
SPECIAL SECTION ON NEW TRENDS IN BRAIN SIGNAL PROCESSING AND ANALYSIS

Received November 25, 2018, accepted November 30, 2018, date of publication December 10, 2018,
date of current version January 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886061

Health and Safety Situation Awareness Model
and Emergency Management Based on
Multi-Sensor Signal Fusion

QINGHUA GU1,2, SONG JIANG 1,2, MINJIE LIAN1,3, AND CAIWU LU1,2
1School of Management, Xi’an University of Architecture and Technology, Xi’an 710055, China
2School of Resources Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
3Sinosteel Mining Co., Ltd., Beijing 100080, China

Corresponding author: Song Jiang (jiangsong925@163.com)

This work was supported in part by the Natural Science Foundation of China (Research on 5D Refined Mining Production Scheduling

Model and Collaborative Optimization Method in Metal Open Pit Under Constraints of Grade-Price-Cost) under Grant 51774228, in part

by the Natural Science Foundation of Shaanxi Province (Intelligent Fusion and Early Warning of Multi-Source Heterogeneous Flow Data

Based on Rock Failure) under Grant 2017JM7005, in part by the key technology projects of safety prevention and control of major

accidents in the State Administration of Work Safety (Research on Safety Monitoring and Warning System of Ultra Deep Shaft

Surrounding Rock Based on Multi-Source Heterogeneous Information Fusion) under Grant 2017G-B1-0519, and in part by the Excellent

Doctorate Cultivation Fund of the Xi’an University of Architecture and Technology (Intelligent Fusion of Multi-Source Heterogeneous

Flow Data and Early Warning of Rock Failure) under Grant 604031715.

ABSTRACT Disasters that are uncertain and destructive pose severe threats to life and property of miners.

One of the major precautious measures is to set up real-time monitoring of disaster with a number of

different sensors. Single sensor which features weak, unstable, and noisy signal is prone to raise misjudgment

leading to non-linearly correlated data coming from different sensors. This paper unfolds with a theoretical

introduction to the situation awareness of data from sensors in the Internet of Things, covering theories

including the Internet of Things, multi-sensor data fusion, and situation awareness. Subsequently, we con-

struct a framework for the situation awareness system based on multi-sensor fusion in the open-pit mine

Internet of Things. The data coming from multiple sensors are pre-processed with wavelet transform, data

filling, and normalization. In addition, information entropy theory is introduced to weight the data varying

with attributes. An RF-SVM-based model is constructed to accomplish data fusion and determine situation

levels as well. The output of the RF-SVM-based model is input as an ELM model. The fusion results at

the first 10 time points are used to forecast the situation level at next point, so that the proposed disaster

forecast approach in this paper is practiced. To test the stationarity and validity of the approach, MATALAB

is employed to run a simulation of the data of a given open-pit mine. The results show that the RMSE of the

model remains below 0.2 and TSQ is no greater than 1.691 after we run 50 times, 100 times, and 200 times

iteration. It convinces that forecast results made by the model are valid, indicating that the multi-sensor

signal fusion which is effective and efficient provides support to disaster situation forecast and emergency

management in the mine.

INDEX TERMS Internet of Things, multi-sensor fusion, health and safety of miners, signal processing,

situation awareness.

I. INTRODUCTION

The disaster in mine areas pose serious threat to the health

of mine workers mentally and physically. Thus, the most

important is to predict and control effectively the occurrence

of disasters and to reduce the harm after disasters. Situation

awareness based on multi-sensor fusion has been under con-

sideration of researchers over these years, many of whom

have investigated this field deeply andmade attempts to apply

theoretical findings into various practical domains. Under

the circumstance of Internet of Things (IoT), information

fusion can collect more effectively information, monitor real-

time the disasters in mine areas, and improve the supervi-

sion of IoT by collecting database. Besides, it also helps

the construction of working database. In this way, useful
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information can be stored in database and be protected. The

information can be used as theoretical basis for the anal-

ysis of data. Documents relating to the application of sit-

uation awareness theory (SA) are teased out as following.

Xi et al. [1] propose comprehensive network security sit-

uation awareness system(CNSSA), a novel instrument for

network security situation awareness, when they apply SA

into network security. With quantitative analysis on network

security, analysists are in the knowledge of network security.

An improved dynamic routing algorithm for real-time threats

situation awareness is come up with by researches including

Mirakhorli and Clelandhuang [2], Gennarelli et al. [3] and

Lenders et al. [4]. In these studies, three-dimensional threats

situation awareness forecast on indoor fires is made by con-

structing a model based on data of multi-source heteroge-

neous sensors in semantic space. This theoretical finding is

applied in the dynamic adjustment of evacuating routes in

fires. Webb et al. [5] introduce an approach on a visualized

situation awareness model and its core algorithm module.

In this study, the previous graphs of situation are kept for pre-

dicting the future dynamic situation, and this model is applied

to supervise situation of the smart power grid. Chen et al. [6]

construct a conceptual model as well as it as system structure

for network security situation awareness. In this model, they

explore the data supporting the network security situation

awareness system in terms of feature extraction, network

security evaluation, emergency response and safety warning.

This exploration allows current situation awareness of a net-

work as well as forecast on future changes. Yang et al. [7]

presents an evaluation integrating the internal effectiveness

situation awareness in network system and external threat

situation awareness, which is a result of taking the impact

of internal effectiveness on network security situation into

account. There are volumes of theoretical works and applica-

tion of multi-sensor fusion. According to Chen et al. [8], an

improved adaptive neural network-based classification sys-

tem is introduced, which is an integration of Dempster-Shafer

evidence theory and improved probabilistic neural network.

In their study, classification of data in feature-level fusion is

made by improved probabilistic neural network. Further-

more, Dempster-Shafer evidence theory is employed formore

accurate results when data are in decision fusion. This finding

has been credited as an innovative approach in multi-sensor

data fusion. This approach is adopted by Basir and Yuan [9]

to diagnose failures in engines. Under the guidance of the

Dempster-Shafer evidence theory which is closer to human

mind, they construct a model for evaluating the quality of

engines, which applies multi-sensor data fusion into engi-

neering. In the study made by Rajendran and Srinivasan [10],

information fusion is introduced into structure damage warn-

ing methods based on wavelet packet analysis. In light of

Dempster-Shafer evidence theory, the wavelet packet energy

spectrum (WPES) identified in ambient excitation sees an

improvement after it is operated by multi-source infor-

mation fusion, which then facilitates computing indica-

tors for structure damage warning. Given the heterogeneity

of mass data, researchers including Deng et al. [11] and

Han et al. [12] etc. have investigate into the challenges haunt-

ingmulti-source heterogeneous data fusion and then point out

deep learning should be introduced into the exploration in this

regard.

In order to better the management of mine workers’ safety

and healthy, Jiang et al. [13] designs a wireless sensor

network-based monitoring system for safety in mines. This

system allows a real-timemonitoring of the situation of mines

as well as the operation of facilities at work. Despite that it

makes the safety management system more efficient, it fails

to report the overall situation, as the relationship between

information of various attribute is unlikely to set given the fact

that the system is constructed on the basis of a single sensor.

In the study carried out by Wang et al. [14] to explore envi-

ronment monitoring in mines, an approach integrating multi-

sensor data information fusion and Controller Area Network

(CAN)is introduced, which demonstrates high efficiency in

processing mass data. For successful early warning on fire

in mine-pits, Amezquita-Sanchez and Adeli [15] employs

multi-sensor information fusion to construct an early warning

system of mine workers’ safety and health. He lists a series

of standards for safety-health warning and six stages of mine

workers’ saftety and health. Another leap in this felid is

made by Liu [16] and Jiang et al. [17]. To improve personnel

management and roll out plans for emergency responses,

they introduce function design and integral design to the

emergency management system of mine workers’ health after

resorting to AI and Critical Chain method, coupled with tech-

nologies including J2EE, SOA, GIS and GPS. In this system,

there is less damage from sudden disasters in mine-pits, since

both ex ante forecasting and responses are at working [18].

Emergency management is to prevent accidents in mine

areas or to control failure propagation or reduce damage.

But the traditional safety emergency management is weak

in information sharing. When the emergency occurs, the ill-

informed data on production and law enforcement leads to

the unclarity of responsivities. With the rapid development

of IoT and increasingly mature cloud computing technology,

it is inevitable to lead to the close connection and coordi-

nated development between big data and cloud computing.

Thus, it’s necessary to use cloud computing technology to

process such huge data of safety emergency management in

mine areas. The stereotype situation awareness methods and

information fusion might be less applicable when there is var-

ious equipment for information collection and the collected

data are in continuum or disparity. Accordingly, technologies

including SA, multi-sensor fusion and Internet of Things

for mines should be leveraged for accurate and complete

information which is indefensible to forecasting disasters in

mines.

II. MODEL ESTABLISHMENT

Accordingly, an open-pit mine disaster situation awareness

and emergency management system based on multi-sensor

information fusion is introduced in this study, which is a result
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FIGURE 1. Three-layer structure of Internet of things detection.

of SA, multi-sensor fusion and Internet of Things. Major

attempts are presented as follows: Section 2 is to explore the

theories of Internet of Things, multi-sensor fusion and SA.

With the support of these technologies, the framework of

situation awareness forecast based on the Internet of things

formines has been proposed. In section 3, data pre-processing

of sensors vary with properties is displayed, which involves

wavelet noise reduction, data filling and normalization. In the

subsequent section, the data are weighted under the guidance

of information entropy, and they are inputted into RF-SVM

based data fusion. The generated outputs are the safety levels

of an open-pit mine. For more precise forecast on open-

pit mining, an ELM based open-pit mine disasters situation

forecast model is then introduced. In section 5, the models are

tested for validity. Specifically, the disaster situation forecast

in the open-pit mine made in these models is tested by exam-

ining the changes in the mean-square error RMSE and TSQ

when iterations are run.

A. INTERNET OF THINGS FOR MINES

Internet of Things, an extension of Internet, has raised

opportunities driving major breakthroughs made in informa-

tion field. This improvement allows effective cooperation

between responders, accuracy awareness of disasters and

a targeted responding effort deployment when it is intro-

duced to the emergency responses in natural disasters is

of remarkable significance [19]. Real-time monitoring and

emergency responses in the open-pit mine involve sensor

nodes installed at sites with higher safety level, so that real-

time data are collected. With Internet of Things, open-pit

mine disaster dynamic awareness and emergency responses

are thus made [20]. An open-pit mine safety monitoring sys-

tem based on the sensor, network and application of Internet

of Things.

B. PRINCIPLES IN MULTI-SENSOR DATA FUSION

Multi-sensor data fusion is process of combining robust

and complete information to provide a consistent descrip-

tion of the observations. Before the combination following

given fusion rules, the information is temporally or spatially

redundant or complimentary when they are collected from a

FIGURE 2. Data-level fusion.

FIGURE 3. Feature-level fusion.

number of different data sources. Multiple sensors are more

sensitive to an environment than a single sensor is. Informa-

tion collected by multi-sensors demand corresponding infor-

mation processing systems, since the information are not only

distinct in terms of time, dimension and content, but also

involve mass data. Multi-sensor data fusion usually processes

at data level, feature level and decision level [21]–[23].

1) DATA-LEVEL FUSION

Data-level fusion is a low-level information fusion in which

data of the same feature are collected and fusion is made in

sensors.

In this fusion, despite that details of data arewell kept, there

are some demerits including amounting resource consump-

tion and high financial cost arising from mass data, as well as

a failure in processing complex information.

2) FEATURE-LEVEL FUSION

At feature-level fusion, probability statistics and neural net-

work are employed to combine feature information coming

from different sensors.

With this fusion extracting information associating with

decision-making, data information is preliminarily filtered

and evaluated, so that there ismuch less workload on data pro-

cessing. The major features of data information are revealed

while fewer resources are consumed.

3) DECISION-LEVEL FUSION

Decision-level fusion, the highest-level fusion, is the process

that independent sensor makes decisions by referring to its

own information, and then the fusion center provides support

to an objective by combining these decisions.
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FIGURE 4. Decision-level fusion.

Fusion at decision level is of flexibility, as it is

completely immune from interference while trimming redun-

dancy. Nevertheless, it is resource-consumed, since each sen-

sor is required to make decisions. Moreover, it is demanding

in combining the decisions.

C. BASIC PRINCIPLE OF SITUATION AWARENESS

Situation awareness (SA), deriving from military sphere,

is the perception of environmental elements and events with

respect to time or space, and the analysis of the correla-

tion of the elements. Objective groups are fused with the

comprehension of their meaning and the projection of their

future status. SA is made up of situation perception, situation

comprehension and situation forecast [24].

1) SITUATION PERCEPTION

Situation perception is to detect data of key elements

that determine the situation of mines. Subsequent forecast

depends on the complete coming from sensors, which reveals

situations of the open-pit mine.

2) SITUATION COMPREHENSION

Situation comprehension comes after information from sen-

sors is detected. Integrated information is employed to inter-

pret the situation, which provides references to forecast future

status of the open-pit mine.

3) SITUATION FORECAST

Situation forecast ismade based on decision-level data fusion.

Forecasting future events and trend of the mine is made. This

is of critical significance to manage emergencies of the mine.

Its procedures are presented as follows:

With the above theoretical analysis, we introduce an open-

pit mine disaster situation awareness system based on multi-

sensor information fusion.

III. PRE-PROCESSING DATA FROM MULTI-SENSORS IN

INTERNET OF THINGS FOR MINES

Data form sensors are found to be multi-level, multi-

dimensional and heterogeneous. Therefore, before fusion,

the data should be filtered to reduce interfering signals

including noise, which is the data pre-processing we are

doing.

FIGURE 5. Situation awareness procedures.

FIGURE 6. Framework for open-pit mine disaster situation forecast
system.

A. WAVELET TRANSFORM FOR NOISE REDUCTION

With wavelet transform of useful data and useless

noise [25], [26], less noise are left due to the various fea-

tures data. For the useful data, substantially various wavelet

coefficients are found (low-frequency and stationary signals),

while for the useless noise, the results are slight (high-

frequency signals). Wavelet transform is run in a sequence of

raw data decomposition, wavelet transform of the threshold

value of high-frequency coefficients, and reconstruction of

the decomposed data. For details, please refer to following

presentation:

The raw data observed by sensors are treated by wavelet

decomposition. The data are decomposed into several levels,

with each one corresponding to coefficient wjk ;

An improved threshold value function [27] is adopted

calculate the threshold values of wavelet decomposition
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coefficient wjk , and estimated coefficient ŵik is then deter-

mined. The improved function is denoted as:

ŵjk =











sgn(wjk )(
∣

∣wjk
∣

∣ −
λ

exp[a(w2
jk − λ2)]

),
∣

∣wjk
∣

∣ ≥ λ

0
∣

∣wjk
∣

∣ < λ

(1)

The formula turns into soft-threshold function when a = 0;

when a → +∞, it is for hard threshold. This demon-

strates the flexibility the improved function has. In this study,

the solution is determined as the threshold function, when

a = 0.2. The solutions to the above function are the esti-

mated wavelet decomposition coefficients ŵjk . With these

coefficients, wavelet reconstruction is then made, and the

subsequent results are the data free from noise.

B. DATA FILLING

For the problem of missing data, major responses include

deleting, filling and ignoring. In this study, filling is the resort.

A regression model is constructed based on the features of

data, with regression coefficient being figuring out. This

model produces the data for filling. Formula for regression

coefficient is denoted as [28]:

β̂ =

n
∑

i=1

(yi − ȳ)(xi − x̄)

n
∑

i=1

(xi − x̄)2
(2)

where β is the regression coefficient of Y to X, and β̂ is its

least square estimation. With this coefficient, we are allowed

to forecast the missing data:

y∗i = ȳi + β̂(xi − x̄) (3)

where y∗i is the predicted filling data. The more acute the

features of regression objectives have, the more accurate the

filling data are.

C. NORMALIZATION

Sensors installed for the open-pit mine are for temperature,

light and compound purposes. They vary with the size, num-

ber and dimension of their data. To facilitate subsequent

processing, a normalization of data is required. The formula

employed in this study is the following [29]:

X =
x − xmin

xmax − xmin
(4)

Where X is the result of the data coming from one sensor,

with xmin and xmax being the minimal and the maximum.

D. INFORMATION ENTROPY BASED WEIGHT

ALLOCATION OF DATA

Different sensor data stand for different attribute during

multi-sensor information fusion, for which significance of

different attribute data should be considered before. Distin-

guished prediction goals may lead to distinguished effect

from attribute data.

The weight of data, to a certain extent, shows the level

of influence attribute data on decision making: the much

the weight is, the higher the influence is. Target at weight

allocation of different sensor data, the change of information

entropy, after taking data into decision making, was ana-

lyzed according to information entropy theory, to realize an

information-gain based data weight allocation.

Information entropy is mainly used to measure the uncer-

tainty of events [30], [31]. Higher information entropy refers

to higher uncertainty, and more information will be needed to

describe the event correspondingly. Following formula was

used to calculate information entropy:

H = −

n
∑

i=1

Pi log2 Pi(bit) (5)

In this formula, pi stands for respective probability of deci-

sion taking corresponding attribute data into account. Dur-

ing weight allocation, probability of decision which did not

take attribute data into account was calculated first, getting

the original information entropy. Then was the information

entropy after adding attribute data, i.e. conditional informa-

tion entropy. Weight allocation was determined based on the

difference value between original and conditional informa-

tion entropy: the higher the information entropy is, the more

influence the attribute datum has on decision making.

Let attribute data of different sensors as x1, x2, · · · , xn, and

let the decision variable as I . The process of data weighting

should be as following:

Step 1: Calculation of the original information

entropy H (I ):

H (I ) = −
∑

eI∈SS(I )

P(I = eI ) log2 Pi(I = eI ) (6)

SS(I ) stands for state space of decision variable I .

Step 2: Calculation of correspondingly conditional infor-

mation entropy H (I |x1 ),H (I |x2 ), · · · ,H (I |xn ) after tak-

ing different attribute data into account, with the following

formula:























H (I |xi = exi )

= −
∑

eI∈SS(I )

P(I=eI
∣

∣xi=exi )log2P(I = eI |xI = exi )

H (I |xi ) = −
∑

exi∈SS(xi)

P(xi = exi ) × H (I |xi = exi )

(7)

Step 3: Calculation of the difference value between

the conditional and original information entropy 1(I , x1),

1(I , x2), · · · ,1(I , xn) with the following formula:

1(I , xi) = H (I |xi ) − H (I ) (8)
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FIGURE 7. Process of weight allocation.

Step 4: Calculation of different attribute data’s weight

vectors according to difference value of information entropy:

Wi =
1(I , xi)
n
∑

i=1

1(I , xi)

(9)

Only a few observation data of sensors were discretized.

Since sensors took continuous observation of the environment

and data collected were also continuous observation data,

which could be regarded continuous data, these data should

be discretized first before calculation. Then comes proba-

bility statistics, and further weight allocation of continuous

attribute data and discretized attribute data. Based on the

above analysis, the weight allocation process of different

attribute data of sensors was:

IV. THE MULTI-SENSOR INFORMATION FUSION AND

SITUATION FORECAST OF THE MINE NETWORK

For the fusion of multi-sensor data in mine network, in order

to make the data fusion at the decision level more instructive,

weight allocation of different sensor’s data was performed

first based on the information entropy theory, whose data

were then input as in SVM category [32], [33] to realize

information fusion. According to output data after fusion and

ELM theory [34]–[36], the situation of open-pit mine in next

period was forecasted to provide decision base for mine’s

emergency management.

A. MULTI-SENSOR INFORMATION FUSION MODEL

BASED ON RF-SVM

For effective situation forecast of disasters in open-pit mine,

RF-SVM (Regression Forecast – Support Vector Machine)

was adopted: to construct a hyperplane which can fulfill

class conditions, and take this plane as the decision plane,

to ensure correct categorization and the largest difference

among different attribute data from different sensors.

FIGURE 8. RF-SVM model.

Diversity of input values should be considered during data

fusion: character data and numerical data. Therefore, input

data were all normalized quantized data during RF-SVM,

with the flowing quantization formula:

xi = m+ (M − m) × X (10)

M ,m are the upper and lower area in map section of vector

machine respectively, and X are normalized data.

In order to show influence of different attribute data on

decision, weight allocation of different attribute data was

performed based on information entropy theory through

methods mentioned above after data quantization. Improved

SVM model was as following:

As shown in Fig. 8, in RF-SVM process, the core idea is

regression forecast. The regression function in construction

of characteristic space adopted is as following:

F =
{

f

∣

∣

∣
f (x) = wT8(x) + b,w ∈ Rn

}

(11)

According to the principle of minimization risk:

R [f ] ≤ Remp + Rgen (12)

R [f ] is the value of expected risk. Remp measures the devi-

ation between f (x) and the sample, which is called empirical

risk; Rgen measures the complexity of f (x), which is called

confidence interval. Based on above principles, structural risk

function was introduced:

R[f ] = C • Rε
emp +

1

2
‖w‖2 (13)

C is a constant, ‖w‖2 is describing function. In the formula:

Rε
emp =

1

l

l
∑

i=1

|yi − f (xi)| (14)

Rε
emp demonstrates the core idea of RF-SVM. The com-

plexity of model and training error were controlled at the

same time, to endow model with great generalization ability.
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Thus, support vector can be constructed as following:



























min 1
2
wTw+ C

l
∑

i=1

ℓ + ℓ∗

s.t. yi − wT xi − b ≤ ε + ℓ

wT xi + b− yi ≤ ε + ℓ∗

ℓ, ℓ∗ ≥ 0

(15)

ℓ, ℓ∗ are slack variables. With Lagrangian function and

according to duality principle, the final decision function is:

f (x) = sgn((w∗)T x + b∗) = sgn(

n
∑

i=1

a∗
i yix

∗
i x + b∗) (16)

a∗
i is Lagrangian operator, b

∗ is acquired through constraint

condition. Binary classification was extended through second

optimized natural extension form. The final decision function

is:

f (x) = argmax[(wi • x) + bi] (17)

B. ELM BASED OPEN-PIT MINE DISASTER SITUATION

PREDICTION MODEL

1) DISASTER SITUATION ELEMENT ACQUISITION IN

OPEN-PIT MINE

Main disaster types in open-pit mine: pit slope or dump

slide; deformation of the main structure in concentrator’s

surface; fissure and collapse of underground mine’s round

etc. with analysis above, the disaster prediction of open-pit

mine involved mainly following elements: dust concentra-

tion, slope stability, and safety distance of the dump [37].

Every step of mining in the open-pit mine will produce

amounts of dust, which is characterized by rapid settlement

difficulty, long-time floating and large-scale floating under

the action of natural wind. Therefore, the detection of dust

concentration plays an extremely important part in the open-

pit mine monitoring.

The open-pit mine is usually surrounded by slope and

dump, which, weathering rain, wind, and solarization, will

become loose in its slope structure and have decreased

strength, leading to landslide and collapse easily. Thus, mon-

itoring the open-pit mine slope with sensors is a signifi-

cant element in mine situation prediction. Two indexes were

adopted in this paper to observe the slope stability: slant range

and displacement of the monitoring point on slope. Related

formula [38] is as following:

S =
√

D2 + 1H2 (18)

S is the slant range of the monitoring site, while D refers

to the horizontal distance, and 1H means the observed value

of the slant range.







Xi = Di · cosFi + X0
Yi = Di · sinFi + Y0
Hi = 1hi + H0

(19)

TABLE 1. Disaster situation element in open-pit mine.

X0,Y0,H0 refer to coordinates of the monitoring points.

Hereby, the displacement of the monitoring site was:






1X = Xi − X0
1Y = Yi − Y0
1H = Hi − H0

(20)

Since dump is mainly used to store waste of industrial

exploitation, its site should be as close as possible to the open-

pit mine once there is enough safety distance. With the piling

of industrial waste, dump will expand horizontally, for which

the safety distance of dump needs to be monitored to ensure

safety of open-pit mines.

It is reported in Cheskidov V’s research that [39] when

there is already a dump in the open-pit mine, the top of the

dump would be influenced most by slope construction. Hor-

izontally, with 50-meter safety distance influencing the slop

displacement most, larger safety distance means smaller dis-

placement and 250-meter safety distance influence the slope

least, with displacement of 0 meters; vertically, the weight

of waste in dump will influence the internal structure and

horizontal surface of the slope, but no significant influence

showed vertically. So, the safety distance of dump in open-

pit mine selected in this paper was 250 meters.

With analysis above, the safety situation elements and

other related standards of the open-pit mine selected in this

paper were as following:

2) FORMATION AND ASSESSMENT OF DISASTER

SITUATION AT THE OPEN-PIT MINE

After getting safety situation elements, a comprehensive

judgment upon the environment of the open-pit mine should

be made according to sensor’s data. Together with RF-

SVM data fusion model, the safety level of the open-pit

mine for that day was output, based on which comes fur-

ther judgment of the safety situation. Specific steps are as

following:

Step 1: Situation elements acquisition: acquisition of data

like dust concentration, slope stability, and safety distance of

the dump in the open-pit mine;

Step 2:Data pre-processing: de-noising, filling, normaliza-

tion, and assignment of data;

Step 3: Data fusion: through RF-SVM, preprocessed data

were fused, and current safety level of the open-pit mine was

output.
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FIGURE 9. Situation prediction classification.

3) DYNAMIC PREDICTION AND EMERGENCY MANAGEMENT

OF DISASTER SITUATION IN THE OPEN-PIT MINE

The disaster situation prediction of the open-pit mine is an

overall concept targeting at the whole mine, aiming at pro-

ducing a comprehensive, direct, and accurate understanding

towards the overall safety situation of mine through differ-

ent attribute data from sensors. Situation prediction can be

classified into several different types according to different

standards, like shown in the following figure 9:

Different prediction methods are used for different data

types. Such as the study of disaster occurrence mechanism

is used for the short static micro-prediction. Qualitative

description is usually used for the study of hazard level. The

disaster prediction of the open-pit mine in this paper is a

kind of macroscopic, long-term, quantitative, and dynamic

prediction.

Situation prediction of the open-pit mine is to use past and

current situation vale to predict that in future, which belongs

to non-linear time series prediction mathematically. This pro-

cedure involves situation values in the past, at present, and in

the future, which have clear functional relation as following:

ŷ(t + dτ ) = f (x(t), x(t − 1), · · · , x(t − (n− 1)τ )) (21)

τ refers to time delay, selection of which influences pre-

diction results significantly: too large τ will lead to x(t) and

x(t + τ ) having a random relation; and too small τ will lead

to too close value of x(t) and x(t + τ ), which cannot meet

the requirement of independence. If there are n independent

variables in the formula, the situation prediction will fit the

hypersurface in n+1 dimension, which means the problem of

situation prediction equals to the one of function approxima-

tion. Extreme learning machine was adopted to complete pre-

diction in this paper.We only need to set the number of hidden

nodes in ELM without requiring the adjustment of weight

and hidden units. And ELM can generate the most optimal

solution. Therefore, it enjoys advantages of fast learning and

effective generation performance. The structure of ELM can

output sample data through learning RF-SVM, and regulate

input weight and the deviation allocation of the hidden layer,

hereby output the disaster situation of the open-pit mine in

next period. Its structure was like:

FIGURE 10. ELM model.

FIGURE 11. Data processing results.

V. SIMULATION ANALYSIS

The monitoring data from March of 2018 to

September of 2018 from the monitoring data of an open-

pit mine in Luoyang, Henan were selected to examine our

model. In order to analyze our situation prediction model,

MATALAB was adopted to simulate the model. For stim-

ulating a more real situation in open-pit mines, noisy data

were added and part data were missing in data stimulation.

Specifically seen below:

A. DATA PRE-PROCESSING

Wavelet noise reduction, missing data filling, and normaliza-

tion were performed during pre-processing. Processed data

were as following:

Since different attribute data influence prediction goal to

different extents, attribute data of 5 groupswere assignedwith

values, withweight allocation of: dust concentration 0.1; slant

range’s change rate, displacement, and displacement rate of

stability as 0.2, 0.3, and 0.1 respectively; safety distance 0.3.

B. DATA INFORMATION FUSION

Weight RF-SVM input according to weight allocation results.

Take data of 25 randomly selected groups as input, and

take 1, 2, and 3 as normal, abnormal, and dangerous respec-

tively as output. Data of 10 randomly selected groups were
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TABLE 2. Stimulation data of different attribute sensors in open-pit
mines.

FIGURE 12. RF-SVM training results.

fused through trained RF-SVM network, and compare the

fusion results with actual result, shown as following:

Above figure showed that, compared with actual result,

the fusion result of left 5 groups’ data could only reach 60%

accuracy when data selected were relatively small. For further

FIGURE 13. Fusion models with different iterations.

examination of the model, iteration of 50 times, 100 times,

and 200 times were performed to compare their accuracy

respectively. Related results were as following:

This figure indicated that with increase of iteration time,

the model’s fusion accuracy increased, and reached the peak

at 200 iteration times. 90% accuracy was reached even there

were only a small amount of data, which evidences well-

performed information fusion ability of the RF-SVM model

constructed.

C. DISASTER SITUATION PREDICTION IN OPEN-PIT MINE

Take output results of the above model as ELM input to

predict disasters in open-pit mine. Situation level output from

trained RF-SVM was taken as ELM input data, i.e. to predict

the disaster situation in the 11th period according to data in

previous 10 periods. Predicted error indexed should be taken

during testing of the prediction result. However, the predicted

error index cannot be calculated since future event has not

happened [40], [41], for which back test and interpolation

were utilized in this paper to examine the prediction accuracy,

among which back test is to judge the prediction ability of

model, and interpolation test is to reflect the retrieval ability

of our model.

Extrapolation test and interpolation test are calculated

mainly through calculation of mean-square error RMSE and

TSQ [42], [43], with formula as following:

RMSE =

√

√

√

√

1

N

N
∑

n=1

(yn − tn)2 (22)

TSQ =

√

√

√

√

√

√

√

√

√

1
N1

N1
∑

n1=1

(yn1 − tn1 )
2

1
N2

N2
∑

n2=1

(yn2 − tn2 )
2

(23)
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TABLE 3. Comparison of prediction effect after iteration of different
times.

yn refers to the actual output vale, and Tn to expected output

value. The smaller RMSE and TSQ is, the more accurate the

prediction is. RMSE and TSQ after iteration of different times

were as following:

This table showed that the mean-square error maintained

below 0.02, and the largest TSQ value was 1.691, which

means this prediction model works well overall. Comparison

of RMSE and TSQ values after iteration of different times

told us that with increase of iteration times, the accuracy of

prediction model will also rise up.

VI. CONCLUSION

In order to ensure the accuracy of signal transmission and

reduce the risks posed to the mine workers’ safety and health.

Information management is an inevitable trend in mining

industry. Breaking traditional static and empirical situation

prediction, this research of situation awareness and emer-

gencymanagement of disaster in open-pit mines studied three

steps of data pre-processing of sensor signal, data information

fusion, and data application in support of the advantageous

feature of mine’s net of things, and discovered a more accu-

rate dynamic prediction model for disaster situation in open-

pit mines.

In this study, complete data pre-processing system of

multi-sensor with varying property was constructed, and

the information entropy theory was utilized to weight data

with different attribute; it also studied the information fusion

model of multi-sensor’s data based on RF-SVM theory and

situation predictionmodel based on ELM theory, to guarantee

dynamic, precision, and timeliness of the prediction system;

stimulation analysis of model’s prediction ability was also

performed, and the model’s stability was tested both from

mean-square RMSE and TSQ values. This model is of vital

importance for improvement of emergency management and

safety of lives and property in open-pit mines. Innovations of

this paper are mainly listed as following:

1) It is testified that the model proposed in the paper

can effectively reduce the risks posed to mine work-

ers’ safety and health by introducing the Internet of

Things, signal processing, multi-sensor data fusion to

the situation awareness of mine disasters and emer-

gency management, which constructs creatively a basic

framework of predicting model of situation awareness

based on the Internet of Things.

2) Together with RF-SVM and ELM model, this model

makes full use of advantage of small-sample data

fusion of RF-SVM and extreme learning machine of

ELM, realizing a comprehensive fusion and accurate

prediction of multi-sensor data with varying property;

3) Together with RF-SVM and ELM model, this model

makes full use of advantage of small-sample data

fusion of RF-SVM and extreme learning machine of

ELM, realizing a comprehensive fusion and accurate

prediction of multi-sensor data with varying property;

4) Back test and interpolation test were adopted during

prediction examination to avoid the disadvantage of

‘‘unable to calculate predicted error indexes because of

things have not happened’’ effectively. Through anal-

ysis of change of mean-square error RMSE and TSQ

values after iteration of different times, the validity

of disaster situation prediction in open-pit mines was

tested.
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