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Abstract

Today’s networks typically carry or deploy dozens

of protocols and mechanisms simultaneously such as

MPLS, NAT, ACLs and route redistribution. Even when

individual protocols function correctly, failures can arise

from the complex interactions of their aggregate, requir-

ing network administrators to be masters of detail. Our

goal is to automatically find an important class of fail-

ures, regardless of the protocols running, for both opera-

tional and experimental networks.

To this end we developed a general and protocol-

agnostic framework, called Header Space Analysis

(HSA). Our formalism allows us to statically check net-

work specifications and configurations to identify an im-

portant class of failures such as Reachability Failures,

Forwarding Loops and Traffic Isolation and Leakage

problems. In HSA, protocol header fields are not first

class entities; instead we look at the entire packet header

as a concatenation of bits without any associated mean-

ing. Each packet is a point in the {0, 1}L space where L
is the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space

to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-

ment our framework, and used it to analyze a variety of

networks and protocols. Hassel was used to analyze the

Stanford University backbone network, and found all the

forwarding loops in less than 10 minutes, and verified

reachability constraints between two subnets in 13 sec-

onds. It also found a large and complex loop in an exper-

imental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated

families” — Charles Dickens

In the beginning, a switch or router was breathtak-

ingly simple. About all the device needed to do was in-

dex into a forwarding table using a destination address,

and decide where to send the packet next. Over time,

forwarding grew more complicated. Middleboxes (e.g.,

NAT and firewalls) and encapsulation mechanisms (e.g.,

VLAN and MPLS) appeared to escape from IP’s lim-

itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-

cific domains, such as data centers, WANs and wireless,

have greatly increased the complexity of packet forward-

ing. Today, there are over 6,000 Internet RFCs and it is

not unusual for a switch or router to handle ten or more

encapsulation formats simultaneously.

This complexity makes it daunting to operate a large

network today. Network operators require great sophisti-

cation to master the complexity of many interacting pro-

tocols and middleboxes. The future is not any more rosy

- complexity today makes operators wary of trying new

protocols, even if they are available, for fear of break-

ing their network. Complexity also makes networks frag-

ile, and susceptible to problems where hosts become iso-

lated and unable to communicate. Debugging reacha-

bility problems is very time consuming. Even simple

questions are hard to answer, such as “Can Host A talk

to Host B?” or “Can packets loop in my network?” or

“Can User A listen to communications between Users

B and C?”. These questions are especially hard to an-

swer in networks carrying multiple encapsulations and

containing boxes that filter packets.

Thus, our first goal is to help system administrators

statically analyze production networks today. We de-

scribe new methods and tools to provide formal answers

to these questions, and many other failure conditions, re-

gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-

ministrators to guarantee isolation between sets of hosts,

users or traffic. Partitioning networks this way is usually

called “slicing”; VLANs are a simple example used to-

day. If configured correctly, we can be confident that traf-

fic in one slice (e.g. a VLAN) cannot leak into another.

This is useful for security, and to help answer questions

such as “Can I prevent Host A from talking to Host B?”.

For example, imagine two health-care providers using

the same physical network. HIPAA [20] rules require

that no information about a patient can be read by other

providers. Thus a natural application of slicing is to place

each provider in a separate slice and guarantee that no

packet from one slice can be controlled by or read by the

other slice. We call this secure slicing. Secure slicing

may also be useful for banks as part of defense-in-depth,

and for classified and unclassified users sharing the same

physical network. Our tools can verify that slices have



been correctly configured.

Our third goal is to take the notion of isolation fur-

ther, and enable the static analysis of networks sliced in

more general ways. For example, with FlowVisor [6] a

slice can be defined by any combination of header fields.

A slice consists of a topology of switches and links, the

set of headers on each link, and its share of link capac-

ity. Each slice has its own control plane, allowing its

owner to decide how packets are routed and processed.

While tools such as FlowVisor allow rapid deployment of

new protocols, they add to the complexity of the network,

pushing the level of detail beyond the comprehension of

a human operator. Our tools allow automatic analysis of

the network configuration to formally prove that the slic-

ing is operating as intended.

In the face of this need, it is surprising that there are

very few existing network management tools to analyze

large networks. Further, the tools that exist are proto-

col dependent and specialized to each task. For example,

the pioneering work of Xie, et al [4] on static reachabil-

ity analysis, the analyses of IP connectivity and firewall

configuration, e.g. [11, 9, 10, 15], and work on routing

failures [12, 13] are all tailored to IP networks. While

these papers suggest powerful approaches for reachabil-

ity in IP networks, they do not easily extend to new pro-

tocols and new types of checks.

This paper introduces a general framework, called

Header Space Analysis, which provides a set of tools

and insights to model and check networks for a variety

of failure conditions in a protocol-independent way. Key

to our approach is a generalization of the geometric ap-

proach to packet classification pioneered by Lakshman

and Stiliadis [3], in which classification rules over K
packet fields are viewed as subspaces in a K dimensional

space.

We generalize in three ways. First, we jettison the no-

tion of pre-specified fields in favor of a header space of

L bits where each packet is represented by a point in

{0, 1}L space, where L is the header length. This al-

lows us to work with emerging protocols and arbitrary

field formats. Second, we go beyond modeling packet

classification in which a header is mapped to a single

point in a matching subspace. Instead, we model all

router and middlebox processing as box transfer func-

tions transforming subspaces of the L-dimensional space

to other subspaces. For example, in Figure 1, A and B
are arbitrary boxes, and TA and TB represent their trans-

fer functions. We model how a packet or flow is modified

as it travels by composing the transfer functions along

the path. Third, we go beyond modeling a single box to

modeling a network of boxes using a network transfer

function, Ψ and a topology transfer function, Γ. Ψ com-

bines all individual box functions into one giant function.

Γ models the links that connect ports together. The over-

A B 

TA() TB() 

a b 

A B 

TB(TA()) 

a b Tab() 

(a) 

(b) 

Figure 1: (a) Changes to a flow as it passes through two boxes with

transfer function TA and TB . (b) Composing transfer functions to

model end to end behavior of a network.

all behavior of the network is modeled as a black box by

composing Ψ and Γ along all paths.

The contributions of this paper and an outline of the

rest of the paper are as follows:

• Header Space Analysis: Section 2 describes the ge-

ometric model and defines transfer functions. Sec-

tion 3 shows how transfer functions can be used

to model today’s networking boxes. Section 4 de-

scribes an algebra for working on header space.

• Use Cases: Section 5 describes how header space

analysis can be used to detect network failures such

as reachability failures, routing loops and slice iso-

lation in a protocol independent way.

• Implementation: Section 6 describes a library of

tools (called Hassel, or Header Space Library),

based on header space analysis, that can statically

analyze networks. We describe five key optimiza-

tions that boost Hassel’s performance by 5 orders

of magnitude relative to a naive implementation.

• Experiments: Section 7 reports results of using Has-

sel to analyze three examples: (1) Stanford Univer-

sity’s backbone network, (2) Slice isolation check,

and (3) An experimental source routing protocol.

We report loops found, and show that even our

Python implementation scales to large enterprise

networks with our optimizations.

We describe limitations of our approach and related

work in Sections 8 and 9. We conclude in Section 10.

2 The Geometric Model

Our header space framework is built on a geometric

model. We model packets as points in a geometric space

and network boxes as transfer functions on the same ge-

ometric space. Our first task is to define the main geo-
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metric spaces.

Header Space, H: We ignore the protocol-specific

meanings associated with header bits and view a packet

header as a flat sequence of ones and zeros. Formally,

a header is a point and a flow is a region in the {0, 1}L

space, where L is an upper bound on the header length.

We call this space Header Space,H.

A wildcard expression is the basic building block used

to define objects in H. Each wildcard expression is a

sequence of L bits where each bit can be either 0, 1 or x.

Each wildcard expression corresponds to a hypercube in

H. Every region, or flow, in H is defined as a union of

wildcard expressions.

H abstracts away the data portion of a packet because

we assume it does not affect packet processing. If it

does, as in an intrusion-detection box, then L must be

the length of the entire packet. If the fields are fixed, we

can define macros for each field in H to reduce dimen-

sionality. However, the general notion of header space is

critical when dealing with different protocols that inter-

pret the same header bits in different ways. Note also that

we can model variable length fields such as IP options

using a custom parsing function as shown in Section 7.3.

Network Space, N : We model the network as a set

of boxes called switches with external interfaces called

ports each of which is modeled as having a unique iden-

tifier. We use “switches” to denote routers, bridges, and

any possible middlebox.

If we take the cross-product of the switch-port space

(the space of all ports in the network, S) with H, we

can represent a packet traversing on a link as a point in

{0, 1}L × {1, ..., P} space, where {1, ..., P} is the list

of ports in the network. We call the space of all possible

packet headers, localized at all possible input ports in the

network, the Network Space, N .

Network Transfer Function, Ψ(): As a packet tra-

verses the network, it is transformed from one point

in Network Space to other point(s) in Network Space.

For example, a layer 2 switch, that merely forwards a

packet from one port to another, without rewriting head-

ers, transforms packets only along the switch-port axis,

S. On the other hand, an IPv4 router that rewrites some

fields (e.g. MAC address, TTL, checksum) and then for-

wards the packet, transforms the packet both in H and

S.

As these examples suggest, all networking boxes can

be modeled as Transformers with a Transfer Function

(see Figure 1), that models their protocol dependent

functions. More precisely, a node can be modeled us-

ing its transfer function, T , that maps header h arriving

on port p:

T (h, p) : (h, p)→ {(h1, p1), (h2, p2), ...}

In general, the transfer function may depend on the input

port to model input-port-specific behavior and the output

may be a set of (header, port) pairs to allow multicast-

ing.1

A concept we use heavily is the network transfer

function, Ψ(.). Given that switch ports are numbered

uniquely, we combine all the box transfer functions into

a composite transfer function describing the overall be-

havior of the network. Formally, if a network consists of

n boxes with transfer functions T1(.), ..., Tn(.), then:

Ψ(h, p) =











T1(h, p) if p ∈ switch1

... ...

Tn(h, p) if p ∈ switchn

Topology Transfer Function, Γ(): We can model

the network topology using a topology transfer function,

Γ(), defined as:

Γ(h, p) =

{

{(h, p∗)} if p connected to p∗

{} if p is not connected.

Γ models the behavior of links in the network. It accepts

a packet at one end of a link and returns the same packet,

unchanged, at the other end. Note that links are unidi-

rectional in this model. To model bidirectional links, one

rule should be added per direction.

Multihop Packet Traversal: Using the two transfer

functions, we can model a packet as it traverses the net-

work by applying Φ(.) = Ψ(Γ(.)) at each hop. For ex-

ample, if a packet with header h enters a network on port

p, the header after k hops will be Ψ(Γ(...(Ψ(Γ(h, p)...),
or simply Φk(h, p): each Γ forwards the packet on a link

and each Ψ passes the packet through a box.

Slice: A slice, S, can be defined as (Slice network

space, Permission, Slice Transfer Function) where Slice

network space is a subset of the network space controlled

by the slice, and Permission is a subset of {read(r),

write(w)}2. The Slice Transfer Function, Ψs(h, p), cap-

tures the behavior of all rules installed by the control

plane of slice S. For example, a slice that controls pack-

ets destined to subnet 192.168.1.0/24 and is restricted to

network ports 1, 2 and 3 can be expressed as ((ip dst(h)
= 192.168.1.x , p ∈ {1, 2, 3}), rw , Ψs). Here, ip dst(h)
is a helper function refering to the IP destination bits in

the header.

Our concept of a slice combines two notions we nor-

mally think of as very different. It describes the implicit

slicing, when protocols coexist today on the same net-

work using protocol IDs (e.g. TCP and UDP) or net-

works partitioned using Vlan IDs. It also describes the

1It also enables us to model load balancing boxes for which the

output port is a psuedo-random function of the header bits.
2A real slice may have other attributes such as bandwidth reserva-

tions, but our model ignores attributes irrelevant to the analysis.
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explicit slicing utilized by FlowVisor [6] to create in-

dependent experiments in an OpenFlow [5] network, as

done in testbed networks such as GENI3 [19].

3 Modeling Networking Boxes

This section is a brief tutorial on transfer functions in or-

der to illustrate their power in modeling different boxes

in a unified way. We use helper functions for clarity.

We refer to a particular field in a particular protocol

using helper function protocol field(). For example,

ip src(h) refers to the source IP address bits of header

h. Similarly, helper function R(h, fields, values) is

used to rewrite the fields in h with values. For exam-

ple, R(h, mac dst(), d) rewrites the MAC destination

address to d. Header updates can be represented by a

masking AND followed by a rewrite OR.

We start by modeling an IPv4 router which processes

packets as follows: 1) Rewrite source and destination

MAC addresses, 2) Decrement TTL, 3) Update check-

sum, 4) Forward to outgoing port. Thus the transfer func-

tion of an IPv4 router concatenates four functions:

TIPv4(.) = Tfwd(Tchksum(Tttl(Tmac(.)))).

We examine each function in turn. Tfwd(.) looks up

ip dst(h) in a lookup table and returns the output port.

If lookup is modeled as ip lookup(.) : ip dst→ port:

Tfwd(h, p) = {(h, ip lookup(ip dst(h)))}

Similarly, Tmac(.) looks up the next hop MAC address

and updates source and destination MAC addresses.

Tttl(.) drops the packet if ip ttl(h) is 0 and otherwise

does R(h, ip ttl(), ip ttl(h) − 1). Tchksum(.) updates

the IP checksum. If the focus is on IP routing, we

might choose to ignore Tmac(.), simplifying the model

to TIPv4(.) = Tfwd(Tttl(.)) or even TIPv4(.) = Tfwd().
As an example, a simplified transfer function of an IPv4

router that forwards subnet S1 traffic to port p1, S2 traffic

to port p2 and S3 traffic to port p3 is:

Tr(h, p) =



















{(h, p1)} if ip dst(h) ∈ S1

{(h, p2)} if ip dst(h) ∈ S2

{(h, p3)} if ip dst(h) ∈ S3

{} otherwise.

A firewall is modeled as a transfer function that ex-

tracts IP and TCP headers, matches the headers against

a sequence of wildcard expressions (which model ACL

rules), and drops or forwards the packet as specified by

the matching rule. A tunneling end point is modeled us-

ing a shift operator that shifts the payload packet to the

right and a rewrite operator that rewrites the beginning

3In GENI parlance, the network space of a slice is called flow space.

of the header. A Network Address Translator (NAT) box

can also be modeled using a rewrite operator. However

the level of details that we use in our model depends on

the application. For example we can have a detailed

model where we model the exact source IP to source

transport port mapping, or we may set the output trans-

port source port to a wildcard (all x) to represent every

possible mapping. In [1] we provide more examples.

While modeling is trivial but tedious, we have written

tools that parse router configuration files and forwarding

tables to automate the process.

4 Header Space Algebra

Algorithms that compute reachability or determine if two

slices can interact must determine how different spaces

overlap. We therefore need to define basic set operations

on H: intersection, union, complementation and differ-

ence. We also define the Domain, Range and Range In-

verse for transfer functions. The next section shows how

this algebra is used.

4.1 Set Operations onH

While set operations on bit vectors are well-known, we

need set operations on wildcard expressions. Since all

objects in header space can be represented as a union

of wildcard expressions, defining set operation on wild-

card expressions allows these operations to carry over

to header space objects. For the rest of this paper, we

overload the term header to refer to both packet headers

(points in H) and wildcard expressions (hyper-cubes in

H).

Intersection: For two headers to have a non-empty

intersection, both headers must have the same bit value

at every position that is not a wildcard. If two headers

differ in bit bi, then the two headers will be in different

hyper-planes defined by bi = 0 and bi = 1. On the other

hand, if one header has an x in a position while the other

header has a 1 or 0, the intersection is non-empty. Thus,

the single-bit intersection rule for bi ∩ b′i is defined as:

❍
❍

❍
❍

❍
bi

b′i 0 1 x

0 0 z 0

1 z 1 1

x 0 1 x

In the table, z means the bitwise intersection is empty.

The intersection of two headers is found by applying the

single-bit intersection rule, bit-by-bit, to the headers. z is

an “annihilator”: if any bit returns z, the intersection of

all bits is empty. As an example, 11000xxx ∩ xx00010x

= 1100010x and 1100xxxx ∩ 111001xx = 11z001xx = φ.

A simple trick allows efficient software implementation.
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Encode each bit in the header using two bits: 0 → 01,

1 → 10, x → 11 and z → 00. Intersection, then, is

simply an AND operation on the encoded headers.

Union: In general, a union of wildcard expressions

cannot be simplified. For example, no single header

can represent the union of 1111xxxx and 0000xxxx.

This is why a header space object is defined as a union

of wildcard expressions. In some cases, we can sim-

plify the union (e.g., 1100xxxx ∪ 1000xxxx simplifies

to 1x00xxxx) by simplifying an equivalent boolean ex-

pression. For example, 10xx ∪ 011x is equivalent to

b4b3 ⊕ b4b3b2. This allows the use of Karnaugh Maps

and Quine-McCluskey [18] algorithms for logic mini-

mization.

Complementation: The complement of header h —

the union of all headers that do not intersect with h — is

computed as follows:

h′ ← φ
for bit bi in h do

if bi 6= x then

h′ ← h′ ∪ x...xbix...x

end if

end for

return h′

The algorithm finds all non-intersecting headers by re-

placing each 0 or 1 in the header with its complement.

This follows because just one non-intersecting bit (or

z) in a term results in a disjoint header. For example,

(100xxxxx)′ = 0xxxxxxx ∪ x1xxxxxx ∪ xx1xxxxx.

Difference: The difference (or minus) operation can

be calculated using intersection and complementation.

A−B = A ∩B′. For example:

100xxxxx− 10011xxx =
100xxxxx ∩ (0xxxxxxx ∪ x1xxxxxx ∪ xx1xxxxx

∪xxx0xxxx ∪ xxxx0xxx)
= φ ∪ φ ∪ φ ∪ 1000xxxx ∪ 100x0xxx

= 1000xxxx ∪ 100x0xxx.

The difference operation can be used to check if one

header is a subset of another: A ⊆ B ⇐⇒ A−B = φ.

4.2 Domain, Range and Range Inverse

To capture the destiny of packets through a box or set of

boxes, we define the domain, range and range inverse as

follows:

Domain: The domain of a transfer function is the set

of all possible (header, port) pairs that the transfer func-

tion accepts. Even headers for which the output is empty

(i.e., dropped packets) belong to the domain.

Range: The range of a transfer function is the set of all

possible (header, port) pairs that the transfer function can

output after applying all possible inputs on every port.

Range Inverse: Reachability and loop detection com-

putation requires working backwards from a range to

determine what input (header, port) pairs could have

produced it. If S = {(h1, p1), ..., (hj , p2)}, then

the range inverse of S under transfer function T (.) is

X = {(hi, pi)}]
n

1
such that T (X) = S. Equivalently,

X = T−1(S). The inverse of a transfer function is well-

defined: A transfer function maps each (h, p) pair to a

set of other pairs. By following the mapping backward,

we can invert a transfer function.

5 Using Header Space Analysis

In this section we show how the header space analy-

sis – developed in the last three sections – can be used

for solving several classical networking problems in a

protocol-agnostic way.

5.1 Reachability Analysis

Xie, et. al. [4] analyze reachability by tracing which of

all possible packet headers at a source can reach a des-

tination. We follow a similar approach, but generalize

to arbitrary protocols. Using header space analysis, we

consider the space of all headers leaving the source, then

track this space as it is transformed by each successive

networking box along the path (or paths) to the destina-

tion. At the destination, if no header space remains, the

two hosts cannot communicate. Otherwise, we trace the

remained header spaces backwards (using the range in-

verse at each step) to find the set of headers the source

can send to reach the destination.

Consider, for example, the question: Can packets from

host a reach host b?. Define the reachability function R
between a and b as:

Ra→b =
⋃

a→b paths

{Tn(Γ(Tn−1(......(Γ(T1(h, p)...))}

where for each path between a and b, {T1, ..., Tn−1, Tn}
are the transfer functions along the path. The switches in

each path are denoted by:

a→ S1 → ...→ Sn−1 → Sn → b.

The Range of Ra→b is the set of headers that can reach

b from a. Notice that these headers are seen at b, and

not necessarily headers transmitted by a, since headers

may change in transit. We can find which packet headers

can leave a and reach b by computing the range inverse.

If header h ⊂ H reached b along the a → S1 → ...
→ Sn−1 → Sn → b path, then the original header sent

by a is:

ha = T−1

1
(Γ(...(T−1

n−1
(Γ(T−1

n ((h, b))...)),

using the fact that Γ = Γ−1.
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TD(h, p) =



















if h=100xxxxx, p = D0 :

{((h&00011111)|01000000, D1)}

if h=110xxxxx, p = D1 :

{((h&00011111)|01100000, D0)}

Figure 2: Example for computing reachability function from a to b. For simplicity, we assume a header length of 8 and show the first 4 bits on the

x-axis and the last 4 bits on the y-axis. We show the range (output) of each transfer function composition along the paths that connect a to b. At the

end, the packet headers that b will see from a are 01011x10 ∪ 10010x10.

To provide intuition, we do reachability analysis for

the small example network in Figure 2. Each box in Fig-

ure 2 contains its transfer function. To keep things sim-

ple, we only use 8-bit headers; since we cannot easily

depict eight dimensions, we represent the first 4 bits of

the header on the x-axis and the last 4 bits on the y-axis.

Note that in this example, A and C are miniature models

of IP routers, B is a firewall, D is a simplified NAT box

and E behaves like an Ethernet switch.

Figure 2 shows how the network boxes transform

header space along each path. By repeatedly applying

the output of each transfer function to the input of the

next transfer function in each path, the reachability func-

tion from a to b becomes:

Ra→b(h, p) =



















if h=10010x10, p = A0 :

{(h, E2)}

if h=10011x10, p = A0 :

{((h&00011111)|01000000, E2)}

The range of Ra→b, which is the final output set in Figure

2, is 10010x10 ∪ 01011x10. This is the set of headers

that can reach b from a. To find the set of headers that

a can send to b, we compute the range inverse of Ra→b

which is 10010x10 ∪ 10011x10.

Complexity: As we push the test packet toward the

destination, the transfer function rules divide the input

headerspace into smaller pieces. If the headerspace con-

sists of the union of R1 wildcard expressions and the

transfer function has R2 rules, then the output can be a

headerspace with O(R1R2) wildcard expressions. How-

ever, this is the worst case scenario. In a real network

whose purpose is to provide connectivity, as the header

space propagates to the core of the network, the match

patterns of forwarding rules will become less specific,

therefore the space will not be divided into too many

pieces. Most of the flow division happens as a result

of rules that are filtering out some part of input flow

(e.g. ACL rules). As a result, each of the input wildcard

expressions will match only a few rules in the transfer

function and generate at most cR (and not R2), where

c << R. We call this, the Linear Fragmentation as-

sumption. Under this assumption, the running time is

O(dR2) where d is the network diameter – the maxi-

mum number of hubs that a packet will go through before

reaching the destination – and R is the maximum number

of forwarding rules in a router. See [1] for more details.

While our algorithm may appear almost to be a simula-

tion, we gain algorithmic leverage by treating groups of

headers as an equivalence class wherever possible. By

contrast, a brute-force algorithm that simulates the send-

ing of every possible packet has O(2L) complexity.

5.2 Loop Detection

A loop occurs when a packet returns to a port it has

visited earlier. Header space analysis can determine all

packet headers that loop. We first describe how to detect

generic loops and then show how to detect infinite loops,

a subset of generic loops where packets loop indefinitely.

An example of a generic, but finite loop, is an IP packet

that loops until the TTL decrements to zero.

Generic Loops: Given a network transfer function, we

detect all loops by injecting an all-x test packet header

6
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Figure 3: An example network for running the loop detection algo-

rithm. The solid lines show the changes in the all-x test packet injected

from A1 till it returns to the injection port as hret. The dashed lines

show the process of detecting infinite loop, where hret is traced back

to find horig , the part of all-x packet that caused hret.
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Hdr:H5 
Port: D0 
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Hdr:H8 
Port: A1 

Visits:D0,B1,C0,A1 

Figure 4: Example of the propagation graph for a test packet injected

from port A1 in network of figure 3.

(i.e., a packet header, all of whose bits are wild-carded)

from each port in the network and track the packet until:

• (Case 1) It leaves the network;

• (Case 2) It returns to a port already visited (Pret);

or

• (Case 3) It returns to the port4 it was injected from

(Pinj).

Only in Case 3 – i.e. the packet comes back to its in-

jection port — do we report a loop. Since we repeat the

same procedure starting at every port, we will detect the

same loop when we inject a test packet from Pret. Ignor-

ing Case 2 avoids reporting the same loop twice.

We find loops using breadth first search on the prop-

agation graph. For example, in Figure 3 we inject the

all-x test packet into port A1. Figure 4 is the correspond-

4While we could define a loop as a packet returning to a node visited

earlier, using ports helps detect infinite loops.

ing propagation graph. Each node in the propagation

graph shows the set of packet headers, Hdr, that reached

a Port and the set of ports visited previously in their

path: Visits. For example, in Figure 4:

{(H3, B1), (H4, D2)} = Φ(H2, C0).

We detect a loop when Port is the first element of

Visits. 5

The generic loop detection test has the same algorith-

mic structure as reachability test, and hence its complex-

ity is similarly O(dPR2) under the Linear Fragmenta-

tion assumption. Here P is number of ports that we need

to inject the test packet from. See [1] for more details.

Finding Single Infinite Loops: Not all generic loops

are infinite. For example, in the loop “A → C → B →
D → A” in Figure 3, the header space changes as the

test packet traverses the loop. Let hret denote the part of

header space that returns to A1. Then horig , defined as

horig = Φ−1(Φ−1(Φ−1(Φ−1(hret, A1))))

is the original header space that produces hret. Figure 3

also depicts the process of finding horig .

Now, hret and horig relate in one of three ways:

1. hret ∩ horig = φ: In this case, the loop is surely

finite. The header space that caused the loop, i.e. horig ,

does not intersect with the returned header space, and the

loop will terminate.

2. hret ⊆ horig: in this case the loop is certainly

infinite. Every packet header in horig is mapped by the

transfer function of the loop to a point in hret. Since hret

is completely within horig , the process will repeat in the

next round, and the loop will continue indefinitely.

3. Neither of the above: In this case, we need to iterate

again. First, note that hret − horig completely satisfies

Case 1’s condition, and therefore cannot loop again. But

we must examine hret ∩ horig . So we redefine hret :=
hret ∩horig and calculate the new horig . We repeat until

one of the first two cases happens. The process must

terminate (in at most 2L steps) because at each step the

newly defined hret shrinks. Hence, eventually case 1 or

2 will happen, or hret will be empty.6

More tortuous loops, where a packet passes through

other loops before coming back to a first loop, can also

be detected using a simple generalization [1].

5.3 Slice Isolation

Network operators often wish to control which groups

of hosts (or users) can communicate with each other.

5If Port appears anywhere else in Visits, we terminate the

branch.
6IP TTL is an example of Case 3. For a loop of length n, hret = ttl

for 0 < ttl < 256 − n and horig = ttl for n < ttl < 256. In the

next round hret := hret ∩ horig = ttl for n < ttl < 256 − n. In

subsequent rounds hret shrinks by 2n until it is empty.
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They might define the traffic belonging to a slice using

VLANs, MPLS, FlowVisor, or – as far as we are con-

cerned – any set of headers. A common requirement is

that traffic stay within its slice, and not leak to another

slice. Leakage might cause a malfunction or lead to a

security breach.

Header space analysis can (1) Help create new slices

that are guaranteed to be isolated, and can (2) Detect

when slices are leaking traffic. We consider each use

case in turn.

Creating New Slices: Creating a new slice requires

identification of a region of network space that does not

overlap with regions belonging to existing slices. Con-

sider an example of two slices, a and b with regions of

network space Na, Nb ∈ N ,

Na = {(αi, pi)]pi∈S
} , Nb = {(βi, pi)]pi∈S

}

where α are headers in Na and β are headers in Nb, and

pi ∈ S are individual ports in each slice.

If the two slices do not overlap, they have no header

space in common on any common port, i.e., αi∩βi = φ,

for all i. If they intersect, we can determine precisely

where (which links) and how (which headers) by finding

their intersection:

Na ∩Nb = {(αi ∩ βi, pi)]pi∈Na&pi∈Nb
}.

Set intersection could, for example, be used to statically

verify that communication is allowed at one layer, or

with one protocol but not with another. A simple check

for overlap is extremely useful in any slicing environ-

ment (e.g. VLANs or FlowVisor) to check for run-time

violations. The test can flag violations, or could be be

used to create one slice to monitor another.

Detecting Leakage. Even if two slices do not over-

lap anywhere, packets can still leak from one slice to an-

other when headers are rewritten. We can use a (more

involved) algorithm to check whether packets can leak.

If there is leakage, the algorithm finds the set of offend-

ing (header, port) pairs.

Assume that slice a has reserved network space Na

= { (αi, pi)]pi∈S
}, and the network transfer function of

slice a is Ψa(h, p). Slice a is only allowed to control

packets belonging to its slice using Ψa. Leakage occurs

when a packet in slice a at any switch-port can be rewrit-

ten to fall into the network space of another slice. If pack-

ets cannot leak at any switch-port, then they cannot leak

anywhere. Therefore on each switch-port, we apply the

network transfer function of slice a to its header space

reservation, to generate all possible packet headers from

slice a. Call this the output header set. If the output

header space of slice a at any switch port, overlaps with

any other slice, then there is the potential for leaks. Fig-

ure 5 graphically represents this check.

S1 S2 

a	
  

b	
  

Ψa() 
a	
  

b	
  

Figure 5: Detecting slice leakage. Although slice a and b have disjoint

slice reservation on S1 and S2, but slice a’s reservation on S1 can leak

to slice b’s reservation os S2 after it is rewritten by slice a’s transfer

function rules.

[1] shows that the complexity of both tests is

O(W 2N), where W is the maximum number of wild-

card expressions used to describe any slice’s reservation

and N is the total number of slices in the network.

6 Implementation

We created a set of tools written in Python 2.6 - called

Header Space Library or Hassel - that implement the

techniques described above. The source code is available

here [2]. Hassel’s basic building block is a header space

object that is a union of wildcard expressions which im-

plements basic set operations. In Hassel, transfer func-

tion objects that implement network transfer functions

are configured by a set of rules; when given a header

space object and port, a transfer function generates a list

of output header space objects and ports. Transfer func-

tions can be built from standard rules (i.e. by matching

on an input port and wildcard expression), or from cus-

tom rules supplied by the programmer. Hassel allows

the computation of the inverse of a transfer function. We

also wrote a Cisco IOS parser that parse router config-

urations and command outputs and generates a transfer

function object that models the static behavior of the

router. The resulting automation was essential in ana-

lyzing Stanford’s network.

Figure 6 is a block diagram of Hassel. For Cisco

routers, we first use Cisco IOS commands to show the

MAC-address table, the ARP Table, the Spanning Tree,

the IP forwarding table, and the router configuration. The

result is passed to the parser which builds transfer func-

tion objects which are then used by applications such as

Loop Detection.

Our implementation employs five key optimizations

marked with superscript indices in Figure 6 that are

keyed to the rows in Table 1. We briefly describe all

optimizations, defering details to [1]. Table 1 reports the

impact of disabling each optimization in turn when ana-

lyzing Stanford’s backbone network. For example, loop

detection for a single port with all optimizations enabled

took 11 seconds: however, disabling IP compression in-

creased running time by 19x and disabling lazy subtrac-
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Wildcard Expression: L bit expression consisting of {0,1,x} 

Transfer Function Rule 

Standard Rule: 

•  List of input ports and match wildcard expressions 

•  Mask and rewrite wildcard expressions 

•  List of output ports 

Custom Rule: 

•  Function pointer to decide if a header space matches 

•  Function pointer to generate output header space 

Header Space Object   

Data Structure: 

•  Inclusive list of wildcard expressions  

•  Exclusive list of wildcard expressions(2)  

Operations: 

•  Intersection, Union, Complementation, Difference 

•  Subset and Equality Check 

•  Fast Dead Object Check(3) 

Cisco IOS Commands Used 

 

•  sh mac-address-table 

•  sh arp 

•  sh spanning-tree 

•  sh config 

•  sh ip cef 

Transfer Function Object 

Data Structure: 

•  Ordered list of transfer function rules 

•  For each rule, list of higher priority rules whose 

match pattern intersect with this rule(2) 
•  Lookup table for fast lookup of rules that may 

match an input header space and port(4) 

Operations: 

•  Calculate inverse transfer function rule for each 

standard rule. 

•  Apply transfer function or inverse of transfer 

function to an input header space and port. (or 

lazily postpone it(5)) 

Cisco Configuration Parser 

 

•  Read the IOS commands output 

•  Compress IP forwarding table.(1) 

•  Generate Transfer Function Object 

Applications 

•  Reachability Test 

•  Loop Detection 

•  Slice Isolation Check 

Figure 6: Header Space Library (Hassel) block diagram.

Disabled T.F. Reach. Loop

Optimization Generation Test Test

None 160s 12s 11s

(1) IP Table Compression 10.5x 15x 19x

(2) Lazy Subtraction 1x >400x >400x

(3) Dead Object Deletion 1x 8x 11x

(4) Lookup Based Search 0.9x 2x 2x

(5) Lazy T.F. evaluation 1x 1.2x 1.2x

Table 1: Impact of optimization techniques on the runtime of the

reachability and loop detection algorithms.

tion inflated running time by 400x. Since the optimiza-

tions are orthogonal, the overall effect of all optimiza-

tions is around 10,000X, transforming Hassel from a toy

to a tool.

IP Table Compression: We used IP forwarding table

compression techniques in [7] to reduce the number of

transfer function rules.

Lazy Subtraction: The simple geometric model,

which assumes the rules in the transfer function are dis-

joint, can dramatically increase the number of rules. For

example, if a router has two destination IP addresses:

10.1.1.x and 10.1.x.x and uses longest prefix match, our

original definition requires the second entry to be con-

verted to 8 disjoint rules. To avoid this, we extended

the notion of a header space object to accept a union of

wildcard expressions minus a union of wildcard expres-

sions: ∪{wi} − ∪{wj}. Then, when we want to apply

10.1.x.x rule to the input header space, we simply sub-

tract from the final result, the output generated by the

first rule. Lazy subtraction allows delaying the expan-

sion of terms during intermediate steps, only doing so at

the end. As the table suggests, performance is dramati-

cally improved.

Dead Object Deletion: At intermediate steps, header

space objects often evaluate to empty, and should be re-

moved. Lazy subtraction masks such empty objects; so

we added a quick test to detect empty header space ob-

jects without explicit subtraction.

Lookup Based Search: To pass an input header space

through a transfer function object, we must find which

transfer function rules match the input header space. We

avoid inefficient linear search via a lookup table that re-

turns all wildcard rules that may intersect with the (pos-

sibly wildcarded) search key. In [1] we described the

details of how we implemented such a table.

Lazy Evaluation of Transfer Function Rules: It is

possible for the header space to grow as the cross-product

of the rules. For example, if some boxes forward based

on D destination address, while others filter based on S
source IP address, the network transfer function can have

D × S fragments. If two transfer functions are orthog-

onal, HSL uses commutativity of transfer functions to

delay computation of one set of rules until the end.

Bookmarking Applied Transfer Function Rules:

Both reachability and loop detection tests, require trac-

ing backwards using the inverse transfer function. HSL

“bookmarks” or memoizes the specific transfer rules ap-

plied to a header space object along the forward path.

HSL saves time during the reverse path computation by

only inverting the bookmarked rules.

7 Evaluation

In this section, we first demonstrate the functionality of

Hassel on Stanford University’s backbone network and
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report performance results of our reachability and loop

detection algorithms on an enterprise network. Then we

benchmark the performance of our slice isolation test

on random slices created on Stanford backbone network

which are similar to the existing VLAN slices. Finally,

we showcase the applicability of our approach to new

protocols. All of our tests are run on a Macbook Pro,

with Intel core i7, 2.66Ghz quad core CPU and 4GB of

RAM. Only two of the cores were in use during the tests.

7.1 Verification Of An Enterprise Network

We ran Hassel on Stanford University’s backbone net-

work. With a population of over 15,000 students, 2,000

faculty, and five /16 IPv4 subnets, Stanford is a relatively

large enterprise network. Figure 7 shows the network

that connects departments and student dorms to the out-

side word. There are 14 operational zone (OZ) routers

at the bottom connected via 10 switches to 2 backbone

routers which connect Stanford to the outside world.

Overall, the network has more than 757,000 forwarding

entries and 1,500 ACL rules. We do not provide exact IP

addresses or ports to meet privacy concerns.

We had two experimental goals: we wished to demon-

strate the utility of running Hassel checks, and we wished

to measure Hassel’s performance in a production net-

work. When we generated box transfer functions, we

chose not to include learned MAC address of end hosts.

This allowed us to unearth problems that can be masked

by learned MAC addresses but may surface when learned

entries expire.

Checking for loops: We ran the loop detection test

on the entire backbone network by injecting test pack-

ets from 30 ports. It took 151 seconds to compress the

forwarding table and generate transfer functions, and 560

seconds to run loop detection test for all 30 ports. IP table

compression reduced the forwarding entries to around

4,200.7

The loop detection test found 12 infinite loop paths

(ignoring TTL), such as path L1 in Figure 7, for packets

destined to 10 different IP addresses. These loops are

caused by interaction between spanning tree protocols of

two VLANs: a packet broadcast on VLAN 1 can reach

the leaves of the spanning tree of VLAN 1, where IP

forwarding on a leaf nodes forwards it to VLAN 2. Then,

the packet is broadcasted on VLAN 2 and is forwarded

at the leaf of VLAN 2 back to the original VLAN where

the process can continue.

Although IP TTL will terminate this process, if the

TTL is 32 and the normal path length is 3, this con-

7There were 4 routers which together had 733,000 forwarding en-

tries because no default BGP route was received. As a result they kept

one entry for every Internet subnet they knew of, but all with the same

output port. IP compression reduced their table size by 3 orders of

magnitude.
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Figure 7: Topology of Stanford University’s backbone network and 3

types of loops detected using Hassel. Overall, we found 26 loops on

14 loop paths. 10 of these loops, caused by packets destined to 10 IP

addresses, are infinite loops masked by bridge learning. 16 other loops

are single round loops.

sumes 10 times the normal resources during looping pe-

riods. More importantly, it shows how protocol inter-

actions can lead to subtle problems. Each VLAN has a

separate spanning tree that prevents loops but VLANs are

often defined manually. More generally, individual pro-

tocols often contain automated mechanisms that guaran-

tee correctness for the protocol by itself, but the inter-

action between protocols is often done manually. Such

manual configuration often leads to errors which Hassel

can check for; route redistribution [12] provides another

example of how manual connection of different routing

protocols can lead to errors.

We also found 4 other loop paths, similar to L1, L2 and

L3 in Figure 7 for packets destined to 16 subnets. How-

ever, these loops were single-round loops, because when

the packets return to the injection port, they are assigned

to a VLAN not defined on that box, and hence will be

dropped. Table 2 summarizes performance results. Note

that we can trivially speed up the loop detection test by

running each per-port test on a separate core.

Time to generate Network and Topology

Transfer Function

151 s

Runtime of loop detection test (30 ports) 560 s

Average per port runtime 18.6 s

Max per port runtime 135 s

Min per port runtime 8 s

Average runtime of reachability test 13 s

Table 2: Runtime of loop detection and reachability tests on Stanford

backbone network

Detecting possible configuration mistakes: As a

second example, we considered a configuration mis-

take that could cause packets to loop between backbone

router 1 and the Internet. Stanford owns the IP subnet

171.64.0.0/14. But not all of these IP addresses are cur-

rently in use. The backbone routers have an entry to
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route those IP addresses that are in use, to the correct OZ

router. Also, the default route in the backbone routers

(0.0.0.0/0) is to send packets to the internet. To avoid

sending packets destined to the unused Stanford IP ad-

dresses to the outside world, the backbone routers have

a manually installed null rule that drops all packets des-

tined to 171.64.0.0/14, if they don’t match any other rule.

Suppose that by mistake the null rule is set to drop

171.64.0.0/16 IP addresses (i.e., the /14 is fat-fingered to

a /16). Assume that the ISP’s router does not filter in-

coming traffic traffic from Stanford destined to Stanford.

Then packets sent to unused addresses in 17.64.0.0/14

that are not in 171.64.0.0/16 will loop between the back-

bone routers and the ISP’s router. We simulated this sce-

nario, and the test successfully detected the loop in less

than 10 minutes (as in Table 2). More importantly, the

tool allowed the loop to be traced to the line in the con-

figuration file that caused the error. In particular, the tool

output shows that packets in the loop match the default

0.0.0.0/0 forwarding rule and not the 171.64.0.0/16 rule

in the backbone router.

Verifying reachability to an OZ router: As a third

example, we calculated the reachability function from

the OZ router connected to the student dorms to the OZ

router connected to the CS department. We verified that

all the intended security restrictions, as commented by

the admin in the config file were met. These restric-

tions included ports and IP addresses that were closed

to outside users. Table 2 shows the run time for this

test. We have heard from managers that many restric-

tions and ACLs were inserted by earlier managers and

are still preserved because current managers are afraid to

remove them. Hassel allows managers to do “What if”

analysis to see the effect of deleting an ACL.

7.2 Checking Slice Isolation

Suppose we want to replace VLANs in the Stanford

backbone network with the more flexible slices made

possible by FlowVisor. Stanford’s VLANs mostly carry

traffic belonging to a particular subnet — e.g. VLAN 74

carries subnet 171.64.74.0/24. VLAN 74 is equivalent to

a FlowVisor slice across the same routers with header

space: ip dst(h) = 171.64.74.0/24 or ip src(h) =
171.64.74.0/24.

We would like to understand how quickly we can cre-

ate new and flexible slices on-demand in the Stanford

network. Recall from Section 5.3, we need to perform

two checks:

1. When creating a slice, we need to make sure its

header space does not overlap with an existing slice.

2. Whenever a rewrite action is added to a slice, we

need to check that it cannot cause packet leakage.

We generated random slices with a topology similar to
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Figure 8: The time it takes to check if a new slice is isolated from

other slices at reservation time.
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Figure 9: The time it takes to determine whether a new rewrite action

will cause packets to leak between slices.

the existing VLANs, as follows: for each slice, we ran-

domly pick two operational zones in Stanford together

with all router ports and switches that connect them.

Then we add random pieces of header space to each slice

by picking X source or destination subnets of random

prefix length (or random TCP ports) to union together.

X , the number of wildcard expressions used to describe

a slice, denotes the slice’s complexity. While all exist-

ing VLAN slices in Stanford require fewer than 10 wild-

card expressions8, we explored the limits of performance

by varying X from 10 to 1, 000. We ran experiments to

create new slices of varying complexity, X , while there

were 10, 100 or 500 existing slices.

In the first experiment, we create a new slice, and the

checker verifies isolation by looking for intersection with

all the existing slices. This test is done every time a new

slice is created, and we hope it will complete in a few

minutes or less. In the second experiment, we emulate

the behavior of adding a new rewrite action. We generate

random rewrite actions, and the checker checks to see if it

could possibly cause a packet leak to another slice. This

test has to be run every time a new rule is added, so it

8In most cases, two expressions suffice.
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needs to be really fast.

Figure 8 and 9 shows the run time of our tests. As

the figures suggest, if the slices are not very complex

(can be explained with fewer than 50 wildcard expres-

sions)9, then the tests run almost instantly. Surprisingly,

the tests are very fast even when there are 500 slices:

more than adequate for existing networks. If there are

only 10 or 100 slices, the checks can be done on very

complex slices. The experimental run times matches the

expected complexity in Section 5.3, which is quadratic

in the number of wildcard expressions per slice and lin-

ear in the number of slices.

7.3 Debugging a Protocol Design

This section describes a plausible scenario in which a

loop is caused by a protocol design mistake. The sce-

nario allows the loop size to be parameterized to examine

how detection time varies with loop size. It also show-

cases how HSL can model IP options and other variable

length fields using custom transfer function rules.

In our scenario, Alice – a networking researcher – in-

vents a new loose source routing protocol, IP*. IP* al-

lows a source to specify the sequence of middle boxes

that a packet must pass through. Alice’s protocol has the

header format shown in Figure 10.a. IP* works exactly

like normal IP, except that it updates the header at the

first router where a packet enters the IP* network. Figure

10.b shows an example of header update for a stack size

of three. The header update operation sets the current

source address to the “sender IP address” field, rewrites

the destination IP address to the address at the top of the

stack, and rotates all the IP addresses in the stack. After

processing, a destination middlebox swaps the destina-

tion and source IP addresses and resends the packet to a

router. Alice designs IP* to allow tunneling across exist-

ing IP networks.

Alice tries IP* in the network topology of Figure 11

and verifies that packets are successfully routed via mid-

dle boxes M1 and M2. Figure 11 also shows how the

packet header changes as it passes through M1 and M2
to final destination DST in 6 steps. At DST , the stack

contains the IP address of all middleboxes visited.

To continue her verification of IP*, Alice tries the

more complex network in Figure 12 where the desti-

nation is attached to a different IP* network than the

source. Instead of deploying a real network, she uses

the loop detection algorithm from Section 5.2 and finds

several loops. The most interesting one is an infinite

loop consisting of the two strange loops below:

1) R2 → R5 → M2 → R5 → R2 → R4 → M1 →

9This includes wildcard expressions that are included in, or ex-

cluded from, the definition of a slice.
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Figure 10: (a) Header format for IP* protocol. (b) IP* stack rotation:

1. The packet’s IP source is replaced by the Sender IP source. 2. The

packet’s IP destination is replaced by the top of the stack. 3. The stack

is rotated.
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(1) Packet is sent to M1.	



(2) M1 swaps IP src and IP dst	



and sends the packet back. 	



(3) Packet enters IP* network.	



IP* rotation performed. 	



Packet is sent to new destination	



(4) M2 swaps IP src and IP dst	



and sends the packet back. 	



	



(6) Packet received. It shows 

all intermediate hosts visited.	



(5) Packet enters IP* network.	



IP* rotation performed. 	



Packet is sent to new destination	



IP* Network N1!

Figure 11: Example of an IP* network where a packet sent from SRC

to DST visits middleboxes M1 and M2. The figure labels 6 steps of

packet processing along with the transformed header at each step. R2 is

the entry point to the IP* network which performs IP* header updates.

R4 → R2 → R3 → R6 → R3 → R2

2) R2 → R4 → M1 → R4 → R2 → R5 → M2 →
R5 → R2 → R3 → R6 → R3 → R2

Alice now realizes that having a second IP* network

in the path can cause loops. She removes the concept

of a “first” router, instead adding a pointer that describes

the middlebox to visit next. We should be clear that by

no means are we proposing IP* as a viable protocol. In-

stead, we hope this example suggests that Hassel could

be a useful tool for protocol designers as well as network

managers. While this particular loop could be caught

by a simulation, if there were many sources and desti-

nations and the loop was caused by a more obscure pre-
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Figure 12: Alice’s second network topology can cause infinite loops.
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Figure 13: Running time of loop detection algorithm on Ip* network

condition, then a simulation may not uncover the loop.

By contrast, static checking using Hassel will find all

loops.

Figure 13 shows the per-port performance of our in-

finite loop detection algorithm for the ports participat-

ing in the loops. We varied the number of middle boxes

connected to R2 (e.g., M1 and M2) and the number of

router forwarding entries. For four middle boxes, the

loop has a length of 72 nodes! Finding a large and com-

plex loop in less than four minutes — for a network with

100,000 forwarding rules and custom actions — using

less than 50 lines10 of python code (figure 14) demon-

strates the power of the Header Space framework.

8 Limitations

Header space analysis is designed for static analysis,

to detect forwarding and configuration errors. It is no

panacea, serving as one tool among many needed by pro-

tocol designers, software developers, and network oper-

ators. For example, while header space analysis might

tell us that a routing algorithm is broken because rout-

ing tables are inconsistent, it does not tell us why. Even

if the routing tables are consistent, header space analy-

sis offers no clues as to whether routing is efficient or

meets the objectives of the designer. Despite this, header

space analysis could play a similar role in networks as

post-layout verification tools do in chip design, or static

analysis checkers do in compilation. It checks the low

10Not counting the underlying Hassel implementation

def detect_loop(NTF, TTF, ports, test_packet):
    loops = []
    for port in ports:
        propagation = []
        p_node = {}
        p_node["hdr"] = test_packet
        p_node["port"] = port
        p_node["visits"] = []
        p_node["hs_history"] = []
        propagation.append(p_node)
        
        while len(propagation)>0:
            tmp_propag = []
            for p_node in propagation:
                next_hp = NTF.T(p_node["hdr"],p_node["port"])
                for (next_h,next_ps) in next_hp:
                    for next_p in next_ps:
                        linked = TTF.T(next_h,next_p)
                        for (linked_h,linked_ports) in linked:
                            for linked_p in linked_ports:
                                new_p_node = {}
                                new_p_node["hdr"] = linked_h
                                new_p_node["port"] = linked_p
                                new_p_node["visits"] = list(p_node["visits"])
                                new_p_node["visits"].append(p_node["port"])
                                new_p_node["hs_history"] = list(p_node["hs_history"])
                                new_p_node["hs_history"].append(p_node["hdr"])
                                if len(new_p_node["visits"]) > 0 \
                                    and new_p_node["visits"][0] == linked_p:
                                        loops.append(new_p_node)
                                        print "loop detected"
                                elif linked_p not in new_p_node["visits"]:
                                    tmp_propag.append(new_p_node)
            propagation = tmp_propag
    
    return loops

Figure 14: Loop Detection Code

level output against a set of universal invariants, with-

out understanding the intent or aspirations of the proto-

col designer. To analyze protocol correctness, other ap-

proaches, such as [14] should be used.

Similarly, while our approach can pinpoint the specific

entry in the forwarding table or line in the configuration

file that causes a problem, it does not tell us how or why

those entries were inserted or how they will be evolved as

the box receives future messages. Finally, like all static

checkers, our formalism and tools cannot deal well with

churn in the network, except to periodically run it based

on snapshots: thus it can only detect problems that persist

longer than the sampling period.

9 Related Work

The notion of a transfer function in our work is similar to

ASE mapping defined in axiomatic routing [14], where

the authors develop tools to analyze a variety of proto-

cols. Header space analysis makes no attempt to ana-

lyze protocols; instead, it tackles the problem of indepen-

dently checking if their output creates conflicts. Roscoe’s

predicate routing [8] introduces the notion of pushing a

test packet (as used in our reachability and loop detection

algorithms) when designing routing mechanisms, rather

than for static checking as we do. Xie’s reachability anal-

ysis [4] uses test packets to determine reachability (not

loop detection) for the special case of TCP/IP networks.

The static analysis tools described in [11, 9, 10] are de-

signed specifically for TCP/IP firewalls, and Feamster’s

work in [15] finds reachability failures in BGP routers.

Header space analysis is broader in two ways. First, it

is a framework that can identify a range of network con-

figuration problems. Second, the algorithms developed

in this framework are independent of protocols. Finally,

note that model checking, SAT solvers, and Theorem

Provers are other commonly used frameworks for veri-
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fication [16]. However, when these frameworks detect

a violation of a specification (e.g., reachability) they are

limited to providing a single counterexample and not the

full set of failed packet headers that header space analysis

provides.

10 Conclusions

Our paper introduces Header Space Analysis: a general

framework for reasoning about arbitrary protocols, and

for finding common failures, or accidents. By parsing

routing and configuration tables automatically, we show

that header space analysis can be used in existing net-

works where protocol interactions are increasingly com-

plex. As we saw in the Stanford backbone and noted by

[12], while individual protocols use automated mecha-

nisms to prevent internal problems, managing many pro-

tocols simultaneously is a manual and error-prone busi-

ness. Header Space Analysis can also be used in emerg-

ing networks, where new protocols can be added dynam-

ically. It can give network operators the confidence to

adopt new protocols, or new slicing mechanisms — the

framework can be used to create comprehensive check-

ers that can be used by network operators to pro-actively

avoid (or retroactively investigate) accidents.

Our personal story is that we set out to create a ge-

ometric model to better understand slicing. Along the

way, we discovered how simple it is to analyze net-

works using Network Transfer Functions (Ψ). We found

that checking for a given violation was surprisingly easy

when expressed using this high level abstraction, allow-

ing elegant expression and simple implementation as our

code snippets (see Figure 14) suggest.

We have work to do to improve the performance of

our prototype Hassel implementation. A first round of

optimization reduced running time by five orders of mag-

nitude, making Hassel perform well for production net-

works with a few dozen routers, adequate for most en-

terprises and campuses. With simple fixes (e.g. exploit-

ing 64-bit arithmetic, using compiled languages rather

than Python, and harnessing the parallelism of multicore

chips) we expect another 2-3 orders of magnitude perfor-

mance gain. We expect running time of a complete loop

test for a campus backbone to be reduced from about

1,000 seconds to less than 10 seconds. Even more op-

timizations are apparent, such as using a Karnaugh-Map

to reduce the size of header space after each transforma-

tion. There is also scope for checking updates incremen-

tally, by analyzing loops and reachability once, and then

seeing how a new rule (or slice) changes the result.

We have other work ahead of us: we would like to cre-

ate tools that create test packets to dynamically sample

header space to detect faults in an operational network.

We also hope to explore the notion of how secure, or

how fault-tolerant, a network is by finding the “distance”

between the current status of the network, and different

failure conditions — analogous to Hamming distance.

Accidents will happen in the best regulated of net-

works; but the judicious use of checkers such as ours can

reduce their probability.
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