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ABSTRACT A robust adaptive fuzzy neural network control (RAFNNC) algorithm is proposed based

on a generalized dynamic fuzzy neural network (GDFNN), proportion–integral–differential (PID), and

improved bacterial foraging optimization (BFO) algorithm, for heading the control of the unmanned marine

vehicle (UMV) in the presence of a complex environment disturbance. First, the inverse dynamic model of

the motion control of UMV is established based on the GDFNN for the uncertain disturbance caused by the

complex environment disturbance. Then, the adaptive rate of the fuzzy neural network is designed based on

the error between the real UMV heading angle and designed reference heading angle, so as to further adjust

the weight parameter of the GDFNN, and then, the output control value of the neural network is obtained.

In order to further reduce the computation amount and computation time of the RAFNNC, the parameters

of the PID control algorithm were optimized in advance by using the improved BFO algorithm. The fractal

dimension step size and the intelligent probe operation are integrated into the BFO algorithm, in order to

optimize the operation time and accuracy of the algorithm. Stability of the designed RAFNNC algorithm

for the heading control of the UMV in the presence of complex marine environment disturbance is proved

by the Lyapunov stability theory, and the effectiveness and accuracy of the control algorithm proposed are

verified by semi-physical simulation experiment carried out in our laboratory.

INDEX TERMS Unmanned marine vehicle (UMV), heading control, robust adaptive fuzzy neural

network control (RAFNNC), generalized dynamic fuzzy neural network (GDFNN), bacterial foraging

optimization (BFO).

I. INTRODUCTION

Unmanned marine vehicle (UMV), usually used as a generic

term to describe unmanned/autonomous underwater vehi-

cles (UUV/AUV) and unmanned/ uninhabited surface vessels

(USV), can be used to perform a multitude of different tasks,

such asmineral resources sampling, offshore oil and gas oper-

ations, ocean engineering maintenance, and military recon-

naissance, it is attracting more and more interesting form

the scientific, commercial, and naval sectors [1]–[3]. In the

community of UMV automation, heading control or course

keeping plays a significant role in the entire control system,

and is directly related to the operation, economy, safety and

effectiveness of the UMV’s control system [4]–[6]. In addi-

tion, heading control is the basic of path following control in

real as the long path is often divide into several short straight

paths, and the UMV heading control problem has been

attracting much attention from various researchers [7]–[9].

Complex environmental disturbances, such as wind, wave
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and ocean current disturbance, are the most important and

common disturbances when an UMV is working in the sea.

Precise motion control of the UMV cannot ignore the influ-

ence of environment disturbances [10]–[12].

Proportion integral derivative (PID) algorithm and var-

ious improved PID algorithm are the most applied algo-

rithms in UMV heading control, at present, many researchers

have done relevant research and obtained rich research

results [13]–[23]. Many improved algorithms, such as

Kalman filter [13], H-infinity control [14], self adaptive

fuzzy control [15], [16], backstepping control [17], con-

strained self-tuning control [18], expert control and S surface

control [19], adaptive control and hybrid control [20]–[23]

are integrated into PID algorithm to improve the reliabil-

ity, stability and accuracy of the heading control system

and the whole UMV control system. A numerical method

for minimum time heading control of an fixed speed UMV

is proposed by Rhoads et al. [24], while a Sugeno fuzzy

inference system and Kalman filter are integrated into the

heading control system by Toe et al. [25], and a self-tuning

fuzzy control algorithm is proposed by Fang et al. [26].

Artificial neural network control [27], [28], sliding mode

control [29], dynamic surface control [30], global finite

time control [31], backstepping control [32]–[34], visual

feedback control [35], network based hybrid control [36],

sliding mode observer based control [37], linear feedback

control [38], artificial fish swarm algorithm [39], are all

designed by researchers for the UMV’s heading control

system.

By analyzing the existing research results described above,

we can found that the traditional PID, due to its good

robustness, fast convergence, simple application and other

characteristics, it is widely used in UMV control system,

especially in the field of UMV’s heading control, and a lot

of theoretical and experimental research show its stability

and reliability. However, due to its fixe control parameters

and poor adaptability to different environment disturbance,

many researchers try to improve and optimize it in order to

improve its adaptability. Many improved algorithms, such

as self-adaptive fuzzy control, constrained self-tuning con-

trol, expert control et al are proposed. However, the various

nonlinear methods described above, such as sliding mode,

backstepping method; its control performance depends on

the parameters of the UMV model to some extent, but these

model parameters are difficult to obtain and have certain

errors.

Motivated by the above considerations and analysis,

a robust adaptive fuzzy neural network controller is proposed

in this paper, based on generalized dynamic fuzzy neural

network, proportion integral differential and improved bac-

terial foraging optimization algorithm, for heading control

of the UMV in the presence of complex environment distur-

bance. Compared with the existing research results on head-

ing controllers designed for UMVs, the main contributions

of this paper are as follows: (i) a novel robust adaptive fuzzy

neural network controller is firstly proposed in this paper

for heading control of the UMV. (ii) an inverse dynamic

model of the motion control of UMV is established based

on the generalized dynamic fuzzy neural network for the

uncertain disturbance caused by the complex environment

disturbance. (iii) an improved bacterial foraging optimization

algorithm is firstly designed in this paper to optimize the

parameters of PID control algorithm, and then to further

reduce the computation amount and computation time of the

robust adaptive fuzzy neural network controller. (iv) frac-

tal dimension step size and intelligent probe operation are

integrated into the bacterial foraging optimization algorithm,

in order to optimize the operation time and accuracy of the

algorithm. (v) stability of the designed robust adaptive fuzzy

neural network controller algorithm for the heading control

of the UMV in the presence of complex marine environment

disturbance is proved by Lyapunov stability theory.

The remainder of the paper is organized as follows. Non-

linear maneuvering model of UMV and the complex envi-

ronment disturbance are modeled in Problem Formulation,

and a novel robust adaptive fuzzy neural network controller

is designed by combing with the improved bacterial foraging

optimization algorithm in Controller Design. The stability of

the controller proposed is proved in Stability Analysis, and

some simulation experiments of the UMV heading control

are carried out in Simulation Experiment. In Conclusion,

research results obtained in this paper and some future work

are shown.

II. PROBLEM FORMULATION

A. NONLINEAR MANOEUVERING MODEL OF UMV

With the continuous development of the UMV and its maneu-

vering control technology, the accuracy requirement of UMV

heading control system is more and more important. Com-

pared with the traditional linear Nomoto model of UMV

heading maneuvering, the nonlinear Norbbin model could

better reflect the heading maneuvering characteristics of the

UMV, therefore, it could provide more realistic and refer-

ential heading control characteristics. In general, the UMV

heading control system based on nonlinear Norbbin model

could be described as follows [40]:

{

T ṙ + r + αr3 = K (δ + d)

ψ̇ = r
(1)

where ψ , r , δ respectively represent the heading angle, yaw

angular velocity and the rudder angle. T , K , α respectively

represent the stability constant, turning constant, and the

Norbbin coefficient, while d represents the equivalent envi-

ronment disturbances rudder angle.

For the convenience of system analysis, system (1) could

be transformed and designed as follows:







ψ̇ = r

ṙ = −
1

T
r −

α

T
r3 +

K

T
δ +

K

T
d

(2)
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In order to further simplify the above control system,

we design the following state variables and expressions:






















































z = ψ

ż = r

2 =

[

z ż

]T

F(2) = −
1

T
r −

α

T
r3

G(2) = K

D = Kd

u = δ

(3)

Then the UMV heading nonlinear control system shown in

(1) and (2) could be transformed into the following system:

z̈ =F (2)+ G (2) u+ D (4)

Seen from the above nonlinear dynamic system (4), u and z

are input and output vectors, 2 is the state vector, F (2)

and G (2) represent the smooth nonlinearity of the dynamic

system, and D is the external disturbance.

B. COMPLEX ENVIRONMENT DISTURBANCE MODEL

For the UMV heading maneuvering control process, the dis-

turbance of the complex environment, according to [40], they

can be equivalent to the interference effect on the UMV

steering rudder angle, and the specific description is shown

below:






















L = λ1 × wgn× g (s)

N =
(

ρ1L + (1 − ρ1) L̇
)

sin θ cos θ

M = C1N + C2N
2

d = δl =
M

κV 2

(5)

where L, λ1, wgn, g (s), N respectively represent the wave

height, coefficient of colored noise, white Gaussian noise,

transfer function from colored noise to wave height and the

yawing disturbance moment. θ is the angle between course

and wave, and C1, C2, ρ1 are model coefficients, which are

determined by model test; κ is the coefficient which related

to the ship size, tonnage, transshipment, etc; V represents the

UMV’s speedwhile δl represents equivalent interference with

rudder angle, and M is environment disturbance torque.

III. CONTROLLER DESIGN

A. OVERALL DESIGN OF RAFNNC

The structure of the robust adaptive fuzzy neural network

control system, which is designed in this paper for heading

control of the UMV, could be described as shown in figure 1,

and the main design ideas of the system shown above are as

follows:

Firstly, the control systemwould obtain the inverse dynam-

ics of the UMV model by GD-FNN_Amodule, which could

get the mapping from 2 to u. The GD-FNN_A module is

designed by a new generalized dynamic fuzzy neural net-

work, whichwould be carried out detailed design and descrip-

tion in next section. The generalized dynamic fuzzy neural

FIGURE 1. Structure of robust adaptive fuzzy neural network control
system.

network learning algorithm can determine the appropriate

structural parameters of the fuzzy neural network system,

thus obtaining the appropriate mapping relationship between

2 and u.

Secondly, considering the control precision of neural net-

work system in the early stage of learning, and meanwhile to

shorten the system control time, a similar PD control module

is designed, and the control parameters would be optimized

by the improved bacterial foraging optimization algorithm,

which would be covered in the next section.

Thirdly, GD-FNN_B module would copy from

GD-FNN_A module, but its weight vector would be further

adjusted by the adaptive law designed below, and then the

modeling error of generalized dynamic fuzzy neural network

would be compensated. The output compensation control

ufnnb and the improved BFO-PD control together constitute

the final control signal of the UMV heading control system.

B. DETAIL DESIGN OF GDFNN

Comparing with the traditional fuzzy neural network con-

troller, dynamic fuzzy neural network controller has the

advantages of fast learning speed, synchronous parameter

adjustment and structure identification. However, it also has

many disadvantages, such as the width of all Gaussian mem-

bership of input variables is the same, some membership

functions are highly overlapping, and the extracted fuzzy

rules are difficult to understand. To solve these problems,

a novel improved generalized dynamic fuzzy neural network

control algorithm is proposed in this paper for UMV heading

control system based on elliptic basis function, which is

functionally equivalent to Takagi-Sugeno-Kang fuzzy sys-

tem. An online parameter assignment algorithm is proposed

based on fuzzy ε completeness, to avoid the randomness

of initial parameters selection, and meanwhile the width of

input variables of each rule can be adjusted online adaptively

according to its contribution to the system. The detail struc-

ture of the improved GDFNN control algorithm can be shown

above in figure 2.

As shown in figure 2, r represents the number of input

variable, and for or each input variable xi (i = 1, 2, · · · , r),

there are u membership functions µij (j = 1, 2 · · · , u), and

Gaussian membership function of xi could be designed as
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FIGURE 2. Structure of improved generalized dynamic fuzzy neural
network.

follows:










µij (xi) = exp

[

−

(

xi − cij
)2

σ 2
ij

]

i = 1, 2, · · · r j = 1, 2, · · · , u

(6)

where cij and σij are respectively the center and width of the

Gaussian membership function of xi; Since the algorithm to

calculate the trigger weight of each rule is multiplication,

the output φj (j = 1, 2, · · · , u) can be expressed as follows:

φj (x1, · · · , xr ) = exp

[

−

r
∑

i=1

(

xi−cij
)2

σ 2
ij

]

j=1, 2, · · · , u

(7)

And then the output of the improved GDFNN could be

designed as follows:

y (x1, x2, · · · , xr ) =

u
∑

j=1

wj · φj (8)

where y is the value of output variable, wj is the weight

parameter of the rule. Equation (8) can be written as a matrix,

as shown below:

W8 = Y (9)

where W ∈ ℜu(r+1), 8 ∈ ℜu(r+1)×n, Y ∈ ℜn respectively

represent the output weight matrix, membership vector of

fuzzy rules, and the output vector of the GDFNN.

C. IMPROVED BFO ALGORITHM DESIGN

The bacterial foraging optimization (BFO) algorithm is a

new intelligent optimization algorithm, which is proposed

based on the biological clustering algorithm created by the

intelligent behavior embodied in Escherichia coli foraging.

In general, BFO algorithm has the advantages of insensitiv-

ity to initial value and parameter selection, strong robustness,

simple and easy implementation, and parallel processing and

global search. The algorithm mainly includes four proce-

dures for solving the problem: tendency operation, aggrega-

tion operation, replication operation and migration operation.

And among them, tendency operation is the most important

step. So, in order to improve the optimization performance

of the BFO algorithm, the tendency operation is adjusted by

adaptive fractal dimension step size formula and an intelligent

probe operation in this paper.

Firstly, adjusting the trend step size to, only carry out

forward or backward random step size for each dimension,

it could greatly reduce the computation amount of the algo-

rithm and speed up the operation speed. The improved adap-

tive fractal dimension step size algorithm could be designed

as follows, and it makes the bacteria advanced different step

size in each dimension, with simple calculation and better

results.

Cd =
stepd

j× k × l
× rand (10)

where j, k , l, Cd , stepd respectively represent the chemo-

taxis number, replication number, secondary dispersion num-

ber, the step size of the dth dimension and the initial step

size of the dth dimension. While rand is a random number

on [−1, 1].

Secondly, an intelligent probe operation is proposed in this

paper for the swimming of trending operation. The intelligent

probe would calculate the location fitness value in advance

for the next position that bacteria are about to enter. If the

next position is better than the current position, it will move

forward, while if it is worse than the current position, it will

not move forward. This operation greatly speeds up the con-

vergence speed of the algorithm, and meanwhile solves the

shortcoming that the aimlessly movement of bacteria, which

may lead the bacteria to move forward to a worse adaptability

environment and then may swim useless and repeatedly.

Above all, when using the improved bacterial foraging

optimization algorithm, the location of bacteria in searching

space is used to represent the solution of the problem, and the

fitness function is used to describe the quality of the solution.

The parameter optimization of robust adaptive control of

UMV heading is implemented by using improved BFO algo-

rithm. In order to accelerate the convergence of the robust

adaptive controller and reduce the computational complexity

of the GDFNN, parameters k1 and k2 are adjusted before

they are connected to the UMV heading control system.

Meanwhile, to adjust the parameters of the controller by

the improved BFO algorithm so as to adjust the ship course

quickly, this paper here designs the following fitness function

for BFO:
{

J =
∫ t
0 (ω1 |e (t)| + ω2 |1y (t)|)dt + ω3ts + ω4ϕover

1y (t) = y (t)− y (t − 1)
(11)

where e (t), y (t), ts, ϕover respectively represent the heading

error, heading angle, adjustment time and the absolute over-

shoot, while ωi(i = 1, 2, 3, 4) are weight parameters.

It would accelerate the adjustment speed or reduce the

overshoot by adjusting different weight parameters. For

example, when ω1 is larger than other parameters, the system

would accelerate the adjustment speed, when ω2 and ω4 are
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larger, the function would lead to reduce the overshoot of the

system, and when ω3 is larger, the system would accelerate

the speed of course adjustment. So, if the appropriate weight

is obtained, the system could reduce overshoot while speed-

ing up the heading adjustment time.

D. UMV HEADING CONTROLLER DESIGN

The purpose of the UMVheading controller design is to make

all closed loop variables bounded and have it able to track

a given desired heading angle. Since (2) is a second order

system, the reference model with ideal performance could be

described as follows:

ψ̈d + 2ζωnψ̇d + ω2
nψd = ω2

nψr (12)

where ψd , ψr , ωn, ζ respectively represent the desired head-

ing angle given by the reference model, input of the model

reference system, natural frequency and relative damping

coefficient of the system.

In order to track the desired heading angle ψd given by the

reference model, the following tracking error e and tracking

error vectors E could be designed:






e = ψd − ψ

E =

[

e ė

]T (13)

The inverse dynamic model of the dynamic system plays

an important role in the control system, and then designs the

inverse dynamic model of the dynamic system (4), as follows:

u (�) = G−1 (2) [z̈− F (2)− D]

= K−1
[

r + T ṙ + αr3 − Kd
]

(14)

where � =
[

2
T z̈

]T
.

Then we can design the ideal control law as follows:

u∗ = G−1 (2) [z̈d − F (2)− D+ KE]

= u (�d)+ G (2)−1 KE (15)

where �d =
[

2
T z̈d

]T
, K =

[

k1 k2
]

, k1 and k2 are

designed parameters. Substitute (15) into (4) results to:

ë+ k1ė+ k2e = 0 (16)

From (16), it can be seen that if k1 and k2 are selected

appropriately, the tracking error would converge to zero.

However, the external environment disturbances to the UMV

are random, and it could not be accurately describe with

a simple model. Therefore, in order to solve this problem,

a GDFNN control law is proposed here to approximate the

ideal control law. Combining with Figure 1, the ideal control

law in this paper can be designed as follows:

u∗ = W∗T
8 (�d)+ G−1 (̟)KE (17)

Then the actual control law of RAFNNC could be designed

as follows

u = WT
8 (�d)+ KE (18)

whereWT
8 is output of GD-FNN_B; KE is the pre-adjusted

output of improved bacterial foraging optimization algo-

rithm, which could be designed as:

KE = k1 (ψr − ψ)− k2ψ̇ (19)

Combining (2), (17) and (18), the UMV heading control

error system can be designed as follows:

Ė = 3E + B
(

u∗ − u
)

(20)

where






















3 =

[

0 0

−k2 −k1

]

B =

[

0

G (2)

]

Substituting (17) and (18) into (20), we can get:

Ė = 3E + B[(W∗
−W )T8 (�d)+ G−1 (2)KE−KE]

= AE + B[(W∗
−W )T8 (�d)] (21)

where

A =

[

0 0

−G−1 (2) k2 −G−1 (2) k1

]

(22)

A is Hurwitz matrix, and according to (21), we can see

that, in order to minimize the heading control tracking error,

the weight vector W should be further adjusted, and then an

adaptive control law is proposed here as follows:

ẇk = γ8ETPbk (23)

where γ is a positive constant, bk represents the k-th element

of B, P is a symmetric positive definite matrix and satisfies

the following relations:

PA+ ATP = −Q (24)

where Q is an selected symmetric positive definite matrix.

In order to ensure the stability of UMV heading control

system, the adaptive control law could be detail designed as

follows:

ω̇i =



























γ8ETPbk (‖wk‖ < ‖wk (0)‖)

or
(

‖wk‖ = ‖wk (0)‖ and wTk 8ETPbk ≤ 0
)

−
wkw

T
k

‖wk‖
2
8ETPbk (‖wk‖ = ‖wk (0)‖

and wTk 8ETPbk > 0
)

(25)

IV. STABILITY ANALYSIS

In this section, it would be proved that: for a nonlinear

dynamic system (2), the system could be asymptotically sta-

ble under the control law of (18) and the adaptive control

law (25).

Considering the following Lyapunov function candidate:

V (t) =
1

2
ETPE+

1

2
γ−1tr

[

(

W∗ −W
)T (

W∗ −W
)

]

(26)

9708 VOLUME 7, 2019



Z. Dong et al.: Heading Control of UMVs Based on an Improved Robust Adaptive Fuzzy Neural Network Control Algorithm

TABLE 1. Model parameters.

TABLE 2. Initial control parameters.

Differentiating both sides of (26) based on the solutions

of (21) and (24) results in:

V̇ (t) =
1

2
Ė
T
PE+

1

2
ETPĖ− γ−1tr[(W∗ −W )T ]

=
1

2
ET (PA+ ATP)E+ ETPB(W∗ −W )T

×8 − γ−1tr[(W∗ −W )T Ẇ ]

= −
1

2
ETQE+ ETPB

(

W∗ −W
)T

8

− γ−1tr[(W∗ −W )T Ẇ ] (27)

Firstly, considering the first condition of (25) and then (27)

results to:

V̇ (t) = −
1

2
ETQE+ ETPB(W∗ −W )T8

−γ−1tr[(W∗ −W )T Ẇ ]

= −
1

2
ETQE+ ETPB(W∗ −W )T8

− tr[ETPB(W∗ −W )T8]

≤ −
1

2
ETQE+ tr[ETPB(W∗ −W )T8

−ETPB(W∗ −W )T8] = −
1

2
ETQE < 0 (28)

Then considering the second condition of (25), assuming

that ω∗
k ∈ {‖wk‖ ≤ ‖wk (0)‖} k = 1, · · · , no, and (27)

leads to:

V̇ (t) = −
1

2
ETQE+ ETPB(W∗ −W )T8

FIGURE 3. UMV heading control results of case 1. (a) Heading control
results of 30-0-30-0 degree. (b) Heading control error. (c) Steering of
rudder angle.

− γ−1
m

∑

k=1

[(w∗
k − wk )

T γ (−
wkw

T
k

‖wk‖
2
)8ETPbk ]

= −
1

2
ETQE−

m
∑

k=1

[(1−
(w∗

k )
Twk

‖wk‖
2

)wTk 8ETPbk ] (29)

Since

ω∗
k ∈ {‖wk‖ ≤ ‖wk (0)‖} and 1 −

(

w∗
k

)T
wk

‖wk‖
2

≥ 0

It can be obtained that:

V̇ (t) ≤ −
1

2
ETQE ≤ 0 (30)
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FIGURE 4. UMV heading control results of case 2. (a) Heading control
results of 60-0-60-0 degree. (b) Heading control error. (c) Steering of
rudder angle.

As V (t) ≥ 0 and V̇ (t) ≤ 0, the Lyapunov stability theo-

rem shows that the nonlinear dynamic system (2) is globally

stable, and then Barbalat lemma shows that, at that time of

t → ∞, we can know that E (t) → 0, thus the UMV heading

control system is asymptotically stable, and the error of the

system will converge to zero.

V. SIMULATION EXPERIMENTS

In order to verify and illustrate the effectiveness of the

heading control algorithms proposed for the UMV, sev-

eral computer simulation experiments are carried out on a

FIGURE 5. UMV heading control results of case 3. (a) Heading control
results of 30 degree sine wave. (b) Heading control error. (c) Steering of
rudder angle.

UMV maneuvering motion model with model parameters

in Table 1.

The angle between heading and wave is 45 degrees and

the disturbance parameters of complex environment are set

up while the UMV speed is 7.2m/s. Under the disturbance of

complex environment such as wind, wave and ocean current,

the semi-physical simulation experiments of robust adaptive

fuzzy neural network control (RAFNNC) based on general-

ized dynamic fuzzy neural network (GDFNN) and improved

bacterial foraging optimization (BFO) algorithm are carried

out, and then the effectiveness are verified by comparing
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FIGURE 6. UMV heading control results of case 4. (a) Heading control
results of 60 degree sine wave. (b) Heading control error. (c) Steering of
rudder angle.

with PID controller. The main initial control parameters are

designed in Table 2.

Five cases of different simulation experiments are carried

out here to verify the effectiveness and reliability of the

designed control algorithm, just as follows:

Case 1: The initial heading angle of the UMV is 0, and

the desired heading angle changes in turn according to 30-0-

30-0 degree, which is just like a square wave. The simulation

experiment results obtained are shown in figure 3 below.

Case 2: The initial heading angle of the UMV is 0,

and the desired heading angle changes in turn according to

FIGURE 7. UMV heading control results of case 5. (a) Heading control
results of 45 degree square wave and sine wave. (b) Heading control
error. (c) Steering of rudder angle.

60-0-60-0 degree, which is just like a square wave.

The simulation experiment results obtained are shown in

figure 4 below.

Case 3: The initial heading angle of the UMV is 0, and

the desired heading angle changes like a sine curve, and the

amplitude is 30 degree. The simulation experiment results

obtained are shown in figure 5 below.

Case 4: The initial heading angle of the UMV is 0, and

the desired heading angle changes like a sine curve, and the

amplitude is 60 degree. The simulation experiment results

obtained are shown in figure 6 below
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Case 5: The initial heading angle of the UMV is 0, and the

desired heading angle changes like a square wave first and

then a sine curve and the amplitude is 45 degree. The simula-

tion experiment results obtained are shown in figure 7 below.

Figure 3 shows that the robust adaptive neural network

controller (RAFNNC), based on generalized dynamic fuzzy

neural network (GDFNN) and improved bacterial foraging

optimization (BFO) algorithm, has faster adjustment speed

and smaller steady-state error than the PID control in the

square heading control. RAFNNC generates three reasoning

rules here in 30 degree square heading control, and the adjust-

ment time is about 12 seconds. In 60 degree square heading

control RAFNNC here generates four reasoning rules, and the

adjustment time is about 14 seconds.

It can be seen from figure 5 and figure 6 that RAFNNC

has less adjustment time, less overshoot and less steady-state

error than the PID control. And RAFNNC generates seven

inference rules here in the 30 degree sinusoidal heading

control. After about 10 seconds, it has successfully tracked

the sinusoidal course adjustment and the error is small.

In 60 degree sinusoidal course control, RAFNNC here gener-

ates nine inference rules. After about 11 seconds, the sinu-

soidal heading adjustment is successfully tracked and the

error is small. For contrast PID control, the control accuracy

is much lower than that of robust adaptive controller, and the

steady-state error is larger.

Figure 7 shows RAFNNC can track the target course more

quickly and accurately than the PID control, and the error

is smaller. Five inference rules were generated by RAFNNC

here. The error and adjusting time of contrast PID control in

square and sinusoidal course phases are larger than that of

RAFNNC controller.

From figure 3 to 7, it can be found that RAFNNC could

achieve better heading control performance in both square

and sinusoidal heading control under the disturbance of com-

plex environment, such as wind, wave and ocean current, and

it also shows better convergence speed and accuracy than PID

control meanwhile achieves better control effect than PID

control with less time.

VI. CONCLUSION

An improved robust adaptive neural network controller

(RAFNNC), based on generalized dynamic fuzzy neural

network (GDFNN) and improved bacterial foraging opti-

mization (BFO) algorithm, is proposed in this paper, for

heading control of an unmannedmarine vehicle (UMV) in the

presence of complex environment disturbance. The inverse

dynamic model of the motion control of UMV is established

based on the GDFNN for uncertain disturbance caused by the

complex environment disturbance, which could well restrain

and compensate the influence of the complex environment

disturbance, and could obviously improve the control per-

formance of the system. An improved bacterial foraging

optimization algorithm is firstly designed in this paper to opti-

mize the parameters of control algorithm, by combining the

fractal dimension step size and intelligent probe operation,

which could optimize the operation time and accuracy of

the algorithm, and then could further reduce the computation

amount and computation time of the RAFNNC. Stability of

the designed RAFNNC for the heading control of the UMV

in the presence of complex marine environment disturbance

is proved by Lyapunov stability theory, and many simulation

experiments are carried out to verify the effectiveness too.

Large amount of simulation results show that, compared with

traditional PID control algorithm, the proposed RAFNNC

shows better convergence speed and accuracy than PID con-

trol meanwhile achieves better control effect than PID control

with less time. In the future, we will try to apply the heading

control algorithm proposed in this paper to the path following

control of the UMV.
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