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Abstract—The popularity of wearables continues to rise. How-
ever, possible applications, and even their raw functionality are
constrained by the types of sensors that are currently available.
Accelerometers and gyroscopes struggle to capture complex user
activities. Microphones and image sensors are more powerful but
capture privacy sensitive information. Physiological sensors are
obtrusive to users as they often require skin contact and must
be placed at certain body positions to function.

In contrast, radio-based sensing uses wireless radio signals to
capture movements of different parts of the body, and therefore
provides a contactless and privacy-preserving approach to detect
and monitor human activities. In this paper, we contribute to
the search for new sensing modalities for the next generation
of wearable devices by exploring the feasibility of mobile radio-
based human activity recognition. We believe radio-based sensing
has the potential to fundamentally transform wearables as we
currently know them. As the first step to achieve our vision,
we have designed and developed HeadScan, a first-of-its-kind
wearable for radio-based sensing of a number of human activities
that involve head and mouth movements. HeadScan only requires
a pair of small antennas placed on the shoulder and collar and
one wearable unit worn on the arm or the belt of the user. Head-
Scan uses the fine-grained CSI measurements extracted from
radio signals and incorporates a novel signal processing pipeline
that converts the raw CSI measurements into the targeted
human activities. To examine the feasibility and performance of
HeadScan, we have collected approximate 50.5 hours data from
seven users. Our wide-ranging experiments include comparisons
to a conventional skin-contact audio-based sensing approach to
tracking the same set of head and mouth-related activities. Our
experimental results highlight the enormous potential of our
radio-based mobile sensing approach and provide guidance to
future explorations.

I. INTRODUCTION

Wearable devices with various embedded sensors are in-

creasingly becoming mainstream. Millions of people now wear

commercial wearable devices, such as those from Fitbit and

Jawbone, on a daily basis to track how many steps they take,

how far they jog and how long they sleep. However, for

wearables to have a much broader impact on our lives, the

next generation of wearables must expand beyond the narrow

set of predominately exercise-related physical activities and

sleep behaviors currently being monitored.

We believe that a key bottleneck preventing a wider set

of activities from being tracked is caused by the limitations

of sensors present in existing wearable devices. For example,

accelerometers and gyroscopes are constrained to only track-

ing the motion and rotation of the body parts to which they

are attached. Microphones and cameras are rich in sensing

capabilities but come with severe privacy concerns. Many

physiological sensors such as respiration and electrocardio-

gram (ECG) sensors must be positioned at certain locations on

the body (e.g., chest, neck, head), with some even requiring

tight skin contact. The intrusiveness of these contact-based

sensors makes people resistant to use them in practice.

Recently, radio-based sensing technologies have drawn sig-

nificant attention as they provide a contactless and privacy-

preserving approach to detect and monitor human activities

[1], [2], [3], [4], [5], [6]. These technologies use radio trans-

mitters and receivers deployed in the ambient environment

to capture human activities that occur in the monitored area.

Furthermore, many of them exploit the fine-grained PHY layer

Channel State Information (CSI) extracted from the radio

signals to infer the specific human activity. Compared to

the traditional MAC layer Received Signal Strength Indicator

(RSSI), that only provides a single power measurement of the

received signal averaged over the entire channel bandwidth,

CSI provides both the amplitude and phase measurements

of the received signal for all the OFDM subcarriers within

the channel bandwidth [7]. As such, by taking advantage

of the fine-grained CSI measurements, radio-based sensing

technologies have shown superior capabilities of capturing

and recognizing not only activities that involve intense full

body movements, such as walking [2] and falling down [3],

but also activities that involve minute movements such as

speaking (i.e., mouth movements) [4], typing on keyboards

(i.e., hand/finger movements) [5], and even breathing and

heartbeat (i.e., chest movements) [6].

Inspired by the contactless and privacy-preserving charac-

teristics provided by radio-based infrastructure sensing, as well

as the wide range of human activities that can be captured by

the fine-grained CSI measurements, we aim to contribute to the

search for new sensing modalities for the next generation of

wearable devices by exploring the feasibility of mobile radio-

based human activity recognition. We envision that wearable

devices equipped with radio-based sensing could provide a

comprehensive understanding of a wide range of human ac-

tivities in a non-intrusive and privacy-preserving manner and

thus have the significant potential to be widely adopted.

As the first step to achieve our vision, in this paper,

we present HeadScan, a wearable system for radio-based

sensing of a number of human activities that involve head and

mouth movements. These activities include eating, drinking,

coughing, and speaking. We target these four activities for two

reasons. First, the continuous monitoring of these activities

has considerable value for a wide variety of applications,



such as those related to health and wellbeing [8] and social

computing. Second, state-of-the-art wearable technologies for

sensing these activities use microphones [9], [10], cameras

[11], [12], [13], or capacitive sensors [14] and thus are either

intrusive or have privacy concerns. In contrast, HeadScan

uses wireless radio signals to sense the targeted activities

and therefore provides a non-intrusive and privacy-preserving

solution that overcomes the drawbacks of the existing wearable

technologies. Specifically, HeadScan consists of two small

unobtrusive commercial off-the-shelf (COTS) 5GHz antennas

placed on the shoulder and collar of the user respectively, as

well as one wearable unit that can be worn on the arm or the

belt of the user. One antenna acts as a radio transmitter that

continuously sends radio signals, while the other antenna acts

as a radio receiver that continuously receives radio signals. The

radio signals captured at the receiver are then forwarded to the

wearable unit for storage and processing. The underpinning

principle behind HeadScan is that movements of head and

mouth caused by different targeted human activities generate

different changes on the received radio signals. By analyzing

those changes, the activity that causes the changes can be

recognized. Based on this principle, HeadScan first extracts

the CSI measurements from the received radio signals. It then

incorporates a radio signal processing pipeline that converts

the raw CSI measurements into the targeted human activities.

To examine the feasibility and performance of HeadScan,

we have conducted extensive experiments. Our experimental

results show, for the first time, that radio as a sensing modality

is feasible to sense and recognize the targeted eating, drinking,

coughing, and speaking activities in the wearable setting with

an overall recognition accuracy of 86.3%. Furthermore, we

also highlight there remain a number of limitations of this

approach. In this respect, our results not only demonstrate

the feasibility and performance of radio-based sensing on

wearable devices but also serve to guide future explorations

by highlighting the areas of difficulty.

In sum, our work makes the following contributions:

• We introduce a first-of-its-kind wearable device that uses

radio as a new sensing modality to detect and recognize

human daily activities that involve head and mouth move-

ments including eating, drinking, coughing, and speaking.

• We have designed a novel radio signal processing pipeline

that converts raw CSI measurements into targeted human

activities. The pipeline blends techniques from activity

recognition (i.e., sliding window-based segmentation), CSI-

based radio signal processing (i.e., PCA-based dimension

reduction) and sparse representation-based classifier towards

enabling radio-based human activity sensing to be noise-

resistant in the challenging scenario of wearables.

• We have built a proof-of-concept wearable prototype that

incorporates radio-based sensing using CSI measurements

via a COTS radio chipset.

• We have conducted comprehensive experiments to examine

the feasibility and performance of HeadScan on sensing

and recognizing the four head and mouth-related activities.

These include a quantitative comparison between our radio-

based sensing approach with a conventional skin-contact

audio-based sensing method, as well as experiments that

examine the impact of a number of key factors on the

activity recognition performance of radio-based sensing.

II. DESIGN CONSIDERATIONS

In this section, we first list the design goals that HeadScan

aims to achieve. We then describe the unique characteristics

of radio-based human activity sensing in a wearable setting.

A. Design Goals

The design of our HeadScan wearable aims to achieve the

following goals:

• Automated Tracking of Head and Mouth-related Human

Activities: HeadScan is designed to be able to automatically

tracking a set of head and mouth-related human daily ac-

tivities including eating, drinking, coughing, and speaking.

Automatically tracking these activities has significant value

for applications related to healthcare and wellbeing [8], as

well as social computing. Current practice requires users

to self-report those activities via either journaling or taking

pictures of their food. HeadScan aims to automatically track

those activities without user involvement using a wearable

system.

• Enabling Contactless and Non-intrusive Sensing: Head-

Scan is designed to be able to provide a contactless and non-

intrusive solution to capture the movements of the head and

mouth caused by the targeted human activities. Accelerome-

ter and gyroscope-based solutions require users to wear two

wearables (i.e., one on each wrist) to capture eating and

drinking activities [15]. Microphone-based solutions such

as [9], [10] suffer if they do not maintain close contact

with the skin. Capacitive sensor-based solutions such as [14]

require users to wear the capacitive sensor around the neck.

HeadScan aims to examine radio-based sensing that neither

relies on skin contact nor requires the radio sensor to be

placed at a specific location on the body, thus providing a

truly contactless and non-intrusive solution.

• Protection of Privacy: HeadScan is designed to be able

to protect privacy while still being able to provide rich

information about the targeted human activities. Micro-

phones and cameras are the most commonly used sensing

modalities in existing wearables to track the targeted specific

activites we target [11], [9], [10], [12], [13]. However, these

powerful sensors also bring unwanted negative privacy side

effects (e.g. capturing speech and images of surrounding

people). HeadScan aims to examine radio-based sensing that

is unable to reconstruct speech (e.g., [16]) or images yet still

has the resolution to capture and recognize eating, drinking,

coughing, and speaking activities.

To the best of our knowledge, no currently used wearable

technology can satisfy all of the above criteria. This motivates

us to design and develop HeadScan to fill this critical gap.



B. Unique Characteristics of Wearable Radio-based Sensing

Most of the existing research on radio-based human activity

sensing considers monitoring users from radio antennas de-

ployed in the ambient indoor environments. Performing radio-

based human activity sensing from wearable devices with

antennas located on the human body presents a number of

unique characteristics that are different from the infrastructure-

based scenarios. We summarize these differences below:

• Sensing Distance: In infrastructure-based scenarios, radio

transmitters and receivers are placed at a distance (typically

a few meters) from the user being monitored. In a wearable

setting, the antennas are placed directly on the body of the

user. As such, the radio signals are much more sensitive

to the movements caused by human activities due to the

short sensing distances. This high sensitivity amplifies the

movements of interests as well as unwanted noise.

• Radio Transmitter and Receiver Location: The deploy-

ment locations of radio transmitters and receivers, under

infrastructure-based scenarios, have a significant impact on

the activity sensing and recognition performance due to

the variability of indoor conditions (e.g., fittings, furniture)

found in different locations [1]. In a wearable setting,

although the antennas are placed on the body, they can be

placed at different on-body locations as needed. The choice

of on-body location plays a key role in determining what

type of body movement, or more broadly activity, can be

recognized and at what level of accuracy.

• Non-user Interference: In infrastructure-based scenarios,

radio signals can be contaminated by radio frequency inter-

ference (RFI) as well as interference caused by other people

in the monitored area. In a wearable setting, although both

sources of interferences exist, those interferences are often

dwarfed by the activity performed by the user since the

antennas are worn on the body of the user.

Examining the unique characteristics of radio-based sensing

under a wearable scenario, such as those listed above, are

at the heart of this work. We have developed radio signal

processing techniques at different stages of the pipeline to filter

out unwanted wearable-centric noise. We have also adopted

empirical methods through extensive experiments to identify

the best on-body locations to wear antennas as well as quantify

the impact of non-user interference on activity sensing and

recognition performance.

III. WEARABLE PROTOTYPE

Our HeadScan wearable prototype consists of two small (21

x 21 mm; 5 g) unobtrusive commercial off-the-shelf (COTS)

5GHz antennas, that can be worn on the shoulder and the

collar respectively, as well as one wearable unit (85.0 x 60.0

x 36.0 mm; 390 g) that can be worn on the arm or the belt

of the user. The two antennas are wired to the wearable unit.

Figure 1 provides a conceptual illustration of how HeadScan

is worn while it tracks the movements of head and mouth of

the user.

Tx Rx

Radio

Signal 

Wearable

Unit

Fig. 1: The illustration of HeadScan in operation.

1 2

3

Fig. 2: Our HeadScan wearable prototype consists of: 1) one trans-
mitter antenna (Tx), 2) one receiver antenna (Rx) and 3) one wearable
unit that contains two HummingBoard Pro (HMB) mini-computers
(Left). Each HMB is connected with one Intel WiFi Link 5300 card
for measuring CSI (Right).

The wearable unit consists of two HummingBoard Pro

(HMB) devices [17], each powered by one 3000 mAH bat-

tery. The HMB is a low-cost ARM-based mini-computer that

contains an on-board 1.2 GHz ARM Cortex-A9 processor and

1GB RAM. Each HMB is connected with an antenna as well

as an Intel WiFi Link 5300 card [18] via the micro PCIe

socket for measuring CSI (Figure 2). In our prototype, two

HMB are needed because a single HMB can not support two

Intel WiFi Link 5300 cards at the same time. One HMB acts

as the radio transmitter that sends packets periodically and the

other HMB acts as the radio receiver that continuously receives

the packets. We installed the modified firmware released by

the CSI measurement tool [19] through the Debian Cubox-i

Linux OS running on the receiver HMB, enabling the Intel

WiFi Link 5300 card to extract CSI measurements from the

received packets on the receiver HMB. During operation, we

used a custom case to hold the wearable unit and attach it to

the arm of the user with an elastic armband for data collection.

The collected CSI measurements are exported to a desktop

computer for offline processing.

IV. RADIO SIGNAL PROCESSING PIPELINE

In this section, we first provide the background knowledge

of Channel State Information (CSI). We then describe the

details of our radio signal processing pipeline that converts

the raw CSI measurements into the targeted human activities.

A. Background of Channel State Information (CSI)

Modern wireless devices that support IEEE 802.11a/g/n/ac

standards use Orthogonal Frequency Division Multiplexing

(OFDM) in the PHY layer [7]. OFDM divides the entire wire-

less channel into multiple narrowband subcarriers, with each

subcarrier having a different carrier frequency. The Channel

State Information (CSI) contains both the amplitude frequency

response and phase frequency response at the granularity of
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Fig. 3: Overview of the radio signal processing pipeline of HeadScan.

each subcarrier [20]. Head and mouth movements affect the

propagation of radio signals via reflections, diffractions and

scattering, and thus cause different amplitude and phase fre-

quency responses at each subcarrier. Such fine-grained differ-

ences at the subcarrier level are captured in the CSI measure-

ments, but are smoothed out by the RSSI measurement which

is a single measurement averaged over the entire channel

[21]. As such, analyzing the fine-grained CSI measurements

at each subcarrier provides a great opportunity to capture the

minute head and mouth movements caused by eating, drinking,

coughing and speaking activities. Therefore, HeadScan takes

advantage of the fine-grained CSI measurements provided by

commercial wireless devices to sense and recognize those

activities. It should be noted that the CSI phase measurements

are reported to be unreliable due to the low-cost hardware

components used in commercial wireless devices [22]. As

such, HeadScan only uses the CSI amplitude measurements

at all the subcarriers.

B. Radio Signal Processing Pipeline Overview

Figure 3 provides an overview of the radio signal processing

pipeline of HeadScan. As illustrated, the pipeline consists

of six stages to convert the raw CSI measurements into the

targeted activities. Specifically, in stage one, a sliding window

is used to segment the streaming raw CSI measurements

extracted from the PHY layer radio signals into a sequence

of fixed-length windows. In this work, the window is set to be

five seconds long. The window is long enough so that all the

important information of each targeted activity is contained

inside each window. In stage two, a low-pass filter is applied

to the raw CSI measurements in each window to remove

noise that is not caused by head and mouth movements of

the targeted activities. In stage three, Principal Component

Analysis (PCA) is performed on the filtered CSI measure-

ments of all subcarriers to extract the most sensitive changes

caused by head and mouth movements. In stage four, features

that capture the unique characteristics of each activity are

extracted. In stage five, the noise-robust sparse representation

framework is used to train an overcomplete dictionary [23].

Finally, in stage six, the sparse coefficient vector extracted

from the sparse representation framework is used to build a

classifier to recognize the targeted activity. We use the sparse

representation framework because it has been proved to be

robust to the noise caused by radio frequency interference

(RFI) in radio signal processing [2].

(a) Raw CSI measurements (b) Filtered CSI measurements

Fig. 4: Raw and low-pass filtered CSI measurements.

C. Noise Removal

The raw CSI measurements extracted from the PHY layer

radio signals are very noisy. To use CSI measurements for

recognizing head and mouth-related activities, it is necessary

to begin by eliminating as much of this noise as possible.

Since the changes of CSI measurements caused by head and

mouth movements lie at the lower end of the frequency

spectrum, HeadScan uses a Butterworth low-pass filter to

capture the changes caused by head and mouth movements

while discarding noise that lies at the higher end of the

frequency spectrum. Based on our experiments, we observed

that the changes caused by head and mouth movements of our

targeted activities are below 20Hz. Therefore, we set the cut-

off frequency of the Butterworth low-pass filter to 20Hz and

use it to filter out CSI measurement noise across all subcarriers

in the wireless channel. Figure 4(a) and Figure 4(b) show

the raw and filtered CSI measurements of subcarrier #12 for

the eating activity respectively. As illustrated, the Butterworth

low-pass filter successfully filters out high-frequency noise

while preserving the head and mouth movement information

of the eating activity.

D. PCA-Based Dimension Reduction

Changes of CSI measurements caused by head and mouth

movements occur across all the subcarriers in the wireless

channel. As an illustration, Figure 5 plots the CSI measure-

ments of four subcarriers. From these plots, we have two

key observations. First, we observed that changes of CSI

measurements are highly correlated among all the subcarriers.

Second, we observed that different subcarriers have different

(a) Subcarrier #1 (b) Subcarrier #12

(c) Subcarrier #20 (d) Subcarrier #24

Fig. 5: Correlations and sensitivity differences among different
subcarriers.



(a) Coughing (b) Drinking (c) Eating (d) Speaking (e) Idle

Fig. 6: The first principal component (PC) of the four targeted activities, as well as the idle activity, performed by two subjects.

sensitivity to head and mouth movements. Based on these two

observations, in order to remove the redundant information

due to the high correlation while still capturing the most

sensitive changes caused by head and mouth movements,

HeadScan applies Principal Component Analysis (PCA) on the

filtered CSI measurements across all the subcarriers to extract

principal components (PCs) that capture the dominant changes

caused by head and mouth movements. The PCs extracted are

ranked by the magnitude of their variance. We select the top

two PCs because we empirically find the top two PCs already

contain the majority of the total variance and thus preserve

most of the information of the targeted activities.

E. Feature Extraction

To recognize our targeted activities, we need to extract

features that can capture the differences across them. Figure 6

illustrates the first PC of all four targeted activities as well

as the baseline idle activity (i.e., no activity) performed by

two subjects. As illustrated, different activities have distinctive

shapes and periodicities. Specifically, the shape of coughing

exhibits a sharp change in amplitude within a short period

of time, which reflects the captured head movement during

coughing. The shape of drinking exhibits a sharp increase at

the beginning, a plateau in the middle, and a sharp decrease in

the end. This is because our head moves up when we start to

drink and our head moves back after we finish drinking. For

both eating and speaking, we observe the waveforms exhibit

periodic changes that reflect the periodic mouth movements

when eating and speaking. Between these two periodic activi-

ties, eating exhibits a relatively lower frequency than speaking

because the speed of mouth movement when eating is slower

compare to that of speaking. Furthermore, the shape of idle

exhibits the least variance in amplitude and most randomness

in frequency due to little head and mouth movements. Finally,

we can see that the two samples of the same activity per-

formed by two subjects exhibit high similarity, indicating the

consistency across subjects.

Based on these observations, we extract features that charac-

terize the shape and periodicity of the waveforms. Specifically,

to capture the shape information, we extract features including

mean, median, standard deviation, range, skewness, kurtosis,

and interquartile range values of the waveforms. To capture

the periodicity information, we extract features including mean

crossing rate, dominant frequency, and spectral entropy values

of the waveforms. Table I summarizes the list of features.

All these features are extracted from the top two PCs and

are then concatenated into a single feature vector with the

dimensionality of 20.

Mean Median Standard Deviation

Range Skewness Kurtosis

Dominant Frequency Interquartile Range Mean Crossing Rate

Spectral Entropy

TABLE I: Head and Mouth Activity Features

F. Training via an Overcomplete Dictionary Construction

As the first step of the sparse representation framework, we

construct an overcomplete dictionary using training samples.

Let k denote the number of activity classes (k equal to five in

this work) and ni denote the number of training samples from

class i, i ∈ [1, 2, . . . k]. Each training sample is represented as

an m-dimensional feature vector (m equal to 20 in this work).

We arrange the ni training samples from class i as columns

of a data matrix Di = [xi,1,xi,2, . . . ,xi,ni
] ∈ R

m×ni . Next,

we define a new matrix A which stacks the training samples

from all the activity classes as

A = [D1,D2, . . . ,Dk] ∈ R
m×n

= [x1,1, . . . ,x1,n1
,x2,1, . . . ,x2,n2

, . . . ,xk,1, . . . ,xk,nk
]

(1)

where n = n1 + n2 + . . . + nk. Given sufficient training

samples from each class, the matrix A can be seen as an

overcomplete dictionary. As such, a test sample y from class

i can be expressed using the overcomplete dictionary A as

y = Aα+ e (2)

where

α = [0, . . . , 0, αi,1, αi,2, . . . , αi,ni
, 0, . . . , 0]

T
(3)

is a sparse coefficient vector whose entries are zero except

those associated with class i, and e is the noise term with

bounded energy ‖e‖
2

< ǫ. Therefore, α can be regarded

as a sparse representation of y based on the overcomplete

dictionary A. More importantly, the entries of α encode

the identity of y. In other words, we can infer the class

membership of y by finding the solution of equation (2).

G. Classification via ℓ1 Minimization

The solution of equation (2) depends on the characteristic

of the matrix A. If m > n, y = Aα + e is overdetermined

and there is one unique solution. However, in most real world

applications, the number of prototypes in the overcomplete



Cough samples

(a) The sparse coefficient solution
recovered via ℓ1 minimization for
one test sample from Coughing.

(b) The residual values with respect
to the five activity classes. The
test sample is correctly classified
as Coughing (index 1). The ratio
between the two smallest residual
values is 1 : 2.62.

Eat samples

(c) The sparse coefficient solution
recovered via ℓ1 minimization for
one test sample from Eating.

(d) The residual values with respect
to the five activity classes. The
test sample is correctly classified as
Eating (index 3). The ratio between
the two smallest residual values is
1 : 11.9.

Fig. 7: Sparse representation solutions and the corresponding residual values of two test samples from Coughing and Eating.

dictionary is typically much larger than the dimensionality of

the feature representation (i.e., m << n). In this scenario,

equation (2) is underdetermined and has no unique solution.

Recent research in the field of compressed sensing [24] [23]

has shown that if α is sufficiently sparse, it can be recovered

by solving the ℓ1 minimization problem:

α̂ = argmin
α

‖α‖
1

subject to ‖Aα− y‖
2
≤ ǫ. (4)

where ‖.‖
1

denotes the ℓ1 norm. This optimization problem,

also known as Basis Pursuit (BP), is built on a solid theoretical

foundation and can be solved very efficiently with traditional

linear programming techniques whose computational complex-

ities are polynomial in n [25].

Given a new test sample y in the form of an m-dimensional

feature vector from one of the k activity classes, we first

compute its sparse coefficient vector α̂ by solving (4). To

identify the class membership of y, we compare how well

the various parts of the coefficient vector α̂ associated with

different activity classes can reproduce y, where the reproduc-

tion error is measured by the residual value. Specifically, the

residual of class i is defined as

ri(y) = ‖y −Aδi(α̂)‖
2

(5)

where δi(α̂) is a characteristic function that selects only the

coefficients in α̂ associated with class i. Therefore, ri(y)
measures the difference between the true solution y and the

approximation using only the components from class i. Using

the residual value as the classification criterion, the test sample

y is classified as the activity class c that generates the smallest

residual value:

c = argmin
i

ri(y) (6)

Figure 7(a) and Figure 7(c) illustrate the two coefficient

vectors recovered by solving (4) with the noise tolerance

ǫ = 0.02 for two test samples: one from coughing and the

other from eating. As shown, both of the recovered coefficient

vectors are sparse and the majority of the large coefficients

are associated with the training samples belonging to the

same activity class. Figure 7(b) and Figure 7(d) illustrate the

corresponding residual values with respect to the five targeted

activity classes. As shown, both test samples are correctly

classified since the smallest residual value is associated with

the true activity class. To examine the robustness of our

residual-based classifier, we calculate the ratios between the

two smallest residuals for each test sample. The classification

result is robust if the ratio value is large. In the examples

of Figure 7(b) and Figure 7(d), the ratios between the two

smallest residuals are 1 : 2.62 for coughing and 1 : 11.9 for

eating. We obtain similar results for the other three activities.

V. EVALUATION

A. Experimental Methodology

To examine the feasibility and performance of HeadScan,

we conduct extensive experiments. We breakdown the overall

evaluation into seven experiments and one usability study.

State-of-the-art wearable sensing systems use microphone to

sense and recognize eating, drinking, speaking, and coughing

[9], [10]. The objective of the first two experiments is to

examine the feasibility of radio-based activity sensing and

recognition in a wearable setting, as well as to make a quan-

titative comparison between radio- and audio-based sensing

approaches. To achieve this objective, we replicated one state-

of-the-art audio-based wearable system called BodyScope

from [9] (Figure 8). Since both BodyScope and HeadScan

target the same activities, we believe a fair comparison be-

tween radio- and audio-based sensing in the wearable setting

is achieved. To fully examine the performance in different

1

2

3

Fig. 8: The hardware for audio-based sensing. (1) A chestpiece of
a clinical Elite 4000 stethoscope. (2) A unidirectional condenser
microphone. (3) The chestpiece attached to skin using an elastic band.



Activity Radio (time) Audio (time)

Coughing (C) 52m 40s 28m 40s

Drinking (D) 52m 50s 29m 00s

Eating (E) 72m 30s 28m 30s

Speaking (S) 57m 10s 28m 10s

Idle (I) 54m 20s 28m 20s

Total Amount 289m 30s 142m 40s

TABLE II: List of activities (activity abbreviations) and the amount
of labeled radio and audio data.

wearable conditions, the first experiment is conducted in a

clean environment, and the second experiment is conducted in

a noisy (i.e., with the existence of interferences) environment.

Besides comparing performance to audio-based sensing, we

conduct another five experiments to examine the impact of

various factors on the activity recognition performance of our

radio-based sensing approach. These include classification per-

formance of a personalized model and the impact of: training

dataset size; radio signal transmission rates; on-body locations

of the radio transmitter and receiver; and, the interference

caused by nearby people.

B. Human Participants and Data Collection

We recruit seven participants (5 males and 2 females) who

volunteer to help collect data and conduct evaluation experi-

ments. The participants are university students and researchers

with an age ranging from 20 to 35 (µ = 28.9; σ = 5.2), a

weight ranging from 49 kg to 82 kg (µ = 74 kg; σ = 9.8 kg)

and are between 158 cm and 182 cm tall (µ = 172 cm; σ

= 7.0 cm). The experiments were conducted in a laboratory

environment. For experiments that aim to make quantitative

performance comparisons between radio and audio sensing

modalities, participants wear both HeadScan and the replicated

audio-based sensing system to collect both radio and audio

data simultaneously. As such, a fair comparison between these

two sensing modalities is possible. For experiments that aim

to solely examine the impact of various factors on the activity

recognition performance of radio-based sensing, participants

only wore HeadScan.

During data collection, the participants were instructed to

perform a sequence of the four targeted activities: coughing,

eating (potato chips), drinking (a cup of water), and speaking

(reading a book aloud); as well as being idle (no activity).

For radio data collection, by default, participants clip the

Tx antenna on one of the collars and the Rx antenna on

the shoulder of the other side. For audio data collection, we

followed the data collection procedure of the BodyScope study

[9] and ask the participants to attach the chestpiece to the skin

using an elastic band (Figure 8). In total, approximate 50.5

hours of data was collected. Since data labeling is very time

consuming, we labeled 7.2 hours of the collected data and use

the labeled data to evaluate HeadScan. Table II lists the five

activities and the amount of data labeled for each activity for

both radio and audio sensing modalities respectively.

C D E I S Recall

C 65 5 0 0 0 92.9%

D 15 48 7 0 0 68.6%

E 1 6 62 1 0 88.6%

I 1 2 8 59 0 84.3%

S 1 1 0 0 68 97.1%

Precision 78.3% 77.4% 80.5% 98.3% 100%

TABLE III: The confusion matrix of radio-based activity recognition
in a clean environment (see Table II for activity abbreviations).

C D E I S Recall

C 51 8 0 1 10 72.8%

D 19 48 2 1 0 68.5%

E 2 11 55 1 1 78.6%

I 1 6 0 63 0 90.0%

S 0 0 1 0 69 98.6%

Precision 69.8% 64.8% 94.8% 95.5% 86.2%

TABLE IV: The confusion matrix of audio-based activity recognition
in a clean environment (see Table II for activity abbreviations).

C. Performance Comparison between Radio- and Audio-based

Wearable Sensing in a Clean Environment

Objective: In this experiment, we evaluate the activity recog-

nition performance of our radio-based wearable sensing sys-

tem and compare it with a state-of-the-art audio-based ap-

proach in a clean environment.

Experimental Setup: We have created a clean environment

for participants to collect radio and audio data simultaneously.

To create a clean environment for radio data collection, all

other wireless devices in the environment are turned off and

only the participant was in the environment performing activi-

ties. To create a clean environment for audio data collection at

the same time, the environment was kept quiet as well. Each

participant performs 10 trials for each activity. We examine

the activity recognition performance of both radio- and audio-

based sensing using leave-one-subject-out validation.

Results and Implication: Figure 9 illustrates the activity

classification accuracy of both radio- and audio-based sensing

in a clean environment. The average classification accuracy

across all participants are 86.3% for radio- sensing and 81.7%

for audio-based sensing. To provide a more detailed view of

the results, the confusion matrices of radio-based and audio-

based sensing with data accumulated from all participants

are presented in Table III and Table IV respectively. This

result demonstrates that HeadScan is feasible of sensing and

recognizing the targeted four activities that involve head and

mouth movements. It also shows that our radio-based wearable

sensing system HeadScan is able to achieve very competitive

recognition performance compared to the audio-based wear-

able sensing system in a clean environment.

D. Performance Comparison between Radio- and Audio-

based Wearable Sensing in a Noisy Environment

Objective: In this experiment, we evaluate the activity recog-

nition performance of our radio-based wearable sensing sys-

tem and compare it with a state-of-the-art audio-based ap-

proach under a noisy environment.



Fig. 9: The activity classification accuracy
of radio- and audio-based sensing in a clean
environment.

Fig. 10: The activity classification accuracy
of a personalized model.

Fig. 11: The impact of the training dataset
size on activity classification accuracy.

Experimental Setup: We have created a noisy environment

for participants to collect the radio and audio data respectively.

To create a noisy environment for radio data collection, we

generate radio frequency interference (RFI) by collecting in

an environment where wireless communication was set up at

the same channel that HeadScan uses (channel #44) as well as

an adjacent channel (channel #40). We place the Tx and Rx

that generates RFI approximately one meter away from the

participants and configured the transmission rate at 2 packets

per second. To create a noisy environment for audio data

collection, we generated audio noise using a computer speaker

in the background such that the noise levels we measure at our

audio-based wearable sensing system are -18 dB and -13 dB

respectively (we use the Audacity software to perform noise

level measurements). The noise level at -18 dB is an average

measurement in the acoustic environment where students kept

talking to each other in a whisper-like voice. The noise level at

-13 dB is an average measurement in the acoustic environment

where students kept talking to each other at a more natural

volume. We examine the activity recognition performance of

both radio and audio-based sensing using leave-one-subject-

out validation.

Results and Implication: Figure 12(a) and Figure 12(b)

illustrate the activity classification accuracy of radio- and

audio-based sensing in a noisy environment. For illustrative

purposes, only results from the first two participants are shown,

with the other five participants having similar results. As

shown, both radio and audio sensing modalities are affected

by noise but with a different sensitivity. In particular, the

performance of radio-based sensing drops from an average

of 84% (clean) to 72.2% (channel #40) and 62% (channel

#44), a loss of 11.8% and 22% respectively. In comparison,

the performance of audio-based sensing drops from an average

of 95% (clean) to 59% (-18 dB) and 39.5% (-13 dB), with a

loss of 36% and 55.5% respectively.

E. Performance of Personalized Model

Objective: In this experiment, we evaluate the activity recog-

nition performance of a personalized classification model.

Experimental Setup: We use the data of each participant for

both training and testing. We examine the activity recognition

performance of the personalized model using leave-one-trial-

out validation.

(a) Radio (b) Audio

Fig. 12: The activity classification accuracy of radio- and audio-based
sensing in a noisy environment.

Results and Implication: Figure 10 illustrates the activity

classification accuracy of each personalized model. As il-

lustrated, among seven participants, Subject #2, #5, and #7

achieve slightly inferior performance compared to the general

model developed using leave-one-subject-out validation (see

Figure 9). This indicates the same activity can be performed

very differently even by the same participant. This within-

subject variance makes recognition very challenging. On the

other hand, in leave-one-subject-out, more training data is

used to build the overcomplete dictionary in the sparse rep-

resentation framework. This indicates that within the sparse

representation framework, the classification performance can

be improved if more training data is available, even if the

training data is collected from other participants.

F. Impact of Training Dataset Size

Objective: In this experiment, we examine the impact of the

training dataset size on the activity recognition performance.

Experimental Setup: We set up different training dataset sizes

by including data from different numbers of participants. Since

we have seven participants, we considered six different sizes

by including data from one, two, three, four, five, and six

participants. We examined the performance of each size using

leave-one-subject-out cross validation.

Results and Implication: Figure 11 illustrates the activity

classification accuracy of all six different sizes of training

dataset. As shown, the classification performance increases as

the size of the training set increases. This result again demon-

strates that within the sparse representation framework, the

classification performance can be improved if more training

data is included.



Fig. 13: The impact of radio signal trans-
mission rates on activity classification accu-
racy.

Fig. 14: The impact of radio transmitter
and receiver on-body locations on activity
classification accuracy.

Fig. 15: The impact of interference caused
by nearby people on activity classification
accuracy.

G. Impact of Radio Signal Transmission Rate

Objective: In this experiment, we examine the impact of

radio signal transmission rate on the activity recognition

performance. There is a trade-off between transmission rate

and the power consumption of the wearable system. In-

creasing the transmission rate provides higher resolution of

the captured head and mouth movements but also increases

power consumption. Another drawback of the increase of the

transmission rate is that it increases the traffic load of the

wireless channel and thus reduces the bandwidth for regular

data transmission. The objective of this experiment is to find

the optimal transmission rate that achieves a balance between

recognition performance and wireless bandwidth.

Experimental Setup: We examine five radio signal trans-

mission rates including 100Hz, 50Hz, 10Hz, 8Hz, and 5Hz.

We collect approximately 50 minutes of data at these five

transmission rates in total from one participant. For each

transmission rate, the participant performs 10 trials for each

activity. We examine the performance of each transmission

rate using leave-one-trial-out validation.

Results and Implication: Figure 13 illustrates the activity

classification accuracies of all five radio signal transmission

rates. The average classification accuracies across all five ac-

tivities for transmission rates at 100Hz, 50Hz, 10Hz, 8Hz, and

5Hz are 86.2%, 85.7%, 80.6%, 67.4%, and 63.7% respectively.

This result shows that as the transmission rate decreases,

the classification performance drops. This indicates higher

resolution provided by higher transmission rate improves

classification performance. Moreover, there is a significant

performance drop when the transmission rate decreases from

10Hz to 8Hz. This indicates that a minimum 10Hz of radio

signal transmission rate is needed to provide enough resolution

to capture the distinctive head and mouth movements across

different activities. Finally, it is worthwhile to note that 10Hz

only takes a tiny part of the overall wireless bandwidth, indi-

cating high performance activity recognition can be achieved

without sacrificing the regular wireless data transmission.

H. Impact of Radio Transmitter/Receiver On-body Locations

Objective: Under a wearable setting, the locations where

the radio transmitter antenna (Tx) and receiver antenna (Rx)

are placed on the human body have a significant impact on

the radio propagation. The objective of this experiment is to

examine the impact of the on-body locations of transmitter

and receiver antennas on the activity recognition performance

and then identify the best locations to wear each antennas.

Experimental Setup: We examine four different location

combinations to wear the radio Tx and Rx antennas: (1) Rx

on the shoulder, Tx on the collar (SC); (2) both Tx and

Rx on the collar (CC); (3) both Tx and Rx on shoulder

(SS); and (4) Rx on the collar, Tx on the shoulder (CS). We

select these location combinations because compared to other

candidate locations, they are less intrusive while still being

close to the head and mouth. As such, the movements of the

head and mouth are captured while the movements of other

parts of the human body have limited influence on the radio

signals. We collect approximately 35 minutes of data in four

location combinations in total from one participant. At each

location combination, the participant performs 10 trials for

each activity. We examine the performance of each location

combination using leave-one-trial-out validation.

Results and Implication: Figure 14 illustrates the activity

classification accuracy of all four location combinations. As

shown, the location combination SC performs the best among

all four locations, achieving an average classification accuracy

of 92% across all five activities. In contrast, the location

combination CS achieves the lowest average classification

accuracy (68%). This is because Rx is much more sensitive to

movements that occur at a closer location to Rx. As such, by

placing Rx on the shoulder which is farther from mouth and

head compared to collar, Rx is less sensitive to the movements

which act as noise that degrades the classification performance.

I. Impact of Interference Caused by Nearby People

Objective: In a wearable setting, there might be other people

nearby moving around. The movements of nearby people

may act as a source of interference to the radio signals. The

objective of this experiment is to examine the robustness of

HeadScan to the interference caused by nearby people.

Experimental Setup: We examine three scenarios where we

have zero, one, and two people moving nearby respectively.

During the experiment, people are instructed to stay within

a one meter range of the participant wearing HeadScan, per-

forming some common activities such as speaking, typing on



the keyboard, and walking around. We collected approximate

30 minutes of data for the three scenarios from one participant.

For each scenario, the participant performs 10 trials of each

activity. We examine the performance of each scenario using

leave-one-trial-out cross validation.

Results and Implication: Figure 15 illustrates the activity

classification accuracies when zero, one, and two people are

moving nearby. As shown, the classification performance,

on average, does not decrease when there are one and two

people moving nearby. This result indicates that our HeadScan

wearable system is robust to the interference caused by nearby

people. This is because in the wearable setting, although the

movements of nearby people may cause interferences, those

interferences are dwarfed by the activity performed by the user.

J. Usability Study

Objective: Finally, we conduct a user study on all seven

participants about the usability of our radio-based wearable

system HeadScan and the audio-based wearable system we

replicated based on BodyScope. The objective of the user

study is to understand whether HeadScan has the potential

to be widely adopted by users in real world applications.

Experimental Setup: After completing the evaluation exper-

iments, all the participants are asked to finish a survey which

includes six questions related to comfort, privacy, safety and

form-factor of the two wearable systems. We use a Likert Scale

to code the answers of the participants. This scale is one of the

most widely used approaches for scaling responses in survey

research [26]. It adopts a five point scale ranging between: -2

(strongly disagree), -1 (disagree), 0 (neutral), 1 (agree), and 2

(strongly agree).

Results and Implication: Table V lists the six questions and

the corresponding average point and standard deviation across

all seven participants. As listed in the table, the results of

this preliminary study show strong potential for our radio-

based wearable sensing system in all dimensions. In terms of

comfort, due to the tight skin contact of the stethoscope, most

participants do not enjoy wearing the audio-based system. In

contrast, most participants agree that they feel comfortable

with antennas worn on their bodies because they require no

tight skin contact. In terms of privacy, participants in general

have privacy concerns about the audio-based system although

their opinions vary significantly. In contrast, participants have

a consensus that privacy is not a concern for the radio-based

system. In terms of safety, participants also have a consensus

that radio exposure from the HeadScan system is not really

a concern. Finally, in terms of form-factor, participants in

general feel the current prototype is rather bulky for a wear-

able. This result indicates our radio-based sensing approach

exhibits significant advantages over the audio-based sensing

approach by providing a truly non-intrusive and privacy-

preserving solution. In the meantime, the size and dimensions

of our current prototype needs to be improved to meet the

requirements of real world usage.

Survey Questions Mean Standard Deviation

1. User feels comfortable with contact sensing -0.86 1.07

2. User feels comfortable with HeadScan 0.88 0.35

3. Audio recording is not privacy-intrusive -0.29 1.50

4. Radio recording is not privacy-intrusive 1.29 0.76

5. User does not worry about radio exposure 0.71 0.49

6. User feels HeadScan bulky 1.00 1.15

-2: Strongly Disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly Agree

TABLE V: List of survey questions and the corresponding Likert
Scale average and standard deviation across all participants.

VI. DISCUSSION

The evaluation results of our HeadScan system strongly

indicate radio is a very promising sensing modality for de-

tecting and recognizing head and mouth-related activities. We

highlight the most prominent results from our experiments.

Competitive Recognition Performance: The activity classi-

fication accuracy of HeadScan exceeds its audio counterpart

when classifying the targeted head and mouth-related activities

(i.e., eating, drinking, coughing, and speaking) with an average

accuracy of 86.3% compared to 81.7%.

Low Bandwidth Requirement: The classification perfor-

mance of HeadScan remains above 80% when the radio signal

transmission rate is lowered to 10Hz. Therefore, high perfor-

mance activity recognition is achieved without sacrificing the

regular wireless data transmission.

Robustness to Sensor Interference: HeadScan not only

performs better in a clean environment, it also demonstrates

stronger robustness to radio interference than audio-based

sensing (e.g., RFI for HeadScan and background acoustic

noise for audio-based sensing). Under reasonable level of

interference, HeadScan classification results drops only 22%

while audio-based sensing drops 55.5%.

Robustness to Nearby People: The classification accuracy

of HeadScan remains relatively unaffected even when there

are moving people in the testing environment. This suggests

HeadScan can still function despite the potential non-user

interferences caused by nearby people in the real world.

VII. LIMITATIONS

While our experiments have demonstrated a number of

positive results, it is important to acknowledge the limitations

of what we have findings, especially for drawing conclusions.

We highlight key limitations here that we plan to address in

future work.

Scripted Data Collection: Since this was the first time the

targeted head and mouth-related activities had been attempted

to be detected and recognized using radio-based sensing on

wearables, we adopted a conservative scripted data collection

protocol that enabled many factors to be controlled during later

data analysis stages. As a result, participants followed our data

collection protocol and did not deliberately confuse our system

(e.g., excessively move or shake their head wildly) during

experiments. In addition, we plan to conduct a prolonged real

world field study to examine the performance of HeadScan.



Number of Participants: In this work, we recruited only

seven participants to contribute to the dataset of HeadScan.

Further verification of the results we have reported in this

paper requires a larger and diverse set of participants.

Prototype Limitation: Although our wearable prototype is

a proof of concept that is adequate for experiments, its

dimensions, weight, and battery life can be further improved.

We are currently investigating the use of the Intel Edison mini-

computer that is built into a much smaller form factor (35.5 x

25.0 x 3.9 mm; 68 g). We estimate the new wearable prototype

based on the Edison will be 10× smaller and 2× lighter.

For battery life, our current wearable prototype can support

approximately five hours of continuous CSI measurement

sampling. We plan to are investigate techniques, such as duty

cycling, to reduce the power consumption.

Antenna Locations: In our experiments, we have tested

four different on-body antenna location combinations. There

are numerous other location combinations where users can

potentially wear the antenna pair. We plan to investigation

other on-body location combinations once we have completed

our new prototype design.

RFI Limitation: In our experiments, we have investigated the

impact of RFI on the activity sensing and recognition perfor-

mance when an interference source was placed one meter away

from the participants. More experiments are needed to fully

understand the impact of RFI on our wearable-based radio

sensing approach when the interference source is placed at

different distances from the participants.

VIII. RELATED WORK

The design of HeadScan is closely related to two research

areas: (1) wearable and mobile sensing systems and (2)

radio-based activity recognition. In this section, we provide

a brief review of the most relevant state-of-the-art research

and compare them with HeadScan.

Wearable and Mobile Sensing Systems: With advances in

MEMS technologies, the past decade has witnessed a surge of

smartphones and wearable devices. These devices are equipped

with miniature sensors that can be used to track a wide

range of human activities. Among them, the accelerometer

is one of the most widely used sensors. Accelerometer-based

sensing systems have been developed for physical exercise

tracking [8], fall detection [27] as well as activities of daily

living (ADL) monitoring [28]. The Microphone is another

extensively explored sensor because of the rich information

contained in audio signals. In [29], Hao et al. developed

iSleep that detects and recognizes sounds of body movement,

coughing and snoring to infer sleep quality. In [30], Georgiev

et al. developed DSP.Ear that recognized stress and emotion

(amongst others) via the microphone using only the DSP of a

smartphone. In [31], Nirjon et al. developed MusicalHeart that

integrated a microphone into an earphone to extract heartbeat

information from audio signals. Finally, in [9], Yatani et al.

developed BodyScope that used a condenser microphone with

a stethoscope head to capture a variety of sounds produced

from activities that involve the mouth and throat such as

eating, drinking, speaking, laughing and coughing. Our work is

similar to BodyScope in the sense that we target a similar set of

activities. However, since BodyScope uses the microphone as

a sensing modality, it brings unwanted negative privacy side-

effects. Moreover, BodyScope has to be worn on a user’s neck

in order to capture the subtle sounds generated by eating and

drinking. The requirement of physical contact to a user’s neck

makes BodyScope intrusive to the user’s daily life. In contrast,

HeadScan resolves both privacy and skin contact issues in that

it uses contactless radio signals to recognize those activities.

Radio-Based Activity Recognition: Recently, radio-based

sensing systems have emerged and drawn considerable atten-

tion as they provide a non-intrusive solution to detect and

recognize human activities. In [1], Wang et al. developed

E-eyes that exploits CSI measurements extracted from radio

signals to detect and recognize a variety of household activities

such as cooking, washing dishes, and walking inside rooms.

In [2], Wei et al. also leveraged the CSI measurements from

radio signals and developed recognition algorithms that are

robust to radio frequency interference (RFI) to recognize a

set of location-oriented stationary and walking activities. In

[32], Kaltiokallio et al. demonstrated the feasibility of using

a single pair of radio transmitter and receiver to accurately

measure an individual’s respiration rate. The fundamental

difference between these works and HeadScan is that they

use radio transmitters and receivers deployed in the ambient

environment to monitor stationary and moving activities that

involve whole-body movements; in comparison, our work uses

a radio transmitter and receiver worn on the human body to

capture activities that involve mouth and head movements.

Finally, in [33], Li et al. developed Tongue-n-Cheek, a radio-

based wearable system for tongue gesture recognition. Our

work is similar to Tongue-n-Cheek in the sense that we both

explore the potential of radio as a new sensing modality

for wearable devices. However, Tongue-n-Cheek uses 24GHz

radio signals generated from an array of dual-channel radar

sensors and leverages the principle of Doppler effect to detect

and recognize tongue movements. In contrast, HeadScan uses

fine-grained CSI measurements extracted from 5GHz radio

signals from a single pair of radio transmitters and receivers

and adopts a novel signal processing pipeline based on a noise-

robust sparse representation framework to detect and recognize

activities involving head and mouth movements.

IX. CONCLUSION

In this paper, we presented the design, implementation and

evaluation of HeadScan, a wearable system that uses radio as

a sensing modality to capture and recognize head and mouth-

related activities including eating, drinking, coughing and

speaking. Through extensive experiments, we have demon-

strated that our radio-based sensing approach achieves compet-

itive performance compared to a state-of-the-art audio-based

sensing approach. We have also empirically identified the best



on-body locations to wear HeadScan and demonstrated the

robustness of the system to non-user interferences. HeadScan

represents our first exploration of radio-based human activity

recognition in the context of a wearable device. We envision

radio-based sensing has the potential to fundamentally trans-

form wearables as we currently know them, allowing them to

have a much broader impact on our lives.

Immediate future work include plans to develop the next

generation of our wearable prototype, with a much smaller

form factor and reduced power consumption. This will en-

able large-scale and prolonged real world experiments. We

also plan to broadly investigate other potential use cases of

radio-based sensing on wearables including sensing human

activities that involve body and limb movements, as well as

physiological signals.
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