. Batista, ‘‘Accurate single view model-based head pose

estimation,’’ in Proc. 8th IEEE Int. Conf. Autom. Face Gesture Recognit.,

Sep. 2008, pp. 1–6.

[12] A. Dopfer, H.-H. Wang, and C.-C. Wang, ‘‘3d active appearance model

alignment using intensity and range data,’’ Robot. Auton. Syst., vol. 62,

no. 2, pp. 168–176, Feb. 2014. doi: 10.1016/j.robot.2013.11.002.

[13] C. Gou, Y. Wu, F.-Y. Wang, and Q. Ji, ‘‘Coupled cascade regression for

simultaneous facial landmark detection and head pose estimation,’’ inProc.

IEEE Int. Conf. Image Process. (ICIP), Sep. 2017, pp. 2906–2910.

[14] M. Krinidis, N. Nikolaidis, and I. Pitas, ‘‘3-D head pose estimation in

monocular video sequences using deformable surfaces and radial basis

functions,’’ IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 2,

pp. 261–272, Feb. 2009.

[15] X. Yu, J. Huang, S. Zhang, and D. N. Metaxas, ‘‘Face landmark fitting via

optimized part mixtures and cascaded deformable model,’’ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 38, no. 11, pp. 2212–2226, Nov. 2016.

[16] B. Han, S. Lee, and H. S. Yang, ‘‘Head pose estimation using

image abstraction and local directional quaternary patterns for mul-

ticlass classification,’’ Pattern Recognit. Lett., vol. 45, pp. 145–153,

Aug. 2014. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S016786551400097X

[17] I. Chamveha et al., ‘‘Appearance-based head pose estimation with scene-

specific adaptation,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops

(ICCV Workshops), Nov. 2011, pp. 1713–1720.

[18] Z. Zhang, Y. Hu, M. Liu, and T. Huang, ‘‘Head pose estimation in

seminar room using multi view face detectors,’’ in Proc. 1st Int. Eval.

Workshop Classification Events, Activities Relationships. Berlin, Ger-

many: Springer, Apr. 2007, pp. 299–304. [Online]. Available: http://dl.

acm.org/citation.cfm?id=1759639.1759673

[19] K. Diaz-Chito, J. M. D. Rincón, A. Hernández-Sabaté, and D. Gil, ‘‘Con-

tinuous head pose estimation using manifold subspace embedding and

multivariate regression,’’ IEEE Access, vol. 6, pp. 18325–18334, 2018.

[20] D. Huang, M. Storer, F. De la Torre, and H. Bischof, ‘‘Supervised local

subspace learning for continuous head pose estimation,’’ in Proc. CVPR,

Jun. 2011, pp. 2921–2928.

[21] M. A. Haj, J. Gonzàlez, and L. S. Davis, ‘‘On partial least squares

in head pose estimation: How to simultaneously deal with misalign-

ment,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,

pp. 2602–2609.

[22] V. Drouard, R. Horaud, A. Deleforge, S. Ba, and G. Evangelidis, ‘‘Robust

head-pose estimation based on partially-latent mixture of linear regres-

sions,’’ IEEE Trans. Image Process., vol. 26, no. 3, pp. 1428–1440,

Mar. 2017.

[23] X. Liu, W. Liang, Y. Wang, S. Li, and M. Pei, ‘‘3D head pose estimation

with convolutional neural network trained on synthetic images,’’ in Proc.

IEEE Int. Conf. Image Process. (ICIP), Sep. 2016, pp. 1289–1293.

[24] B. Ahn, D.-G. Choi, J. Park, and I. S. Kweon, ‘‘Real-time head

pose estimation using multi-task deep neural network,’’ Robot. Auto.

Syst., vol. 103, pp. 1–12, May 2018. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S0921889017303524

[25] N. Ruiz, E. Chong, and J. M. Rehg, ‘‘Fine-grained head pose estimation

without keypoints,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

Workshops, Jun. 2018, pp. 2074–2083.

[26] K. Fukushima, ‘‘Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition unaffected by shift

in position,’’ Biol. Cybern., vol. 36, no. 4, pp. 193–202, Apr. 1980.

doi :10.1007/BF00344251.

[27] Y. LeCun et al., ‘‘Backpropagation applied to handwritten zip code recog-

nition,’’ Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989.

[28] V. Kazemi and J. Sullivan, ‘‘One millisecond face alignment

with an ensemble of regression trees,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,

pp. 1867–1874.

[29] A. Bulat andG. Tzimiropoulos, ‘‘How far are we from solving the 2D&3D

face alignment problem?(And a dataset of 230,000 3D facial landmarks),’’

in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 1021–1030.

[30] E. Murphy-Chutorian and M. M. Trivedi, ‘‘Head pose estimation in com-

puter vision: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 31,

no. 4, pp. 607–626, Apr. 2009.

[31] C. Wang, Y. Guo, and X. Song, Head Pose Estimation Via Manifold

Learning. 2017.

[32] T. S. Huang, A. M. Bruckstein, R. J. Holt, and A. N. Netravali, ‘‘Unique-

ness of 3D pose under weak perspective: A geometrical proof,’’ IEEE

Trans. Pattern Anal. Mach. Intell., vol. 17, no. 12, pp. 1220–1221,

Dec. 1995.

[33] X. Xiong and F. De la Torre, ‘‘Supervised descent method and its appli-

cations to face alignment,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Portland, OR, USA, Jun. 2013, pp. 532–539.

[34] S. Ren, X. Cao, Y. Wei, and J. Sun, ‘‘Face alignment at 3000 FPS via

regressing local binary features,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2014, pp. 1685–1692.

[35] N.Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-

tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.,

Jun. 2005, vol. 1, no. 1, pp. 886–893.

[36] H. Yang, W. Mou, Y. Zhang, I. Patras, H. Gunes, and P. Robinson, ‘‘Face

alignment assisted by head pose estimation,’’ CoRR, vol. abs/1507.03148,

Jul. 2015. [Online]. Available: https://arxiv.org/abs/1507.03148

[37] S. Zhu, C. Li, C.-C. Loy, and X. Tang, ‘‘Unconstrained face alignment

via cascaded compositional learning,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit., Jun. 2016, pp. 3409–3417.

[38] X. Xu and I. A. Kakadiaris, ‘‘Joint head pose estimation and face alignment

framework using global and local CNN features,’’ in Proc. 12th IEEE Int.

Conf. Autom. Face Gesture Recognit., May/Jun. 2017, pp. 642–649.

[39] M. Kowalski, J. Naruniec, and T. Trzcinski, ‘‘Deep alignment network:

A convolutional neural network for robust face alignment,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. Workshops, Jul. 2017, pp. 88–97.

[40] W. Wu, C. Qian, S. Yang, Q. Wang, Y. Cai, and Q. Zhou, ‘‘Look at

boundary: A boundary-aware face alignment algorithm,’’ in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 2129–2138.

[41] X. Cao, Y. Wei, F. Wen, and J. Sun, ‘‘Face alignment by explicit

shape regression,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,

Providence, RI, USA, Jun. 2012, pp. 2887–2894.

[42] P. H. Schönemann, ‘‘A generalized solution of the orthogonal pro-

crustes problem,’’ Psychometrika, vol. 31, no. 1, pp. 1–10, Mar. 1966.

doi: 10.1007/BF02289451.

[43] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ CoRR, vol. abs/1409.1556, Sep. 2014.

[Online]. Available: https://arxiv.org/abs/1409.1556

[44] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’

CoRR, vol. abs/1412.6980, Dec. 2014. [Online]. Available: https://arxiv.

org/abs/1412.6980

[45] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, ‘‘Face alignment across large

poses: A 3D solution,’’ inProc. IEEEConf. Comput. Vis. Pattern Recognit.,

Jun. 2016, pp. 146–155.

[46] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, ‘‘300 faces

in-the-wild challenge: The first facial landmark localization challenge,’’

in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Dec. 2013,

pp. 397–403.

[47] X. Zhu and D. Ramanan, ‘‘Face detection, pose estimation, and landmark

localization in the wild,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recog-

nit. (CVPR), Jun. 2012, pp. 2879–2886.

[48] P. N. Belhumeur, D.W. Jacobs, D. J. Kriegman, andN. Kumar, ‘‘Localizing

parts of faces using a consensus of exemplars,’’ in Proc. CVPR, Jun. 2011,

pp. 545–552.

48482 VOLUME 7, 2019



J. Xia et al.: Head Pose Estimation in the Wild Assisted by Facial Landmarks Based on CNNs

[49] E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin, ‘‘Extensive facial land-

mark localization with coarse-to-fine convolutional network cascade,’’

in Proc. IEEE Int. Conf. Comput. Vis. Workshops (ICCVW), Jun. 2013,

pp. 386–391.

[50] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre, ‘‘XM2VTSDB:

The extended M2VTS database,’’ in Proc. 2nd Int. Conf. Audio

Video-Based Biometric Person Authentication, vol. 964. Mar. 1999,

pp. 965–966.

[51] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, ‘‘Annotated facial

landmarks in the wild: A large-scale, real-world database for facial land-

mark localization,’’ in Proc. IEEE Int. Conf. Comput. Vis. Workshops,

Nov. 2011, pp. 2144–2151.

[52] G. Fanelli, J. Gall, and L. van Gool, ‘‘Real time head pose estimation with

random regression forests,’’ in Proc. CVPR, Jun. 2011, pp. 617–624.

[53] W. Gao et al., ‘‘The CAS-peal large-scale Chinese face database and

baseline evaluations,’’ IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,

vol. 38, no. 1, pp. 149–161, Jan. 2008.

[54] M. Abadi et al., ‘‘Tensorflow: Large-scale machine learning on hetero-

geneous distributed systems,’’ CoRR, vol. abs/1603.04467, Mar. 2016.

[Online]. Available: https://arxiv.org/abs/1603.04467

[55] K. Sundararajan and D. L. Woodard, ‘‘Head pose estimation in the wild

using approximate view manifolds,’’ in Proc. IEEE Conf. Comput. Vis.

Pattern Recognit. Workshops, Jun. 2015, pp. 50–58.

[56] B. Wang, W. Liang, Y. Wang, and Y. Liang, ‘‘Head pose estimation with

combined 2D SIFT and 3D HOG features,’’ in Proc. 7th Int. Conf. Image

Graph., Jul. 2013, pp. 650–655.

[57] A. Narayanan, R. M. Kaimal, and K. Bijlani, ‘‘Estimation of driver head

yaw angle using a generic geometric model,’’ IEEE Trans. Intell. Transp.

Syst., vol. 17, no. 12, pp. 3446–3460, Dec. 2016.

[58] T. Baltrušaitis, P. Robinson, and L.-P. Morency, ‘‘OpenFace: An open

source facial behavior analysis toolkit,’’ in Proc. IEEE Winter Conf. Appl.

Comput. Vis. (WACV), Mar. 2016, pp. 1–10.

[59] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic, ‘‘Robust discrimina-

tive response map fitting with constrained local models,’’ in Proc. IEEE

Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3444–3451.

JIAHAO XIA was born in Wuhan, China, in 1995.

He received the B.Sc. degree from the Wuhan

University of Technology, China, in 2017, and the

master’s degree from Hunan University, in 2017.

His research interests include deep learning algo-

rithm, machine learning, and intelligent vehicle.

LIBO CAO was born in Hengyang, China, in 1964.

He received the B.S. degree in vehicle engineer-

ing from the University of Hunan, Changsha,

China, in 1989, and the Ph.D. degree in mechani-

cal engineering fromHunanUniversity, Changsha,

in 2002.

Since 2002, he has been a Doctoral Supervisor

with the State Key Laboratory of AdvancedDesign

and Manufacturing for Vehicle Body. He has been

a Visiting Scholar with the University of Technol-

ogy Berlin, Germany, from 2003 to 2004. He had a joint study with Wayne

State University, USA. He has authored one book, more than 100 articles,

andmore than fiveChinese national inventions. His research interests include

active safety and advance driver-assisted systems, injury biomechanics, pas-

sive safety, and self-driving. He is a Reviewer of the Journal of Automotive

Safety and Energy and Automotive Technology.

GUANJUN ZHANG was born in Shandong,

China, in 1981. He received the B.E., M.E., and

Ph.D. degrees from Hunan University, China,

in 2003, 2005, and 2009, respectively. From

2007 to 2008, he was a Visiting Scholar with

Wayne State University. Since 2010, he has been

with Hunan University. From 2016 to 2018, he was

aVisiting Scholar with theUniversity ofMichigan.

His research interests include image processing,

vehicle crashes, automotive restraint systems, and

automotive structures.

JIACAI LIAO received the B.E. degree in vehi-

cle engineering from the Hunan University of

Mechanical and Vehicle Engineering, Changsha,

China, in 2017. He is currently pursuing the

Ph.D. degree with Hunan University, Changsha.

His research interests include computer vision,

machine learning, self-driving, and intelligent

transportation systems.

VOLUME 7, 2019 48483


	INTRODUCTION
	RELATED WORKS
	PROPOSED METHOD
	OVERVIEW OF THE METHOD
	FACE ALIGNMENT
	FACE SHAPE NORMALIZATION
	LANDMARK HEATMAP
	FEED-FORWARD NEURAL NETWORK
	TRAINING PROCEDURE

	EXPERIMENTS AND RESULTS
	DATASETS AND EXPERIMENTAL SETTING
	DATASETS
	EXPERIMENTAL SETTINGS

	PERFORMANCE IMPROVEMENT BROUGHT ABOUT BY FACIAL LANDMARKS
	COMPARISON WITH STATE-OF-THE-ART METHODS
	VALIDATION ON UNKNOWN DATASET

	CONCLUSION
	REFERENCES
	Biographies
	JIAHAO XIA
	LIBO CAO
	GUANJUN ZHANG
	JIACAI LIAO


