
Vol.:(0123456789)

Automated Software Engineering (2022) 29:56
https://doi.org/10.1007/s10515-022-00363-9

1 3

HealMA: a model‑driven framework for automatic
generation of IoT‑based Android health monitoring
applications

Maryam Mehrabi1 · Bahman Zamani1 · Abdelwahab Hamou‑Lhadj2

Received: 11 March 2022 / Accepted: 8 September 2022 / Published online: 27 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
The development of IoT-based Android health monitoring mobile applications
(apps) using traditional software development methods is a challenging task. Devel-
opers need to be familiar with various programming languages to manage the heter-
ogeneity of hardware and software systems and to support different communication
technologies. To address these problems, in this paper, we first analyze the domain
of health monitoring mobile applications and then propose a framework based on
model-driven engineering that accelerates the development of such systems. The
proposed framework, called HealMA, includes a domain-specific modeling lan-
guage, a graphical modeling editor, several validation rules, and a set of model-to-
code transformations, all packed as an Eclipse plugin. We evaluated the framework
to assess its applicability in generating various mobile health applications, as well
as its impact on software productivity. To this end, four different health monitoring
applications have been automatically generated. Then, we evaluated the productiv-
ity of software developers by comparing the time and effort it takes to use HealMA
compared to a code-centric process. As part of the evaluation, we also evaluated the
usability of HealMA-generated apps by conducting a user study. The results show
that HealMA is both applicable and beneficial for automatic generation of usable
IoT-based Android health monitoring apps.

Keywords Health monitoring · Android · IoT · Model-driven engineering

 * Bahman Zamani
 zamani@eng.ui.ac.ir

 Maryam Mehrabi
 maryam.mrb94@gmail.com

 Abdelwahab Hamou-Lhadj
 wahab.hamou-lhadj@concordia.ca

1 MDSE Research Group, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran
2 Department of Electrical and Computer Engineering, Concordia University, Montreal, QC,

Canada

http://orcid.org/0000-0001-6424-1442
http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-022-00363-9&domain=pdf

 Automated Software Engineering (2022) 29:56

1 3

56 Page 2 of 41

1 Introduction

Remote health monitoring is an essential component of a healthcare system to
address the needs of growing populations located in various geographical areas
(Sundaravadivel et al. 2017). This is particularly important when dealing with
chronic and infectious diseases (e.g., blood pressure, respiratory diseases, HIV),
which require long-term monitoring and treatments (World Health Organization
Official Website 2020a).

A recent trend in remote health monitoring is to make use of the Internet of
Things (IoT) (Dhanvijay and Patil 2019), which encompasses a set of technolo-
gies that connect various devices anywhere and at any time. A typical application
of IoT in health monitoring is to monitor a patient’s health status using mobile
applications (apps) (Islam et al. 2015). This is particularly relevant in today’s
context because of the increasing number of smartphone users. According to
Statista, about 3.8 billion people will have access to a smartphone by the end of
2021 (Statista Official Website 2020). The health monitoring apps market size
was valued at USD40 billion in 2020 and is expected to grow at an annual growth
rate of 17.7% from 2021 to 2028 (Grand View Research Official Website 2021).

The development of health monitoring apps from scratch or using domain-
independent modeling languages, e.g. UML, is a time-consuming and repetitive
task. The challenge is that the developers must have knowledge about the symp-
toms that need to be monitored, manage the heterogeneity of hardware and soft-
ware systems, and understand the different communication technologies that are
supported in IoT (Islam et al. 2015; Inupakutika et al. 2020; Banos et al. 2014;
Qi et al. 2017). To address this challenge, in this paper, we propose a model-
driven framework, called HealMA (Health Monitoring App), for rapid develop-
ment of remote health monitoring apps. HealMA consists of four components:
(1) a domain-specific modeling language (DSML) that supports the concepts
of remote health monitoring, which we identified based on a thorough analysis
of the domain, (2) a graphical editor that enables developers to model a remote
health monitoring app, (3) constraints and validation rules, and (4) a model-to-
code transformation engine that generates automatically the final app code from
the model. These components are all packaged as an Eclipse plugin. Currently,
HealMA supports the development of Android apps only, considering the fact
that the Android app market accounts for 72.2% of the mobile app market share in
2021 (Statcounter Official Website 2021). The generated apps will be posted on
app markets to be used by healthcare patients and providers.

The HealMA framework is very intuitive to use. Once the app requirements
are defined, a developer uses the modeling editor to select the model elements
relevant to the app by a simple drag and drop. After the model is validated against
predefined constraints, the app code (including Java and XML files) is then gener-
ated automatically through our embedded model-to-code transformation engine.
The final step is to open the generated code in an Android IDE, complete the
project according to the comments provided by the HealMA framework, and cus-
tomize the project as needed. As we will show in the evaluation section, HealMA

1 3

Automated Software Engineering (2022) 29:56 Page 3 of 41 56

simplifies greatly the development process of health monitoring apps, which
should result in increased productivity.

We evaluated HealMA using two strategies. First, we implemented four case stud-
ies in which we generated four different remote health monitoring apps. The objec-
tive is to evaluate the applicability of HealMA in generating different monitoring
apps, as well as assess the effectiveness of HealMA in increasing the productivity of
developing health monitoring apps (i.e., effort and time-saving in the development)
compared to a pure code-centric approach. The second strategy consists of conduct-
ing a user study in which we evaluate the usability of HealMA from the develop-
ers’ perspective. The results show that HealMA can help developers generate health
monitoring apps with less effort, and the generated apps are usable for the end users.

The remainder of this paper is structured as follows. In Sect. 2, we address the
background, define the scope of this research, and review the related work. Sec-
tion 3 introduces the proposed framework, including the modeling language, graphi-
cal modeling editor, validation rules, and model-to-code engine. In Sect. 4, we dis-
cuss the evaluation of the proposed framework from different viewpoints. We also
address the threats to validity in this section. Finally, we conclude the paper and
elaborate on the future work in Sect. 5.

2 Background and related work

This section is divided into two parts. In the first part, we provide background infor-
mation about model-driven engineering and remote health monitoring using IoT. We
also show the role of applications in the IoT-based health monitoring process, and
define the scope of this research. In the second part, we discuss about the related
work.

2.1 Background

2.1.1 Model‑driven engineering

Models are a simplified representation of reality. They make complex facts more
understandable by raising the level of abstraction. In traditional software develop-
ment approaches, models were used for design and documentation. In recent years,
Model-Driven Engineering (MDE) has emerged as a new software engineering
approach where models are key software development assets used to build the sys-
tem. The code is generated from models. The aim is to reduce development com-
plexity by focusing on models instead of code (Brambilla et al. 2017).

In MDE, the system is produced based on different abstraction levels of models
and transformations. An example of this can be seen in the Model-Driven Architec-
ture (MDA) standard proposed by the Object Management Group (OMG).1 MDA
divides the development process into four levels. In the first level, the requirements
of the system are defined with the highest abstraction level in a Computational

1 http:// www. omg. org.

http://www.omg.org

 Automated Software Engineering (2022) 29:56

1 3

56 Page 4 of 41

Independent Model (CIM), which could be a business or domain model. In the sec-
ond level, CIM is transformed into a Platform Independent Model (PIM) that rep-
resents the structure and behavior of the system without considering the execution
platform. On the third level, the PIM is transformed into a Platform Specific Model
(PSM). A PSM is a model of the execution platform. Finally, the PSM model is
transformed into code (Brambilla et al. 2017).

An important aspect of MDE is the development of Domain-Specific Modeling
Languages (DSMLs) to capture the domain concepts and their relationship. DSMLs
help design the system. Same as other languages, a DSML includes three main
parts, namely an abstract syntax, a concrete syntax, and semantics. The abstract syn-
tax shows the grammar of the language and is defined using a metamodel. The con-
crete syntax is a graphical representation of the language elements that are defined
in the abstract syntax to enable developers to use the language. Semantics capture
the meaning of the elements of the metamodel, i.e., the language elements and their
relationships (Van Deursen et al. 2000; Brambilla et al. 2017).

Transformations are an important pillar of any MDE approach. The generation
of code requires the definition of transformation rules. A transformation rule is sim-
ply a program that takes an artifact as input and creates another artifact as output
(Panahandeh et al. 2021). Considering ‘model’ and ‘code’ as the artifacts, there are
four types of transformations: model-to-model, model-to-code, code-to-model, and
code-to-code. To automatically generate code from the models using MDE, model-
to-code transformations are used (Brambilla et al. 2017).

2.1.2 Remote health monitoring using IoT

IoT is a new trend that makes various domains smart by connecting different objects.
Remote health monitoring is an example of IoT applications in the health domain. IoT
helps collect data and track the patient health status, efficiently (Islam et al. 2015).

There have been many IoT-based remote health monitoring architectures that are
proposed in the literature (Pathinarupothi et al. 2018; Wan et al. 2018; Al-khafajiy
et al. 2019). These architectures mainly vary in terms of the devices used for sens-
ing health and environmental parameters, the use of different communication tech-
nologies for transmitting data, and the types of applications for data analysis and
visualization. Most architectures rely on mobile apps for performing various tasks.
Mobile apps may are used by patients to visualize their health status and also as a
gateway to transmit health information to healthcare providers. Health professionals
use mobile apps and web-based systems to visualize and monitor the health condi-
tions of patients remotely.

Figure 1 shows a typical remote health monitoring architecture which consists of
three layers: (1) patient layer, (2) communication and storage layer, and (3) supervi-
sor layer. These layers are explained in the following.

• The patient layer: This layer consists of a set of physical objects (e.g., wearable
sensors) that are placed on the patient to collect blood pressure, heartbeat rate,
and other health-related measurements of interest. Devices can also be used to
record environmental parameters such as humidity and temperature. The col-

1 3

Automated Software Engineering (2022) 29:56 Page 5 of 41 56

lected data is often sent to a gateway device that relays the information to health-
care providers. A typical gateway is the patient’s smartphone. The communica-
tion technology is selected based on the distance between the objects and the
gateway. Bluetooth is used for short-range communications, such as connecting
a smartwatch to a smartphone. Wi-Fi is used for longer distances such as collect-
ing the temperature of a room in a building. In addition to being a gateway, the
patient’s smartphone can do some basic processing, store the data locally, and
visualize the results for the patient.

• The communication and storage layer: Gateways send the collected data to the
cloud servers through Internet. The data is stored on the servers and ready to be
processed. Additionally, in this layer, environmental parameters such as the air
quality index (AQI) and the weather status could be accessed by the patients and
supervisors through online public services.

• The supervisor layer: The results of processing should be reported in an appro-
priate format for different participants in the health monitoring process, e.g.,
patients, nurses, doctors, and patient’s family members. This is usually done
through applications that act as an interface (mobile apps or traditional web
applications).

As indicated in the shaded box in Fig. 1, the scope of our work (HealMA) is on the
automatic generation of the apps that run on the patient’s smartphone to act as a
gateway and also to provide different functionalities for the patient such as visual-
izing and managing their health status.

2.2 Related work

To our knowledge, there is no work that focused primarily on the generation
of health monitoring applications using an MDE approach. In this section, we

Fig. 1 A typical architecture for a remote health monitoring system (The red boxes show the role of apps
in remote monitoring process. The shaded box shows the scope of HealMA) (Color figure online)

 Automated Software Engineering (2022) 29:56

1 3

56 Page 6 of 41

considered a wider range and reviewed studies that focus on conceptual models
related to IoT-based health care systems, as well as the studies that use MDE in the
domains close to the IoT-based health care domain. In the following, we group these
studies into three categories in terms of domain and discuss how they differ from
our study.

The first category is concerned with the studies that focused on conceptualiza-
tion or development of the IoT-based systems and applications. Bauer et al. (2013)
worked on domain engineering and introduced the IoT-A domain model which is
part of a reference architecture, designed as a common ground to show the main
components of IoT-based systems. Patel et al. (2011) also focused on domain engi-
neering and introduced another domain model for IoT-based applications, which,
compared to IoT-A, is expressed in a lower level of abstraction and is able to pro-
vide more details about the domain. Ontologies have also been used to model IoT
domain concepts, e.g., in the work of Bermudez-Edo et al. (2016). Einarsson et al.
(2017) introduced a DSML called SmartHomeML to automatically generate smart
home connectivity services. Hussein et al. (2017) used model-driven development to
generate automatically Java code for self-adaptive IoT-based systems. The difference
between these studies and the work presented in this paper is that these studies cover
the broader domain of IoT, whereas our work has a more specific scope of IoT-based
health monitoring.

The second category covers studies that focused particularly on modeling IoT-
based health monitoring systems. Rhayem et al. (2017) extended the ontologies of
the IoT-based systems for the health monitoring domain and introduced HealthIoT,
an ontology for storing data in a structured way for semantic reasoning on health
data. Gomez et al. (2016) developed a client/server architecture to monitor the
patient health status and to make recommendations to improve the patient’s condi-
tion. The recommendations are based on an ontology that includes devices, persons,
locations, and time parts. Chellouche et al. (2013) proposed a framework to address
semantic interoperability and automatic decision taking in machine-to-machine
(M2M) health care systems. To store health data in a structured way, an ontology-
based data model is presented that facilitates reuse and knowledge sharing. Ajami
and Mcheick (2018) introduced an ontology, named COPDology, for remote moni-
toring of COPD patients. COPDology represents various aspects of remote health
monitoring including patient’s clinical information, patient’s physical parameters,
patient’s activities, environmental parameters, disease information, location infor-
mation, device information, and service information. Considering such detailed
information helps do semantic reasoning more accurately. Although the abstraction
level of these studies is the same as our research, the goals are different. The objec-
tive of using ontologies is to create a structural model that would allow reasoning
tasks whereas our research aims to model the domain of IoT health monitoring apps
and provide tools for developers to automatically create these apps using a domain
specific language.

The third category of the research studies related to our work is dedicated to
the studies that focus on the development of mobile apps using model-driven

1 3

Automated Software Engineering (2022) 29:56 Page 7 of 41 56

techniques. Among the works in this category are domain-independent languages
such as IFML2 that have the potential to be used for modeling mobile applica-
tions. In some cases, such as the work done by Brambilla et al. (2014), the language
(IFML) has been extended for the purpose of modeling and automatic generation
of mobile apps. Other works in this category introduced a new language to support
the automatic generation of mobile apps. Usman et al. (2017) proposed a model-
driven approach based on feature modeling and UML profiling to generate mobile
applications for different platforms such as Android and Windows Phone. Vaupel
et al. (2018) analyzed the mobile apps domain and presented a feature model, a
modeling language, an editor, and a code generation infrastructure for the automatic
generation of data-driven applications. Gharaat et al. (2021) used a model-driven
engineering approach to create geo-location apps. The authors proposed a meta-
model that captures the features of geo-location apps from which various apps that
support these features can be automatically generated. Núñez et al. (2020) proposed
a model-driven approach to tackle the complexity of designing the data layer for
native mobile applications. This approach supports both online and offline methods
for data management. They also provide some transformation rules to generate code
for Android and Windows Phone applications. Similar to our research, these works
have also focused on mobile app development blue using model-driven techniques.
We argue that, generating a health monitoring mobile app using domain-independ-
ent languages or languages that are invented for designing all types of mobile apps
needs a deep knowledge about health monitoring domain. Therefore, in our work,
we focused on a specific domain (i.e., the health monitoring) to reduce the knowl-
edge and expertise which is required for designing a health monitoring app.

To show the main similarities and differences between the current research and
related work, we compare them in Table 1. The column “Domain” shows three cat-
egories that we used to classify related work. The “Approach” column describes the
technique proposed by the studies. The “Purpose” column indicates the objective
of the underlying research. The “Achievements” column summarizes the outcome
of the research. All the research studies focused on domain analysis by proposing
a conceptual model based on the objective of the study. For the studies that used
MDE, in addition to the conceptual model, the outcome of the respective approaches
are classified as either “Modeling” or “Code Generation tool”.

To summarize, as indicated in the last row of Table 1, in our work we analyzed
the domain of IoT-based health monitoring mobile apps and used MDE for the auto-
matic generation of IoT-based health monitoring mobile apps. To achieve this, we
designed a conceptual model (metamodel), developed a modeling editor, and pro-
vided transformation rules for automatic code generation.

2 https:// www. ifml. org/.

https://www.ifml.org/

 Automated Software Engineering (2022) 29:56

1 3

56 Page 8 of 41

Ta
bl

e
1

 C
om

pa
ris

on
 b

et
w

ee
n

re
la

te
d

w
or

k
an

d
cu

rr
en

t r
es

ea
rc

h

Su
pp

or
te

d
∙
 N

ot
 su

pp
or

te
d
○

Re
se

ar
ch

D
om

ai
n

A
pp

ro
ac

h
Pu

rp
os

e
A

ch
ie

ve
m

en
ts

Io
T

Io
T

+
 H

ea
lth

M
ob

ile

ap
ps

D
om

ai
n

en
gi

ne
er

in
g

M
D

E
O

nt
ol

og
y

D
om

ai
n

an
al

ys
is

D
ev

el
op

m
en

t
Re

as
on

in
g

C
on

ce
pt

ua
l

m
od

el
M

od
el

in
g

to
ol

C
od

e
ge

n-
er

at
io

n

B
au

er
 e

t a
l.

(2
01

3)
∙

○
○

∙
○

○
∙

○
○

○
○

○

B
er

m
ud

ez
-E

do
 e

t a
l.

(2
01

6)
∙

○
○

○
○

∙
∙

○
∙

∙
○

○

Pa
te

l e
t a

l.
(2

01
1)

∙
○

○
∙

○
○

∙
○

○
∙

○
○

Ei
na

rs
so

n
et

 a
l.

(2
01

7)
∙

○
○

○
∙

○
∙

∙
○

∙
○

∙

H
us

se
in

 e
t a

l.
(2

01
7)

∙
○

○
○

∙
○

∙
∙

○
∙

○
∙

R
ha

ye
m

 e
t a

l.
(2

01
7)

○
∙

○
○

○
∙

∙
○

∙
∙

○
○

G
om

ez
 e

t a
l.

(2
01

6)
○

∙
○

○
○

∙
∙

○
∙

∙
○

○

C
he

llo
uc

he
 e

t a
l.

(2
01

3)
○

∙
○

○
○

∙
∙

○
∙

∙
○

○

A
ja

m
i a

nd
 M

ch
ei

ck
 (2

01
8)

○
∙

○
○

○
∙

∙
○

∙
∙

○
○

B
ra

m
bi

lla
 e

t a
l.

(2
01

4)
○

○
∙

○
∙

○
○

∙
○

∙
∙

∙

U
sm

an
 e

t a
l.

(2
01

7)
○

○
∙

○
∙

○
∙

∙
○

∙
○

∙

Va
up

el
 e

t a
l.

(2
01

8)
○

○
∙

○
∙

○
∙

∙
○

∙
∙

∙

G
ha

ra
at

 e
t a

l.
(2

02
1)

○
○

∙
○

∙
○

∙
∙

○
∙

∙
∙

N
úñ

ez
 e

t a
l.

(2
02

0)
○

○
∙

○
∙

○
∙

∙
○

∙
○

∙

C
ur

re
nt

 re
se

ar
ch

○
∙

∙
○

∙
○

∙
∙

○
∙

∙
∙

1 3

Automated Software Engineering (2022) 29:56 Page 9 of 41 56

3 HealMA framework

HealMA is a model-driven framework for the rapid development of remote health
monitoring apps that run on the patient’s smartphone. It consists of four main com-
ponents: (1) a DSML that describes the main concepts of the health monitoring
application domain, (2) a graphical modeling editor to make modeling easier, (3) a
set of constraint and validation rules to check the validity of the models, and (4) a
model-to-code transformation engine to generate the application code (both Java and
XML) for the Android platform. In the following Sects. 3.1–3.4, we discuss these
components in more detail. Then in Sect. 3.6, we present the steps that developers
should follow for developing an app using HealMA.

3.1 HealMA DSML

In order to define the HealMA DSML, we followed the phases for developing a
DSML that were introduced by Mernik et al. (2005), namely Decision, Analysis,
Design, Implementation, and Deployment. In the first phase, Decision, the neces-
sity of defining the language is discussed. In the second phase, the main concepts
of the domain are extracted. The objective of the third phase is to create the meta-
model (the abstract syntax) of the DSML by extracting the domain concepts and
their relationships. In the fourth phase, the metamodel is implemented in a tool. The
last phase consists of defining the concrete syntax of the language and building a
graphical editor. In the following, we describe each phase in the context of HealMA.

3.1.1 Decision

The emergence of remote health monitoring has created a demand for develop-
ing mobile apps for health monitoring. In general, such apps receive the measured
health data and visualize it for the patient. Developing these apps needs expertise
in different aspects, including programming skills to communicate with different
devices and visualizing the data in an understandable format. Therefore, developing
from scratch using the general-purpose languages is a time-consuming and repeti-
tive task, which may delay the time to market. Due to the fact that these apps tend
to have similar structure and behavior, defining a new DSML for the health monitor-
ing domain can help capture common concepts. The DSML should be expressive
enough to cover a wide range of health measurements such as blood pressure, heart
rate, etc. Developers can use this DSML to model concepts specific to their monitor-
ing app.

3.1.2 Domain analysis

To analyze the domain of health monitoring apps, we followed the feature-oriented
domain analysis (FODA) methodology presented by Kang et al. (1990), which is a

 Automated Software Engineering (2022) 29:56

1 3

56 Page 10 of 41

method for classifying features of an application by distinguishing the mandatory
and optional features and their relations.

To obtain a feature model for the domain of remote health monitoring apps, we
went through the following steps. First, we selected the top 20 highly ranked apps
in this domain from the Google Play Store3 and the Apple Store4 and examined
the concepts they support by installing and running the apps and referring to any
available documentation. Table 2 shows the name, number of downloads, and sat-
isfaction rate for the selected apps. Then, we used the research studies discussed
in the related work section (see Table 1) as another source of information to
uncover important concepts that may have not been implemented in existing apps.
Our objective is to cover as many features as possible that would make HealMA
a powerful framework for generating different types of health monitoring apps.
Based on our analysis of the domain, using the apps and the research papers, we
grouped the extracted concepts into 7 classes as follows.

Table 2 Selected apps for feature extraction

*No. of downloads is “not available” in app store

No. App name Downloads Satisfaction rate

1 Huawei Health + 100 M 3.6
2 Mi fit + 50 M 4.6
3 Heart rate monitor + 1 M 4.5
4 Heart rate plus: pulse monitor + 1 M 4.0
5 Diabetes: M-management and blood sugar track app + 500 K 4.5
6 Blood pressure diary + 500 K 4.2
7 Blood pressure analyze + 100 K 4.2
8 BP journal—blood pressure diary + 100 K 4.8
9 Blood pressure recorder and bp diary + 100 K 3.9
10 Body temperature diary + 100 K 3.7
11 Apple health N.A.* –
12 Instant heart rate: HR monitor N.A.* 4.9
13 HeartRateLite N.A.* 4.6
14 BPMonitor N.A.* 4.6
15 Qardio N.A.* 4.7
16 Glucose-blood sugar tracker N.A.* 4.7
17 Fever tracker N.A.* 2.9
18 Glucose buddy diabetes tracker N.A.* 4.8
19 VitalDetect App N.A.* 5
20 Welltory N.A.* 4.5

3 https:// play. google. com/ store/ apps? hl= en.
4 https:// www. apple. com/ ios/ app- store/.

https://play.google.com/store/apps?hl=en
https://www.apple.com/ios/app-store/

1 3

Automated Software Engineering (2022) 29:56 Page 11 of 41 56

1. Data source Health tracking apps receive health data manually or automatically.
In the manual way (e.g., in “Blood pressure diary”), patients themselves should
measure the health parameters and enter the data into the app manually. However,
some apps (e.g., “Heart Rate Puls: Pulse Monitor”) receive data from smartphone
internal resources (sensors), automatically. Other apps (e.g., “Huawei Health” and
“Mi Fit”) receive data from wearable devices such as smartwatches. In addition to
the apps, the data could be received from an external device such as a Raspberry
Pi 3 board by wireless communication mechanisms (e.g., in Swaroop et al. 2019).
Also, the data could be received from storage and computational services to be
visualized for the users (e.g., in Patel et al. 2011).

2. Platform The 20 investigated health tracking apps were developed for different
platforms, e.g., Android (apps 1–10) and iOS (apps 11–20).

3. Storage The received health data could be stored locally on the smartphone or be
stored on cloud servers. There are apps (e.g., “Qardio”) that just store the data
locally, while many other apps (e.g., “HeartRateLite” and “Diabetes: M-manage-
ment and blood sugar track app”) provide support for both local and cloud storage.

4. Functionality Applications could support different functionalities to improve self-
management and supervising the patient.

• Authentication (sign up and login) Most of the apps (e.g., “Glucose Buddy
Diabetes Tracker”), provide authentication features to support privacy and
security. Some other apps (e.g., “Heart Rate Pulse-Pulse and Heart Rate
Monitor”) do not support authentication.

• Profiling Getting personal information (e.g., in “Apple Health”), helps cus-
tomize the app for the users by giving them better ways to manage the app
features.

• Analysis Simple data processing for analysis (e.g., in “Instant Heart Rate:
HR Monitor”), helps to know if the health status is normal.

• Alert Alerts are used in apps (e.g., “Qardio”) for reminding important tasks
such as measuring health parameters and showing the measurement results.
Alerts could also be used for notifying the supervisor (e.g., in Swaroop
et al. 2019) of potential abnormalities and emergencies.

• Advice Providing guidelines to control abnormalities (e.g., in “Diabetes:
M-Management and Blood Sugar Track App”) helps manage emergencies.

• Report Data visualization and report creation, in different time periods and
in a user-friendly format for patients and supervisors, help track the patient
health status. Some apps (e.g., “Heart Rate Monitor”) provide different
types of reports for the patient, while other apps (e.g., “BP Journal-Blood
pressure Diary”) create reports in different formats to be shared with the
supervisor.

• Learning Some apps (e.g., “Welltory”) provide information sources to
inform the patient about the disease and appropriate lifestyle during the ill-
ness to increase the quality of life.

• Treatment Some apps (e.g., “Diabetes: M- Management and Blood Sugar
Track App”) show the process of treatment including medication, activity,
and diet to be followed by the patients.

 Automated Software Engineering (2022) 29:56

1 3

56 Page 12 of 41

• Clinical info The patient’s medical info (e.g., in Ajami and Mcheick 2018)
can be combined with the measured data. This makes the analysis more
accurate and this medical info is available for the supervisors.

5. Supervisor Most of the health tracking apps just support self-management. How-
ever, if a supervisor could be notified when abnormalities are observed (e.g., in
Swaroop et al. 2019; Rhayem et al. 2017), it helps to control emergencies. The
supervisor could be an organization, such as a hospital, or a person (e.g., the
patient’s family members and doctors).

6. App domain Health monitoring apps can be used for measuring general vital signs
(e.g., in Swaroop et al. 2019) or be specialized for a specific disease (e.g., “Blood
Pressure Diary”).

7. User multiplicity The reviewed health tracking apps are used by one user (e.g.,
“Mi Fit”) or they are used by multiple users (e.g., “Diabetes: M-Management and
Blood Sugar Track App”).

Figure 2 shows the resulting feature model. The importance of each feature is
determined using a logical operator. The features that are marked with a solid cir-
cle (e.g., Functionality) are mandatory and must be supported by a health moni-
toring app. Features with an empty circle are optional (e.g., Storage). One or more
sub-features that are connected by filled arcs can exist in the final app whereas an
empty arc means that only one of the features should exist. Sub-features that are
indicated with dashed boxes (e.g., iOS applications) are not supported by the cur-
rent version of HealMA.

3.1.3 Design

We built our DSML based on the features extracted in the analysis phase. Figure 3
shows an overall view of HealMA metamodel, which consists of four main parts
shown in different colors: (1) Participants (yellow); (2) Health concepts (blue); (3)
Data providers (purple); (4) App functionalities (green). A more detailed view of the
metamodel is presented in Fig. 17 of Appendix.

Participants refers to the roles of various participants in the health monitoring
process, including patients (represented with the Patient class) whose health condi-
tion is monitored. The patient’s personal information is represented by the Profile
class and a patient’s medical information is modeled using the class Medical His-
tory. We define the Supervisor role who is the participant who monitors the patient’s
health condition. The supervisor can be either a person such as a physician or an
organization, for example, a health care clinic.

Health concepts represent concepts related to a particular disease. Parameter
list is a container that represents the different Parameters that are monitored. These
include physical measurements such as blood pressure, heartbeat rate, and body
temperature (represented using the Physical class) and Environmental parameters
such as humidity, temperature, and AQI. The geographical location of a patient is
represented using the Location class. A patient’s physical activities which are meas-
ured using step counts and acceleration are defined using the Activity class. Each

1 3

Automated Software Engineering (2022) 29:56 Page 13 of 41 56

Fi
g.

 2

Fe
at

ur
e

m
od

el
 o

f h
ea

lth
 m

on
ito

rin
g

do
m

ai
n

 Automated Software Engineering (2022) 29:56

1 3

56 Page 14 of 41

Fig. 3 Health monitoring app generation metamodel (in summary)

1 3

Automated Software Engineering (2022) 29:56 Page 15 of 41 56

parameter has an associated Units of measurement and Tags. For example, the tem-
perature can be measured either in Celsius or Fahrenheit, which are units of meas-
urement. Tags capture contextual information about the measurement. For example,
the temperature of a patient can be taken after rest time or after doing physical exer-
cise, etc.

However, not all physical parameters are quantifiable. For example, a headache
could be something that a patient should be able to report. For such health-related
physical parameters, we use the Questionnaire class, which has an association with
the class Questions. These classes are used to inquire about other health conditions
that cannot be captured using sensors.

Specific information about the target disease could be defined as Causes and
Symptoms. If there is information that is not a symptom or cause, it could be defined
using Other Info. Adding the Medication concept helps keep track of the medication
taken by the patient.

The Data providers concept includes Things that are needed for data collec-
tion and communication management. Things could be either Device or Service. It
means that the controlling parameters could be received from a number of devices
and services. Device can be either the patient’s smartphone or an external device
such as a smartwatch that pairs with the patient’s device using a Communication
mechanism. In this work, we just support Bluetooth and Wi-Fi for communicating
with external devices. However, it could be extended easily.

App functionalities model the app’s functionalities such as facilities for register-
ing and logging into the app using the Signup and Login concept. The collected data
can be stored in Local or Cloud storage by defining the concept of Storage Spaces.
The E-Learning concept helps increase the patient’s knowledge about the disease
through specific information that is added in Health concept. The Status Analyzer
concept is used to define some Rules for the simple processing of the patient’s
device to check parameters’ normal thresholds. The Report concept represents the
different types of reports such as charts and history lists. The concepts such as User
Alert, Reminder, and Supervisor Alert are used to notify the patient and supervisors
in case of emergency. For example, if the collected data for a parameter violates
predefined thresholds, the supervisor must be notified by a message, and the patient
must receive an alert from the app. Adding the reminder concept makes it possible
to add reminders for the measurement.

3.1.4 Implementation

We designed our metamodel using the Eclipse Modeling Framework (EMF).5 EMF
is a well-known open-source modeling framework and code generation facility, used
in building app generation tools (Eclipse Official Website 2021a). This framework
allows defining metamodels using the domain concepts and their relationships.

5 Eclipse modeling framework (https:// www. eclip se. org/ model ing/ emf/).

https://www.eclipse.org/modeling/emf/

 Automated Software Engineering (2022) 29:56

1 3

56 Page 16 of 41

3.1.5 Deployment

The last phase is to make the DSML available for use by deploying it. For this, we
created a modeling editor and defined a set of graphical notations. This modeling
tool has to be installed in Eclipse IDE. Then, the developer could model the applica-
tions using the proposed graphical notations. The created models must conform to
the metamodel. Figure 4 shows the concrete syntax of the language. More details on
the editor are provided in Sect. 3.2.

Fig. 4 The language concrete syntax

Fig. 5 Environment of HealMA modeling editor

1 3

Automated Software Engineering (2022) 29:56 Page 17 of 41 56

3.2 Graphical modeling tool

To create health monitoring app models in a user-friendly environment, we devel-
oped a graphical modeling editor using Sirius.6 Sirius is an Eclipse-based tool that
allows the creation of customized modeling editors. We selected Sirius because of
its flexibility in supporting a wide range of customization when defining modeling
editors. The modeling editor is added to Eclipse as a plugin to make it possible to
easily create models by dragging and dropping the language elements to the mod-
eling area. The resulting models are saved in an XMI file.

As shown in Fig. 5, our modeling tool consists of three main parts: (1) Palette, (2)
Canvas, and (3) Properties, as described in the following.

1. Palette This part provides the language elements categorized into four categories:
participants, health concepts, data providers, and app functionalities. This palette
helps to learn the language faster and makes modeling easier. In addition to these
four categories, there is another category with an element named Default that
enables the developer to create all the necessary parts of each model (mandatory
features in the feature model) in the shortest time, automatically.

2. Canvas To create a model, the developer adds the model elements to a canvas
through a drag-and-drop mechanism. Then, the editor shows the graphical repre-
sentation of the model to the developer. Each of the four main parts of the appli-
cation model is indicated by the corresponding color that we used in explaining
our metamodel (see Fig. 3).

3. Properties This part provides the attributes of each model element to be filled.
After the developer adds model elements to the canvas, the required fields must
be filled to complete the application model.

3.3 Constraints and validation rules

We defined many constraints and validation rules to prevent the creation of incom-
plete and invalid models. To this end, we added 38 AQL (Acceleo Query Language)
rules to the modeling tool to catch potential faults. The faults are categorized into
three levels of severity: information, warning, and error. Error messages are gener-
ated to prevent the user from creating the same elements which must be unique in
the application model. Warning messages are generated to prevent important fields
from being left blank. Information messages are generated to express the description
needed to fill a field. As a result, during modeling, if any rule is violated, the editor

Table 3 The number of rules for
different severity levels

Error Warning Information

9 25 4

6 https:// www. eclip se. org/ sirius/.

https://www.eclipse.org/sirius/

 Automated Software Engineering (2022) 29:56

1 3

56 Page 18 of 41

Ta
bl

e
4

 T
he

 ru
le

s w
ith

 h
ig

he
st

se
ve

rit
y

le
ve

l w
hi

ch
 c

au
se

s e
rr

or

N
o.

Ru
le

Ta
rg

et
 c

la
ss

U
sa

ge
 re

as
on

1
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.i
sd

ef
au

ltu
se

r)
 →

in
cl

ud
es

(s
el

f.i
s d

ef
au

lt
us

er
)

U
se

r
To

 p
re

ve
nt

 d
efi

ni
ng

 m
or

e
th

an
 o

ne
 d

ef
au

lt
us

er
2

no
t(s

el
f.s

ib
lin

gs
()

) →
co

lle
ct

(i
i.n

am
e)

 →
in

cl
ud

es
(s

el
f.n

am
e)

Pa
ire

d
de

vi
ce

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

de
vi

ce
s

3
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.n
am

e)
 →

in
cl

ud
es

(s
el

f.n
am

e)
Pa

ra
m

et
er

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

pa
ra

m
et

er
s

4
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.v
al

ue
) →

in
cl

ud
es

(s
el

f.v
al

ue
)

U
ni

t o
f m

ea
su

re
m

en
t

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

un
its

 o
f m

ea
su

re
-

m
en

t f
or

 a
 p

ar
am

et
er

5
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.v
al

ue
) →

in
cl

ud
es

(s
el

f.v
al

ue
)

Ta
g

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

ta
gs

 fo
r a

 p
ar

am
et

er
6

no
t(s

el
f.s

ib
lin

gs
()

) →
co

lle
ct

(i
i.v

al
ue

) →
in

cl
ud

es
(s

el
f.v

al
ue

)
C

au
se

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

ca
us

es
7

no
t(s

el
f.s

ib
lin

gs
()

) →
co

lle
ct

(i
i.v

al
ue

) →
in

cl
ud

es
(s

el
f.v

al
ue

)
Sy

m
pt

om
To

 p
re

ve
nt

 d
efi

ni
ng

 th
e

sa
m

e
sy

m
pt

om
s

8
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.t
itl

e)
 →

in
cl

ud
es

(s
el

f.t
itl

e)
In

fo
To

 p
re

ve
nt

 d
efi

ni
ng

 th
e

sa
m

e
to

pi
cs

 o
f i

nf
or

m
at

io
n

9
no

t(s
el

f.s
ib

lin
gs

()
) →

co
lle

ct
(i

i.q
ue

sti
on

) →
in

cl
ud

es
(s

el
f.q

ue
sti

on
)

Q
ue

sti
on

To
 p

re
ve

nt
 d

efi
ni

ng
 th

e
sa

m
e

qu
es

tio
ns

1 3

Automated Software Engineering (2022) 29:56 Page 19 of 41 56

shows an appropriate message based on the severity level of the rule. Table 3 shows
the number of rules defined for each level, while Table 4 shows the rules with the
highest severity.

For example, for each instance of the class Parameter, we can issue an error mes-
sage when the developer creates a parameter that already exists. Figure 6 shows dif-
ferent steps to define this error message and the result of validating a model against
this rule. Figure 6a shows the required AQL query to prevent defining the same
parameters. Figure 6b shows the customization of the message level and message
text. Figure 6c shows an error message when the developer tries to define duplicate
parameters. In addition to the error message, we can show an ‘information’ message
to help a developer choose the type of parameters and ‘warn’ the developer when
he/she forgets to enter the required fields. These messages are defined following the
same process as the error message is defined.

3.4 Model‑to‑code transformation engine

To generate the code from the model, we developed a model-to-code engine. We
used Acceleo model-to-text language (Eclipse Official Website 2021b), which is a
template-based code generator tool, to create the engine. The engine includes sev-
eral transformation rules that take the model as an XMI file and returns the required
files for the Android app as output. The app logic code is generated in Java, and

Fig. 6 Process of defining and showing an error message to prevent creating duplicate parameters

 Automated Software Engineering (2022) 29:56

1 3

56 Page 20 of 41

the user interface is generated in XML. In addition, the transformation rules gener-
ate comments to help developers fill some parts manually, fix errors, and complete
the Android project. Listing 1 shows a code excerpt that is written in Acceleo. This
template generates the required Java method to insert measured data into the corre-
sponding table in the local database.

1 [template public InsertParam(aParam : Parameter)]
2 public void add_[aParam.name /](Parameter_DataModel params){
3

4 SQLiteDatabase db=this.getWritableDatabase ();
5 ContentValues values=new ContentValues ();
6

7 values.put(Constants .[aParam.name.toUpper ()/]_VALUE ,
8 params.get[aParam.name.toUpperFirst ()/]());
9 values.put(Constants .[aParam.name.toUpper ()/]_DATE ,

10 params.get[aParam.name.toUpperFirst ()/]_date ());
11

12 db.insert(Constants.TABLE_NAME_[aParam.name.toUpper ()/], null ,
values);

13 Log.i("tag", "[aParam.name/] is added successfully");
14 db.close ();
15 }
16 [/ template]
Listing 1 Code excerpt of an Acceleo template to generate Java method to add data to
parameter table

Fig. 7 Architecture of health
monitoring applications gener-
ated by HealMA

1 3

Automated Software Engineering (2022) 29:56 Page 21 of 41 56

3.5 Architecture of HealMA‑generated apps

The health monitoring apps generated by HealMA follow the Model-View-Control-
ler (MVC) architecture pattern. As it can be seen in Fig. 7 based on the MVC archi-
tecture each app is divided into three main layers: (1) Model (2) View (3) Controller.

• Model layer is responsible for storing/retrieving data in/from database and cloud
storage services using object classes.

• View layer is responsible for visualizing the appropriate user interface to the user
based on the user command.

• Controller layer is responsible for getting the user commands and updating the
model layer based on the command. It is also responsible for application logic.

In an Android project, activities are used for both the view and controller layers. To
be more precise, the view layer consists of a combination of XML layout resources
and the parts of Java activities files that update the user interface. However, the parts
of the activities that update the object classes and handle the logic of the program
are related to the controller layer. The Java classes from which objects are built are
in the model layer (Lou et al. 2016).

3.6 Development process using the proposed framework

Figure 8 shows a detailed process that developers should follow to generate an
Android health monitoring app using HealMA. This process consists of the follow-
ing steps.

Fig. 8 Development process of health monitoring applications using HealMA

 Automated Software Engineering (2022) 29:56

1 3

56 Page 22 of 41

1. In the Requirement Gathering step, the developer should determine the require-
ments of the application. However, HealMA does not provide any facility for
doing this step. Therefore, this step is considered a prerequisite step.

2. The next step is Modeling, in which the developer should model the application
using the modeling editor. The model elements can be added in three ways. They
can be added by utilizing the default parts, they can be designed from scratch, or
they can be created by the combination of these two approaches.

3. In the Automatic Code Generation step, the app code (including Java and XML
files) is generated automatically by the model-to-code transformation engine.

4. Finally, in the Code Customization step, the developer has to transfer the gener-
ated code into the Android Studio IDE, complete the project according to the
comments, and customize the project as needed.

4 Evaluation

In this section, we evaluate the HealMA framework using three criteria: (1) Appli-
cability, (2) Productivity, and (3) Usability. More precisely, we answer the following
research questions:

• RQ1 (Applicability): Can we use HealMA to generate different Android-based
health monitoring applications?

• RQ2 (Productivity): Does HealMA increase the productivity of developers?
• RQ3 (Usability): How usable are the apps generated by HealMA?

To answer the first two questions, we adapted the guidelines introduced by Runeson
and Höst (2009) to the current research, and implemented four case studies. The
detail of this part of the evaluation is explained in Sect. 4.1. To answer the third
research question, we conducted a user study to assess the usability of one of the
generated apps (COVID-19 monitoring app) from the users’ perspective, following
the guidelines proposed by Wohlin et al. (2012). Our usability measures are based
on the ones proposed by Hussain et al. (2013) and Gharaat et al. (2021). These
measures are then structured using the goal question metric (GQM) approach (Basili
et al. 1994). The detail of this part of the evaluation is explained in Sect. 4.2.

4.1 Case studies

In the following sections, we address the first two research questions: RQ1 and RQ2.

4.1.1 RQ1 (Applicability): Can we use HealMA to generate different Android‑based
health monitoring applications?

To answer this question, we present four case studies in which we use HealMA to
automatically generate four different monitoring apps for the following diseases:
(1) Chronic Obstructive Pulmonary Disease (COPD), (2) High Blood Pressure,

1 3

Automated Software Engineering (2022) 29:56 Page 23 of 41 56

(3) COVID-19, and (4) Diabetes. To show how HealMA can be used to generate a
monitoring app, we explain the details of the development process for the first case
study. The same approach was followed for the other three case studies.

COPD monitoring COPD is a chronic disease that makes breathing difficult
(World Health Organization Official Website 2020b). Despite its progressive nature,
it could be managed and controlled. Early diagnosis, continuous monitoring, and
reducing risk factors can help patients control COPD (Vogelmeier et al. 2017). This
disease can be caused by tobacco smoking, indoor and outdoor air pollution, occu-
pational dust, respiratory infections, chemicals, and so on. The symptoms can be
dyspnea, chronic cough, shortness of breath, sputum production, wheezing, and
chest tightness (Vogelmeier et al. 2017; Harris 2019). A set of environmental param-
eters such as temperature, humidity, and rising levels of some pollutants (e.g., CO,
PM2.5, and PM10) exacerbate COPD. Such exacerbation can be detected by moni-
toring physical parameters such as heartbeat rate, blood pressure, body temperature,
respiration rate, and blood oxygen level (Ajami and Mcheick 2018; Tomasic et al.
2018; de Miguel-Díez et al. 2019). These parameters should be monitored continu-
ously in the case of COPD.

Fig. 9 Requirements of the COPD monitoring app

 Automated Software Engineering (2022) 29:56

1 3

56 Page 24 of 41

Fig. 10 COPD application model

1 3

Automated Software Engineering (2022) 29:56 Page 25 of 41 56

Based on the development process described in Sect. 3.6, to generate a COPD
monitoring mobile app by HealMA, we follow the following steps.

Step 1 In the first step, we defined the requirements for the COPD monitoring
app. Figure 9 shows the requirements of this app as a use case diagram.

Step 2 We used the HealMA modeling editor to design the COPD model. Then,
we applied the validation rules to correct and complete the model. Figure 10 shows
the application model for the COPD monitoring app.

Step 3 After the model is completed, with the help of the transformation engine,
the XML and Java files of the application are generated automatically.

Figure 11 shows the generated packages based on the MVC architecture. The con-
troller package consists of several sub-packages. The adapter package consists of
adapter classes that act as a bridge between the model layer and the view layer. The
alarm notification handler consists of classes that make it possible to add the alarm
and notification in the app. The communication handler is responsible for handling
the network communications. The Bluetooth/Wi-fi handler is used to receive health
data from external devices. The public services handlers contain classes to receive
data from public services such as services providing air quality index. The server
storage handler consists of classes that are responsible for communicating with the
storage cloud server. The computational services package implements services for
mathematical and logical operations to check the patient health status. The database
handler consists of the classes that are responsible for storing/retrieving on/from the

Fig. 11 Generated packages for the COPD monitoring application

 Automated Software Engineering (2022) 29:56

1 3

56 Page 26 of 41

SQLite database. Finally, the send SMS handler package contains a class to send
SMS to observers.

The model package consists of Java classes to create the objects for handling the
logic of the program.

The presentation package consists of activities and layouts. The Activities are
Java classes that are responsible for both updating the user interface and some
tasks which are related to the controller layer. The layouts package are XML layout
resources for the user interface.

There is one more package that includes the required manifest file of the project.
step 4 We opened the generated code as an Android project in Android Studio.

Then, we completed the project by addressing the comments that are generated by
HealMA. Finally, we generated the APK file for the COPD monitoring app. The
COPD monitoring app APK file is available at this address.7

Figure 12 shows different pages of the generated COPD monitoring app. Fig-
ure 12a shows three main parts of the app including the signup and login page, dash-
board, and drawer. After the user signs up and logs into the app, he/she should use
the drawer to fill out the profile, medical history, and supervisor information. Then,
he/she can use other parts of the app. Figure 12b shows the measurement page,
which is the most important part of the app. After the user device is paired to the
external devices, it can receive the measured data, check the thresholds, and return
the result to the user. To test the storage and retrieval of the data on the cloud, we
developed a local PHP server. Also, to test Bluetooth and Wi-Fi communications,
we developed an Android app that sends data to the generated COPD monitoring
application via Bluetooth and Wi-Fi. Then, as depicted in Fig. 12c, the stored data
can be shown to the user and can also be sent to the supervisor as a report. The
user can obtain information about COPD and improve his/her knowledge as shown
in Fig. 12d, and can also define his/her medications in pages depicted in Fig. 12e.
Additionally, the user has the option to set a reminder for the measurement time or
other important times in the reminder part which is shown in Fig. 12f.

Blood pressure monitoring Blood pressure is measured as the blood circulates
from the heart to other parts of the body through the vessels. Blood pressure rises and
falls during the day. However, if it stays too high for a long time, it is called hyper-
tension and raises the risk of heart, brain, and kidney problems. This condition is
the main reason for premature death worldwide (CDC Official Website 2020; WHO
Official Website 2020a). Recently, many applications have been developed to moni-
tor hypertension. We used existing apps to collect requirements about blood pressure
monitoring. More specially, we chose three most popular blood pressure monitoring
apps from Google Play as a reference, which are shown in Table 5 along with their
number of downloads and ratings. We aggregated the functionalities supported by
these apps and added other requirements such as automatic data recording and alerts
to come up with a full set of features for the HealMA-generated app.

Following the same process as for the COPD app, we generated the blood
pressure app simply by dragging and dropping the relevant model elements
using the HealMA modeling editor. Figure 13 shows the main screenshots of the

7 https:// mdse. ui. ac. ir/ Tools/ HealMA/ COPDM on. apk.

https://mdse.ui.ac.ir/Tools/HealMA/COPDMon.apk

1 3

Automated Software Engineering (2022) 29:56 Page 27 of 41 56

Fig. 12 The screenshots of COPD monitoring app: a main pages b measurements c reports d learning
about disease e medication storage f reminder

 Automated Software Engineering (2022) 29:56

1 3

56 Page 28 of 41

HealMA-generated Blood Pressure monitoring app. The app APK file is available at
this address.8

COVID-19 monitoring COVID-19 is a new infectious disease that mainly causes
respiratory problems. Fever, dry cough, and tiredness are the most common symp-
toms of COVID-19, and based on the latest research, factors such as age, gender,
heartbeat rate, respiratory rate, oxygen saturation, and chronic kidney problems
affect the COVID-19 mortality rate (WHO Official Website 2020b; Rechtman
et al. 2020). However, due to the infectious nature of COVID-19, direct nursing of
patients and controlling such factors is dangerous for the patient’s family members
and the medical staff. Remote monitoring not only helps supervisors to be safer but
also provides stored data for researchers to study the disease. Due to the fact that
at the time of writing this paper, there is no well-known COVID monitoring app
available on the Google play store, we relied on the research articles to extract the
features and functionalities of such an app.

Figure 14 shows some screenshots of the COVID-19 monitoring app generated
using HealMA. It should be noted that this app is generated following the same pro-
cess as the previous case studies. The app APK file is available at this address.9

Table 5 Functionalities for blood pressure monitoring app

Supported ∙ Not supported ○

App name Blood pressure Blood pressure tracker
and bp diary

Blood pressure
tracker

Our app

Downloads 10M+ 1M+ 500k+ –
App functions↓ rate→ 4.2 4.1 4.6 –
Profile ○ ○ ○ ∙

Data recording
 Manual ∙ ∙ ∙ ∙

 Automatic ○ ○ ○ ∙

Storage place
 Local ∙ ∙ ∙ ∙

 Cloud ∙ ○ ∙ ∙

Data visualization
 History list ∙ ∙ ∙ ∙

 Charts ∙ ∙ ∙ ∙

Supervisor notification
 Report ∙ ○ ∙ ∙

 Alert ○ ○ ○ ∙

Reminder ∙ ○ ○ ∙

Learning about disease ○ ∙ ○ ∙

8 https:// mdse. ui. ac. ir/ Tools/ HealMA/ Blood Press ureMon. apk.
9 https:// mdse. ui. ac. ir/ Tools/ HealMA/ COVID Mon. apk.

https://mdse.ui.ac.ir/Tools/HealMA/BloodPressureMon.apk
https://mdse.ui.ac.ir/Tools/HealMA/COVIDMon.apk

1 3

Automated Software Engineering (2022) 29:56 Page 29 of 41 56

Diabetes monitoring Insulin is a hormone that moves the sugar (glucose) from
the blood to body cells to be used as energy. Diabetes occurs when the body is una-
ble to produce or use insulin properly (CDC Official Website 2021a). There are three
types of diabetes, type 1, type 2, and gestational. However, type 2 diabetes is the
most common. Continuous controlling of some physical parameters such as blood
glucose, blood pressure, and cholesterol besides improving the lifestyle by quitting
smoking, controlling the weight, and healthy eating help to manage type 2 diabetes
(CDC Official Website 2021b). Health monitoring apps can be helpful by provid-
ing facilities for the mentioned guidelines. To develop an application to help people
with type 2 diabetes, we selected three diabetes tracking apps with a high number
of downloads from the Google play store, and considered their main functionalities
as the requirements of our application. Table 6 shows the apps and their number of

Fig. 13 The screenshots of blood pressure monitoring app

 Automated Software Engineering (2022) 29:56

1 3

56 Page 30 of 41

downloads, ratings, features, and the features we considered for our app. Figure 15
shows some screenshots of the Diabetes monitoring app generated using HealMA.
The app APK file is available at this address.10

We believe that the four apps that were generated using the HealMA framework
demonstrate the applicability of HealMA to generate different health monitoring
apps for various domains. This results in the ‘yes’ answer to our first research ques-
tion, RQ1.

Fig. 14 The screenshots of COVID-19 monitoring app

10 https:// mdse. ui. ac. ir/ Tools/ HealMA/ Diabe tesMon. apk.

https://mdse.ui.ac.ir/Tools/HealMA/DiabetesMon.apk

1 3

Automated Software Engineering (2022) 29:56 Page 31 of 41 56

4.1.2 RQ2 (Productivity): Does HealMA increase the productivity of developers?

To answer the second research question, we compared the “number of automati-
cally generated lines of code” with the “manually added lines” for each case study.
Table 7 shows the numbers, and Fig. 16 shows the percentage of these numbers. As
we can see, in all cases, more than 90% of the code is automatically generated, and
this shows that HealMA helps developers build the apps in a more efficient manner.

In addition, to compare the development time when using HealMA compared
to creating the apps from scratch (i.e., following a pure code-centric approach), we
used the heuristic presented by Kung (2013) which claims that an average developer
can write 100 lines of code (LoC) per day. Based on this heuristic, we compared
the time it takes to develop each of the apps from scratch, with the time of develop-
ing the same apps using HealMA. As it is shown in Eq. 1, to obtain the time for the
code-centric method, the total number of LoC for each project should be divided by
100. However, when HealMA is used for development, as it is shown in Eq. 2 the
modeling time will be added to the time needed for manual LoC added to complete
the project. Table 8 shows the results.

Table 6 Functionalities for diabetes monitoring app

Supported ∙ Not supported ○

App name Diabetes diary-
blood glucose
tracker

Blood sugar log-
diabetes tracker

Blood sugar tracker: dia-
betes test glucose logger

Our app

Downloads 100k+ 100k+ 100k+ –
App functions↓ Rate 4.6 4.5 4.6 –
Sign up and log in ○ ○ ○ ∙

profile ○ ○ ∙ ∙

Medical history ○ ○ ○ ∙

Data recording
 Manual ∙ ∙ ∙ ∙

Storage place
 Local ∙ ∙ ∙ ∙

Data visualization
 History list ○ ○ ∙ ∙

 Charts ∙ ∙ ∙ ∙

Supervisor notifications
 Report ○ ∙ ○ ∙

 Alert ○ ○ ○ ∙

Reminder ∙ ∙ ∙ ∙

Learning about disease ○ ○ ○ ∙

Medication ∙ ∙ ○ ∙

 Automated Software Engineering (2022) 29:56

1 3

56 Page 32 of 41

To summarize, as depicted in Fig. 16, at least 92% of XML code and 95% of Java
code is generated automatically for each case study. Based on these results, we con-
jecture that HealMA increases productivity during development, which results in the
‘yes’ answer to RQ2.

(1)Time(day) =
LoC(Total)

100

(2)Time(day) =ModelingTime +
LoC(ManuallyAddedCode)

100

Fig. 15 The screenshots of diabetes monitoring app

1 3

Automated Software Engineering (2022) 29:56 Page 33 of 41 56

4.2 RQ3 (Usability): How usable are the apps generated by HealMA?

To evaluate the usability of the apps generated by HealMA, we selected one of the apps
that was generated using our framework (COVID-19 Monitoring app), and conducted a
user study following the guidelines provided by Wohlin et al. (2012), ISO 9241-11 quality
model (ISO Official Website 2020), and measures proposed by Hussain et al. (2013) and
Gharaat et al. (2021). The user study consists of three steps: (1) Scoping and planning, (2)
Operation, and (3) Discussion. In the first step, we defined the goal, set up the experiment,
and chose the participants. In the second step, we conducted an online questionnaire with
the participants. Then, in the third step, we discussed the results achieved from the ques-
tionnaire. These three steps are explained in more detail in the following sections.

4.2.1 Scoping and planning

According to ISO 9241-11 (ISO Official Website 2020), usability is considered as
user-friendliness and ease of use for the users. Therefore, end-users (COVID-19
patients) should be satisfied with the generated app. In order to define the goals, we
followed the GQM approach (Basili et al. 1994). This approach helps find the factors
that may have an effect on usability and define a set of questions to make usability
more quantifiable. We adapted the goals defined by Hussain et al. (2013), by focusing
on simplicity, accuracy, time taken, and attractiveness as the goals of the study. Then
we set up a questionnaire with 12 questions to evaluate these goals. The answer to
each question has to be selected amongst these options: ‘very little’, ‘little’, ‘moder-
ate’, ‘much’, and ‘very much’. Then, to evaluate the goals, we asked 20 participants
to answer the questionnaire. The participants have been selected from people who
experienced COVID-19, either themselves or their close family members. They were
of different age groups from 15 to 50 and had different education levels.

Table 7 Automatically
generated code versus manually
added code for each case study

Case study Automatically
generated code

Manually added
code

Total

Java XML Java XML

COPD 6438 3107 350 272 10,167
Blood pressure 2110 1261 58 13 3442
COVID-19 2699 1584 43 24 4350
Diabetes 4838 2291 205 186 7520

Fig. 16 The percentage of automatically generated code versus manually added code for four case studies

 Automated Software Engineering (2022) 29:56

1 3

56 Page 34 of 41

4.2.2 Operation

The experiment was conducted online because of the current pandemic. We pro-
vided the COVID-19 monitoring app to participants, which is generated as the third
case study. Then, we asked the participants to install the app and use it. After that,
we asked them to fill out the online questionnaire to evaluate the usability of the
app. Table 9 shows the questions and the extracted results from the answers.

4.2.3 Discussion

As mentioned earlier, the answers to each question vary from ‘very little’ to ‘very
much’. If the ‘very much’ and ‘much’ answers are considered as the users’ satisfac-
tion, in general, users’ satisfaction varied between 70 and 100% for each question.
To achieve user satisfaction for each goal, i.e, Simplicity, Accuracy, Time taken,
and Attractiveness, we averaged the user satisfaction for the questions of that goal.
Table 10 shows the general user satisfaction for the goals. It can be seen that 96.6%
of users believed that working with the COVID-19 monitoring app is easy and 88%
of them considered it Accurate. 95% were satisfied with the response time, and
91.6% of them believed that the COVID-19 monitoring app is attractive.

The results show that the COVID-19 monitoring app is considered usable by the
users, which answers RQ3.

4.3 Threats to validity

In this section, based on Runeson and Höst (2009) we describe the threats to validity.

4.3.1 Construct validity

Construct threats refer to differences between theoretical assumptions and the results
observed. We evaluated the framework from different perspectives based on well-
known methods. To evaluate the applicability of HealMA, we implemented four
case studies with different requirements. We measured the development time for
each case study to measure productivity. The results for measuring productivity may
be different by changing the implemented cases.

Table 8 Comparison between
the time of automatic
implementation by HealMA and
manual implementation for each
case study

Case study Manual
implementation
(Days)

Automatic implementation by
HealMA

Modeling
(minutes)

Completing and
customization
(days)

COPD 101 120 ~ 7
Blood pressure 34 30 ~ 1
COVID-19 43 40 ~ 1
Diabetes 75 60 ~ 4

1 3

Automated Software Engineering (2022) 29:56 Page 35 of 41 56

Ta
bl

e
9

 Q
ue

sti
on

na
ire

 re
su

lts

1
=

 V
er

y
lit

tle
, 2

 =
 L

itt
le

, 3
 =

 M
od

er
at

e,
 4

 =
 M

uc
h,

 5
 =

 V
er

y
m

uc
h

M
ea

su
re

G
oa

l
Q

ue
sti

on
A

ns
w

er

1
(%

)
2

(%
)

3
(%

)
4

(%
)

5
(%

)

Eff
ec

tiv
en

es
s

Si
m

pl
ic

ity
H

ow
 si

m
pl

e
is

 th
e

in
st

al
la

tio
n

pr
oc

es
s o

f t
he

 a
pp

?
0

0
5

5
90

H
ow

 si
m

pl
e

is
 it

 to
 le

ar
n

th
e

ap
p

fu
nc

tio
na

lit
ie

s?
0

0
0

50
50

H
ow

 si
m

pl
e

is
 it

 to
 u

se
 th

e
ap

p?
0

0
5

50
45

A
cc

ur
ac

y
H

ow
 a

cc
ur

at
e

ar
e

th
e

re
su

lts
 p

ro
vi

de
d

by
 th

e
ap

p
ab

ou
t h

ea
lth

 st
at

us
?

0
0

5
50

45
Is

 th
e

ap
p

ab
le

 to
 p

re
ve

nt
 e

rr
or

s a
nd

 g
ui

de
 u

se
rs

 w
ith

 a
pp

ro
pr

ia
te

 m
es

sa
ge

s?
0

15
15

35
35

Is
 th

e
ap

p
ab

le
 to

 c
om

pl
et

e
gi

ve
n

ta
sk

s s
uc

ce
ss

fu
lly

?
0

0
0

50
50

Effi
ci

en
cy

Ti
m

e
ta

ke
n

D
oe

s t
he

 a
pp

 re
sp

on
d

in
 a

 re
as

on
ab

le
 ti

m
e?

0
0

0
80

20
D

oe
s t

he
 a

pp
 c

om
pl

et
e

th
e

gi
ve

n
ta

sk
s i

n
a

re
as

on
ab

le
 ti

m
e?

0
0

5
5

90
D

oe
s t

he
 a

pp
 ta

ke
 a

 re
as

on
ab

le
 ti

m
e

fo
r m

on
ito

rin
g

th
e

us
er

’s
 h

ea
lth

 st
at

us
?

0
0

10
45

45
Sa

tis
fa

ct
io

n
A

ttr
ac

tiv
en

es
s

H
ow

 p
le

as
an

t i
s t

he
 U

I o
f t

he
 a

pp
?

0
0

10
40

50
H

ow
 sa

tis
fie

d
is

 th
e

us
er

 w
ith

 c
ol

or
s,

fo
nt

 si
ze

, a
nd

 ic
on

s i
n

th
e

ap
p?

0
0

5
20

75
D

oe
s t

he
 u

se
r e

nj
oy

 w
or

ki
ng

 w
ith

 th
e

U
I o

f t
he

 a
pp

?
0

0
10

30
60

 Automated Software Engineering (2022) 29:56

1 3

56 Page 36 of 41

4.3.2 Internal validity

Internal threats refer to factors that affect the evaluation and change the results.
Automatic code generation reduces the need for programming skills and develop-
ment time. However, different programming styles may increase the time to custom-
ize the code, which in turn can affect the development time. To mitigate this threat,
an effort was made to generate code that is easy to understand with added comments
to help developers complete the project.

4.3.3 External validity

External threats refer to factors that prevent generalizing the findings and results. To
mitigate this threat, we generated four different apps that cover various health moni-
toring aspects.

4.3.4 Reliability validity

Reliability threats refer to the dependence of the results on the researchers. In this
research, for the evaluation of applicability, we analyzed the health monitoring app
domain by reviewing several applications and academic studies and designed the
language based on the common features. However, we may have missed some stud-
ies and apps. Therefore, all the features in health monitoring applications may not
be implemented in the current version of HealMA. On the other hand, for the evalu-
ation of usability, the sample size is not large enough. To mitigate this threat, we
chose people from different age groups with various education levels.

4.4 Limitations

In this section, we discuss the potential limitations of the HealMA framework and
the apps generated using HealMA.

4.4.1 Limitations of HealMA

As we stated in Sect. 3.1.2, we relied on the analysis of several apps and aca-
demic research work and extract the main concepts of the remote health monitor-
ing domain. These concepts form the foundations on which HealMA metamodel is

Table 10 User satisfaction for
each goal

Goal Satisfaction
percent (%)

Simplicity 96.6
Accuracy 88
Time taken 95
Attractiveness 91.6

1 3

Automated Software Engineering (2022) 29:56 Page 37 of 41 56

built. However, we can not claim that HealMA can generate any health monitoring
mobile app. It is only limited to the generation of apps with the features defined
in the HealMA metamodel. To support additional concepts, we need to extend the
HealMA metamodel, which will result in changing other parts of the framework,
i.e., the modeling editor, validation rules, and code generator. This said, we believe
that the current version of HealMA covers a wide range of standard features for cre-
ating useful health monitoring apps.

4.4.2 Limitations of the apps generated by HealMA

The monitoring apps generated by the current version of HealMA have the same UI
design, and there is no support for UI customization in the modeling step. The only
way to modify the UI is to change the generated code itself, which may create incon-
sistencies with the models created using HealMA DSML. To support UI customiza-
tion at the modeling level, we need to improve the DSML. This will require a good
understanding of UI design concepts.

5 Conclusion and future work

In this paper, we presented HealMA, a model-driven engineering framework for
generating Android-based remote health monitoring apps. HealMA consists of a
domain-specific modeling language, a modeling editor, validation constraints, and a
model-to-code transformation engine, all packaged in an Eclipse plugin. The mod-
eling language includes the main concepts of the IoT-based health monitoring apps as
well as the relationships between them. The modeling editor makes modeling easier.
It includes some predefined AQL rules to avoid creating wrong and incomplete mod-
els. The model-to-code transformation engine takes the designed model of the app as
input and returns the generated XML and Java code of the app as output, which then
is imported to the corresponding Android project for generating the APK of the app.

We evaluated HealMA from three different perspectives: applicability, productivity, and
usability. To show that HealMA is applicable, we implemented four different case studies.
Then, we compared the development time when we used HealMA to a code-centric approach.
We also evaluated the usability of HealMA-generated apps by conducting an experiment and
asking 20 participants to provide their feedback through a questionnaire. The results of the
evaluations showed both the applicability and usefulness of the HealMA framework.

In the future, we plan to extend HealMA with a focus on a wider range of dis-
eases, communication methods, protocols, and standards. We also intend to add a set
of transformations to our engine to generate iOS applications too. Then, we want to
conduct more studies to assess the effectiveness and usability of HealMA.

Appendix

See Fig. 17.

 Automated Software Engineering (2022) 29:56

1 3

56 Page 38 of 41

Fig. 17 Health monitoring app generation metamodel (in detail)

1 3

Automated Software Engineering (2022) 29:56 Page 39 of 41 56

References

Ajami, H., Mcheick, H.: Ontology-based model to support ubiquitous healthcare systems for COPD
patients. Electronics 7(12), 371–400 (2018)

Al-khafajiy, M., Baker, T., Chalmers, C., Asim, M., Kolivand, H., Fahim, M., Waraich, A.: Remote health
monitoring of elderly through wearable sensors. Multimedia Tools Appl. 78(17), 681–706 (2019)

Banos, O., Garcia, R., Holgado-Terriza, J.A., Damas, M., Pomares, H., Rojas, I., Saez, A., Villalonga, C.:
mhealthdroid: a novel framework for agile development of mobile health applications. In: Interna-
tional Workshop on Ambient Assisted Living, pp. 91–98. Springer (2014)

Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encyclopedia of Soft-
ware Engineering, pp. 528–532 (1994)

Bauer, M., Bui, N., De Loof, J., Magerkurth, C., Nettsträter, A., Stefa, J., Walewski, J.W.: IoT reference
model. In: Enabling Things to Talk, pp. 113–162. Springer (2013)

Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: IoT-lite: a lightweight semantic model for
the Internet of Things. In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence Computing,
Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress, pp. 90–97 (2016)

Brambilla, M., Mauri, A., Umuhoza, E.: Extending the interaction flow modeling language (IFML) for
model driven development of mobile applications front end. In: International Conference on Mobile
Web and Information Systems, pp. 176–191 (2014)

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Mor-
gan & Claypool, Cambridge (2017)

CDC Official Website: Facts about hypertension [Online] (2020). Available https:// www. cdc. gov/ blood
press ure/ facts. htm. Accessed 27 July 2020

CDC Official Website: What is Diabetes? [Online] (2021a). Available https:// www. cdc. gov/ diabe tes/
basics/ diabe tes. html. Accessed 11 Aug 2021

CDC Official Website: Type 2 Diabetes [Online] (2021b). Available https:// www. niddk. nih. gov/ health-
infor mation/ diabe tes/ overv iew/ what- is- diabe tes/ type-2- diabe tes. Accessed 11 Aug 2021

Chellouche, S.A., Chalouf, M.A., Lemlouma, T.: Ontology-based pervasive m2m healthcare environ-
ment. In: 2013 First International Symposium on Future Information and Communication Technolo-
gies for Ubiquitous HealthCare, pp. 1–5 (2013)

de Miguel-Díez, J., Hernández-Vázquez, J., López-de-Andrés, A., Álvaro-Meca, A., Hernández-Barrera,
V., Jiménez-García, R.: Analysis of environmental risk factors for chronic obstructive pulmonary
disease exacerbation: a case-crossover study (2004–2013). PLoS ONE 14(5), e0217143 (2019)

Dhanvijay, M.M., Patil, S.C.: Internet of things: a survey of enabling technologies in healthcare and its
applications. Comput. Netw. 153, 113–131 (2019)

Eclipse Official Website: EMF [Online] (2021a). Available https:// www. eclip se. org/ model ing/ emf/.
Accessed 3 July 2021

Eclipse Official Website: Acceleo language [Online] (2021b). Available https:// www. eclip se. org/ accel eo.
Accessed 2 July 2021

Einarsson, A.F., Patreksson, P., Hamdaqa, M., Hamou-Lhadj, A.: SmarthomeML: towards a domain-spe-
cific modeling language for creating smart home applications. In: 2017 IEEE International Congress
on Internet of Things, pp. 82–88 (2017)

Gharaat, M., Sharbaf, M., Zamani, B., Hamou-Lhadj, A.: Alba: a model-driven framework for the auto-
matic generation of Android location-based apps. Autom. Softw. Eng. 28(1), 1–45 (2021)

Gomez, J., Oviedo, B., Zhuma, E.: Patient monitoring system based on Internet of Things. Procedia
Comput. Sci. 83, 90–97 (2016)

Grand View Research Official Website: mHealth apps market size. [Online] (2021). Available https://
www. grand viewr esear ch. com/ indus try- analy sis/ mheal th- app- market. Accessed 2 July 2021

Harris, R.E.: Epidemiology of Chronic Disease: Global Perspectives. Jones & Bartlett Learning, Burling-
ton (2019)

Hussain, A., Hashim, N.L., Nordin, N., Tahir, H.M.: A metric-based evaluation model for applications on
mobile phones. J. Inf. Commun. Technol. 12, 55–71 (2013)

Hussein, M., Li, S., Radermacher, A.: Model-driven development of adaptive IoT systems. In: MODELS,
pp. 17–23 (2017)

https://www.cdc.gov/bloodpressure/facts.htm
https://www.cdc.gov/bloodpressure/facts.htm
https://www.cdc.gov/diabetes/basics/diabetes.html
https://www.cdc.gov/diabetes/basics/diabetes.html
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-2-diabetes
https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-2-diabetes
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/acceleo
https://www.grandviewresearch.com/industry-analysis/mhealth-app-market
https://www.grandviewresearch.com/industry-analysis/mhealth-app-market

 Automated Software Engineering (2022) 29:56

1 3

56 Page 40 of 41

Inupakutika, D., Kaghyan, S., Akopian, D., Chalela, P., Ramirez, A.G.: Facilitating the development of
cross-platform mhealth applications for chronic supportive care and a case study. J. Biomed. Inform.
105, 103420 (2020)

Islam, S.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The Internet of Things for health care: a
comprehensive survey. IEEE Access 3, 678–708 (2015)

ISO Official Website: Usability definition [Online] (2020). Available https:// www. iso. org/ obp/ ui/# iso: std:
iso: 9241:- 11: ed-2: v1: en. Accessed 27 July 2020

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented domain analysis
(FODA) feasibility study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software Engi-
neering Inst (1990). https:// apps. dtic. mil/ dtic/ tr/ fullt ext/ u2/ a2357 85. pdf

Kung, D.: Object-Oriented Software Engineering: An Agile Unified Methodology. McGraw-Hill Higher
Education, Boston (2013)

Lou, T., et al.: A Comparison of Android Native App Architecture MVC, MVP and MVVM. Eindhoven
University of Technology, Eindhoven (2016)

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM
Comput. Surv. CSUR 37(4), 316–344 (2005)

Núñez, M., Bonhaure, D., González, M., Cernuzzi, L.: A model-driven approach for the development of
native mobile applications focusing on the data layer. J. Syst. Softw. 161, 110489 (2020)

Panahandeh, M., Hamdaqa, M., Zamani, B., Hamou-Lhadj, A.: MUPPIT: A method for using proper pat-
terns in model transformations. Springer J. Softw. Syst. Model. SoSym 20, 1491–1523 (2021)

Patel, P., Pathak, A., Teixeira, T., Issarny, V.: Towards application development for the Internet of Things.
In: Proceedings of the 8th Middleware Doctoral Symposium, pp. 1–6 (2011)

Pathinarupothi, R.K., Durga, P., Rangan, E.S.: IoT-based smart edge for global health: remote monitor-
ing with severity detection and alerts transmission. IEEE Internet Things J. 6(2), 2449–2462 (2018)

Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L.: Advanced internet of things for personalised health-
care systems: a survey. Pervasive Mob. Comput. 41, 132–149 (2017)

Rechtman, E., Curtin, P., Navarro, E., Nirenberg, S., Horton, M.K.: Vital signs assessed in initial clinical
encounters predict COVID-19 mortality in an NYC hospital system. Sci. Rep. 10(1), 1–6 (2020)

Rhayem, A., Mhiri, M.B.A., Salah, M.B., Gargouri, F.: Ontology-based system for patient monitoring
with connected objects. Procedia Comput. Sci. 112, 683–692 (2017)

Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in software engineer-
ing. Empir. Softw. Eng. 14(2), 131–164 (2009)

Statcounter Official Website: Android market share worldwide. [Online] (2021). Available https:// gs. statc
ounter. com/ os- market- share/ mobile/ world wide. Accessed 27 May 2021

Statista Official Website: Smartphone users worldwide. [Online] (2020). Available: https:// www. stati sta.
com/ stati stics/ 330695/ number- of- smart phone- users- world wide/. Accessed 27 July 2020

Sundaravadivel, P., Kougianos, E., Mohanty, S.P., Ganapathiraju, M.K.: Everything you wanted to know
about smart health care: evaluating the different technologies and components of the Internet of
Things for better health. IEEE Consum. Electron. Mag. 7(1), 18–28 (2017)

Swaroop, K.N., Chandu, K., Gorrepotu, R., Deb, S.: A health monitoring system for vital signs using IoT.
Internet Things 5, 116–129 (2019)

Tomasic, I., Tomasic, N., Trobec, R., Krpan, M., Kelava, T.: Continuous remote monitoring of COPD
patients-justification and explanation of the requirements and a survey of the available technologies.
Med. Biol. Eng. Comput. 56(4), 547–569 (2018)

Usman, M., Iqbal, M.Z., Khan, M.U.: A product-line model-driven engineering approach for generating
feature-based mobile applications. J. Syst. Softw. 123, 1–32 (2017)

Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bibliography. ACM Sig-
plan Not. 35(6), 26–36 (2000)

Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M.: Model-driven development of mobile applications for
Android and iOS supporting role-based app variability. Softw. Syst. Model. 17(1), 35–63 (2018)

Vogelmeier, C.F., Criner, G.J., Martinez, F.J., Anzueto, A., Barnes, P.J., Bourbeau, J., Celli, B.R., Chen,
R., Decramer, M., Fabbri, L.M., et al.: Global strategy for the diagnosis, management, and preven-
tion of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit.
Care Med. 195(5), 557–582 (2017)

Wan, J., Al-awlaqi, M.A., Li, M., OGrady, M., Gu, X., Wang, J., Cao, N.: Wearable IoT enabled real-time
health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–10 (2018)

WHO Official Website: Hypertension [Online] (2020a). Available https:// www. who. int/ news- room/ fact-
sheets/ detail/ hyper tensi on. Accessed 27 July 2020

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en
https://apps.dtic.mil/dtic/tr/fulltext/u2/a235785.pdf
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.who.int/news-room/fact-sheets/detail/hypertension

1 3

Automated Software Engineering (2022) 29:56 Page 41 of 41 56

WHO Official Website: Covid-19 [Online] (2020b). Available: https:// www. who. int/ health- topics/ coron
avirus_1. Accessed 27 July 2020

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation in Software
Engineering. Springer, Berlin (2012)

World Health Organization Official Website: Integrated chronic disease prevention and control. [Online]
(2020a). Available https:// www. who. int/. Accessed 27 July 2020

World Health Organization Official Website: Burden of COPD [Online] (2020b). Available https:// www.
who. int/ respi ratory/ copd/ burden/ en/. Accessed 27 July 2020

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

https://www.who.int/health-topics/coronavirus_1
https://www.who.int/health-topics/coronavirus_1
https://www.who.int/
https://www.who.int/respiratory/copd/burden/en/
https://www.who.int/respiratory/copd/burden/en/

	HealMA: a model-driven framework for automatic generation of IoT-based Android health monitoring applications
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Background
	2.1.1 Model-driven engineering
	2.1.2 Remote health monitoring using IoT

	2.2 Related work

	3 HealMA framework
	3.1 HealMA DSML
	3.1.1 Decision
	3.1.2 Domain analysis
	3.1.3 Design
	3.1.4 Implementation
	3.1.5 Deployment

	3.2 Graphical modeling tool
	3.3 Constraints and validation rules
	3.4 Model-to-code transformation engine
	3.5 Architecture of HealMA-generated apps
	3.6 Development process using the proposed framework

	4 Evaluation
	4.1 Case studies
	4.1.1 RQ1 (Applicability): Can we use HealMA to generate different Android-based health monitoring applications?
	4.1.2 RQ2 (Productivity): Does HealMA increase the productivity of developers?

	4.2 RQ3 (Usability): How usable are the apps generated by HealMA?
	4.2.1 Scoping and planning
	4.2.2 Operation
	4.2.3 Discussion

	4.3 Threats to validity
	4.3.1 Construct validity
	4.3.2 Internal validity
	4.3.3 External validity
	4.3.4 Reliability validity

	4.4 Limitations
	4.4.1 Limitations of HealMA
	4.4.2 Limitations of the apps generated by HealMA

	5 Conclusion and future work
	References

