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Abstract—Traditional reliability predictions based on handbook 
methods are inaccurate and misleading. In this paper, we will 
show a prognostics and health management (PHM) approach, 
which is more suitable for reliability (remaining life) assessment, 
since it considers actual operational and environmental loading 
condition for individual product. The process for PHM 
implement to electronics has been discussed, as well as numerical 
implementation examples for both industry and defense purposes. 

Keywords-electronics, health management, prognostics, 
reliability prediction 

I.  INTRODUCTION 
Traditional handbook-based reliability prediction methods 

for electronic products include Mil-Hdbk-217 [1], Telcordia 
SR-332 (formerly Bellcore) [2], PRISM [3], FIDES [4], 
CNET/RDF (European), and the Chinese GJB-299 [5]. These 
methods rely on analysis of failure data collected from the field 
and assume that the components of a system have inherent 
constant failure rates that are derived from the collected data. It 
is further assumed that such constant failure rates can be 
tailored by independent “modifiers” to account for various 
quality, operating, and environmental conditions. There are 
numerous well-documented concerns with this handbook 
prediction approach that have shown the mathematical and 
physical fallacies of such assumptions and that have also 
shown that the results predicted by such analysis are grossly 
incorrect. The overwhelming consensus is that these methods 
should never be used because they are inaccurate for predicting 
actual field failures and they provide highly misleading 
predictions, which can result in poor designs and logistics 
decisions [6]-[10]. IEEE Standard 1413.1, “IEEE Guide for 
Selecting and Using Reliability Predictions Based on IEEE 
1413” [11]-[12], also found that handbook-based reliability 
prediction methods do not provide adequate useful information 
to users. In the face of overwhelming technical and business 
evidence against their use, there are some misguided 
practitioners who continue to seek solace in the familiarity of 
these tools and assume that upgrading them with new data will 
make them better and more useful. Therefore, many companies 

do not use these methods anymore and the U.S. military has 
completely abandoned these approaches. Any patchwork to 
“correct” handbook-based reliability prediction will not stand 
up to scientific scrutiny.  For example, the Reliability 
Information Analysis Center recently published 217Plus with a 
stated goal to address the shortcomings of Mil-Hdbk-217. It 
includes several additional factors in the prediction models, but 
its basic assumptions are still based on the constant failure rate 
of components. The 217Plus handbook assigns constant failure 
rates for solder joint failure and temperature cycling as two 
independent values. However, the failure of a solder joint and 
failure caused by temperature cycling do not occur at a 
constant rate, and these two types of failures are not 
independent.  As a result of theses and other errors, no useful 
design feedback or logistics planning can be made from 
predictions based on this handbook. 

A practical alternative way of looking at product reliability 
and life cycles conditions is called prognostics and health 
management (PHM).  PHM is the process of monitoring the 
health of a product, and predicting the remaining useful life of 
the product by assessing the extent of deviation or degradation 
from its expected state of health and its expected usage 
conditions [13]. The benefits of PHM include (1) providing 
advance warning of failures; (2) minimizing unscheduled 
maintenance, extending maintenance cycles, and maintaining 
effectiveness through timely repair actions; (3) reducing the 
life cycle cost of equipment by decreasing inspection costs, 
downtime, and inventory; and (4) improving qualification and 
assisting in the design and logistical support of fielded and 
future systems. In 2003 the U.S. Department of Defense stated 
that having a prognostics capability has become a requirement 
for any U.S. military system [14].  

II. PROGNOSTICS IMPLEMENTATION APPROACH 
The PHM implementation process shown in Figure 1 [15] 

provides an overview of the concepts of PHM and the 
techniques being developed to enable prognostics for electronic 
products and systems. The first step involves failure modes, 
mechanisms, and effects analysis (FMMEA), which includes 
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design data, failure modes, failure mechanisms, failure models, 
life cycle profile, and possible maintenance records. The next 
step involves risk assessment to rank the risk priority, which 
includes the estimation for detection, severity, and occurrence 
of failure. Then the results for the virtual (reliability) life 
assessment can be given. This helps in conducting the actual 
health and prognostics monitoring of a system. The existing 
sensor data, bus monitor data, and built-in test results are also 
used to identify abnormal conditions and parameters. Based on 
this information, the monitoring parameters relevant to key 

failure mechanisms are selected. Based on the collected 
operational and environmental data, the health status of the 
products can be assessed by different methodologies: physics 
of failure (PoF) models, data trending for precursors, and the 
hybrid approach, which combines both the data-trending and 
PoF methodologies. The PHM information can then be used 
for maintenance forecasting and decisions that minimize life 
cycle costs and maximize availability or some other utility 
function. 

Risk Assessment: Detection, Severity & Occurrence
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• BIT, IETM
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Figure 1. PHM methodology 

A. PoF based PHM 
Physics-of-failure (PoF) is an approach that utilizes 

knowledge of a product’s life-cycle loading and failure 
mechanisms to perform reliability modeling, design, and 
assessment. The approach is based on the identification of 
potential failure modes, failure mechanisms, and failure sites 
for the product at a particular life-cycle loading condition. The 
stress at each failure site is obtained as a function of both the 
loading conditions and the product geometry and material 
properties. The use of PoF modeling approaches for electronic 
components and devices, like those used for mechanical 
systems, provides a powerful tool in support of prognostic 
capabilities. 

The PoF methodology is founded on the premise that 
failures result from fundamental mechanical, chemical, 

electrical, thermal, and radiation processes. The objective of 
the PoF methodology in the PHM process is to calculate the 
cumulative damage due to various failure mechanisms for a 
product in a given environment. The approach to implementing 
PoF into PHM is shown in Figure 2 [16]. It consists of design 
capture, identification of potential failure, and reliability 
assessment. The design capture process includes collecting 
product material properties and structure geometries. 
Identification of potential failure includes in the FMMEA 
process. Reliability assessment includes life cycle environment 
and operating load recording, damage calculation, and 
remaining life prediction. This method permits in-situ 
assessment of system reliability under actual application 
conditions. 
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Figure 2. PoF based PHM procedure 

 

B. Data-Trending Based PHM 
In some cases, it is either difficult or impractical to use the 

PoF-based approach for prediction purposes. Data-trending 
approaches to PHM can be used for reliability prediction by 
monitoring system operating, environmental data and 
performance parameters (e.g., power, current, voltage, 
temperature, humidity, vibration, and acoustic signal). It 
defines the healthy behavior of the system by learning the 
previous or historical data to create the baseline distribution 
that will be used for anomaly detection. The measured 
input/output data is the major source of data for understanding 
system degradation behavior. The approach is shown in Figure 
3 [17]. It starts with functional evaluation of the system under 
consideration. After a feasibility study, data acquisition 

techniques are investigated to gather system performance 
information in real time. A number of features are looked upon 
to represent system behavior by sensor information. During 
this process, data cleaning and data normalization are 
performed on raw data to reduce the associated noise and 
remove the scaling effects. Data features are used to establish 
the healthy state of the system. These features are also used to 
identify performance deviation resulting from the presence of a 
fault. The threshold limits on these features are set to define 
system failure. The trending of features provides fault or 
damage progression over time. This information is used to 
perform system prognostics. 
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Figure 3. Data-trending based PHM procedure 

 

C. Fusion Approach for Prognostics 
A fusion approach (PoF + data-trending) can enhance the 

pure PoF and data-trending approaches. The fusion approach 
benefits from the merits of both the PoF and data-trending 
approaches. The advantage of the PoF method is its ability to 
isolate the root cause and the failure mechanisms that 
contribute to system failure. The advantage of a data-driven 
approach is that it addresses the complexity and the density of 
systems by utilizing system operating data. The fusion 
prognostics approach is summarized in Figure 4. The first step 
in the process is to determine the set of parameters that can be 
continuously monitored. The identification of the parameters 
for monitoring can be aided by a process such as failure modes, 
mechanisms, and effects analysis (FMMEA), but in general it 
can consist of any available data, including operational and 
environmental loads, as well as performance parameters. 

In the fusion approach, the continuously monitored data is 
compared with a healthy baseline to check for anomalies.  A 
healthy baseline is a collection of parameter data that best 
represents the possible variations of the normal operation of a 
system. The healthy baseline is developed using data collected 
from various combinations of operating states and loading 
conditions when the system is known to be functioning 
normally, but is sometimes based additionally on specifications 

and standards. The parameters that contribute significantly to 
the observed anomaly are isolated. These parameters help to 
determine the PoF models most relevant to system degradation 
and that provide information such as the failure thresholds for 
system parameters, the failure modes, and the stages of 
degradation and labels of healthy and unhealthy conditions.   

Appropriate PoF models are selected based on real-time 
anomaly detection and critical parameter isolation. Accepted 
standards and specifications can be used to aid in the 
determination of the failure definitions. Reliability assessment 
is estimated using the selected PoF model. For performance 
parameters, statistical features and empirical relationships can 
also be established. The data-driven approach focuses on 
obtaining primary patterns or relationships, such as the 
correlation, covariance, residual, and inference patterns 
between system and component variables and operating and 
environmental loads. Failure precursor techniques are used to 
extract the features and track their deviation from the normal 
operating condition. This is especially useful for early detection 
of failures, where very distinct distribution patterns have been 
attributed to a specific failure. The prognostics results from 
PoF based approach and data-driven approach can also be 
fused together if they are both available for better decision 
making. 
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Figure 4. Fusion based PHM procedure 

 

III. EXAMPLES FOR PHM IMPLEMENTATION 
At present, there are several organizations conducting 

research and development in PHM, and there are many more 
organizations that wish to take advantage of developments in 
PHM. Examples of PHM implementation in different fields are 
given below. They include different PHM implementation 
levels, such as: electronics component, circuit board, device, 
and system level. They also cover from military and aerospace, 
to computer and automotive industry, and further to the home 
application products. It appears everywhere in our daily life. 

Military 
Tuchband et al. [18] presented the use of PoF based 

prognostics for military line replaceable units (LRU) based on 
their life cycle loads. The study was part of an effort funded by 
the U.S. Office of the Secretary of Defense to develop an 
interactive supply chain system for the U.S. military. The 
objective was to integrate prognostics, wireless communication, 
and databases through a Web portal to enable cost-effective 
maintenance and replacement of electronics. This study 
showed that prognostics-based maintenance scheduling could 
be implemented into military electronic systems. The approach 
involves an integration of embedded sensors on the line 
replaceable units, wireless communication for data 
transmission, a data simplification tool, PoF-based damage 
estimation algorithm, and a method for uploading this 
information to the Internet. The use of prognostics for 
electronic military systems enables failure avoidance, high 
availability, and reduction of life cycle costs.  

Aerospace 
Shetty et al. [19] applied the PoF based PHM methodology 

for conducting a prognostic remaining-life assessment of the 
end effector electronics unit (EEEU) inside the robotic arm of 
the space shuttle remote manipulator system. A life-cycle 
loading profile for thermal and vibration loads was developed 
for the EEEU boards. Damage assessment was conducted using 
failure mechanical and thermo-mechanical damage models. A 

prognostic estimate using a combination of damage models, 
inspections, and accelerated testing showed that there was little 
degradation in the electronics and they could be expected to 
last another twenty years. 

Mathew et al. [20] applied the PoF based PHM 
methodology in conducting a prognostic remaining-life 
assessment of circuit cards inside a space shuttle solid rocket 
booster (SRB). Vibration time history recorded on the SRB 
from the pre-launch stage to splashdown was used in 
conjunction with physics-based models to assess the damage 
caused by vibration and shock loads. Using the entire life cycle 
loading profile of the SRBs, the remaining life of the 
components and structures on the circuit cards was predicted. It 
was determined that an electrical failure was not expected 
within another forty missions.  

Automotive: Underhood Electronics 
In the studies of Mishra et al. [21] and Ramakrishnan et al. 

[22], the test vehicle was a circuit board placed under the hood 
of an automobile and subjected to normal driving conditions in 
the Washington DC area. The test board incorporated eight 
surface-mount leadless inductors soldered onto an FR-4 
substrate using eutectic tin-lead solder. Solder joint fatigue was 
identified as the dominant failure mechanism. Damage 
accumulated through solder joint fatigue was updated 
periodically using in-situ collected data on temperature and 
vibration. It was found that the predicted life of the solder joint 
failure based on PHM algorithm was within 8% of the actual 
experimental life. 

Electronic Systems: Computer Server 
Systems for early fault detection and failure prediction are 

being developed using variables, such as current, voltage, and 
temperature, continuously monitored at various locations inside 
the system. Sun Microsystems [23] refers to this approach as 
continuous system telemetry harness, and it is a date-trending 
approach. Along with sensor information, soft performance 
parameters such as loads, throughputs, queue lengths, and bit 
error rates are tracked. Characterization is conducted by 
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monitoring the signals (of different variables) to learn a 
multivariate state estimation technique model. Once the model 
is established using this data, it is used to predict the signal of a 
particular variable based on learned correlations among all 
variables. Based on the expected variability in the value of a 
particular variable during application, a sequential probability 
ratio test (SPRT) is constructed. During actual monitoring 
SPRT is used to detect the deviations of the actual signal from 
the expected signal based on distributions (and not on single 
threshold value). The monitored data is analyzed to (1) provide 
alarms based on leading indicators of failure and (2) enable use 
of monitored signals for fault diagnosis, root cause analysis of 
no-fault-founds (NFF), and analysis of faults due to software 
aging.  

Electronic Systems: Notebook Computers 
Vichare et al. [24] conducted in-situ health monitoring of 

notebook computers. The authors monitored and statistically 
analyzed the temperatures inside a notebook computer, 
including those experienced during usage, storage, and 
transportation, and discussed the need to collect such data both 
to improve the thermal design of the product and to monitor 
prognostic health. After the data was collected, it was used to 
estimate the distributions of the load parameters. The usage 
history was used for damage accumulation and remaining life 
prediction. This work belongs to the PoF based PHM approach. 

Kumar et al. [25] presented a data-trending based 
prognostics approach for notebook computers. Mahalanobis 
distance and projection pursuit analysis technology were used 
for early detection of anomalies in the electronics of the 
products and systems through the monitoring of various signals 
collected from the computers (e.g., CPU usage and 
temperature). This study demonstrated that an “abnormal” 
system could be distinguished from a “normal” system by 
monitoring the deviation of a system’s performance. 

Electronic Systems: GPS System 
Brown et al. [26] demonstrated that the remaining useful 

life of a commercial global positioning system (GPS) system 
can be predicted by using fusion based PHM approach. First 
failure analysis was conducted, and the failure modes for the 
GPS system included precision failure due to an increase in 
position error and solution failure due to increased outage 
probability. These failure progressions were monitored in situ 
by recording system-level features reported using the National 
Marine Electronics Association Protocol 0183. The GPS 
system was characterized to collect the principal feature values 
for a range of operating conditions. The approach was 
validated by conducting accelerated thermal cycling of the GPS 
system with the offset of the principal feature value measured 
in-situ. Based on experimental results, parametric models were 
developed to correlate the offset in the principal feature value 
with solution failure. During the experiment the build-in-test 
(BIT) provided no indication of an impending solution failure. 

Electronic Systems: Power Supply 
Simons et al. [27] performed PoF based prognostics 

assessment of the failure of a gull-wing lead power supply chip 
on a DC/DC voltage converter printed circuit board assembly. 
First, three-dimensional finite element analyses (FEA) were 
performed to determine strains in the solder joints due to 

thermal or mechanical cycling of the component. The strains 
could be due to lead bending resulting from the thermal 
mismatch of the board and chip or from a local thermal 
mismatch between the lead and the solder, as well as between 
the board and the solder. Then the strains were used to set 
boundary conditions for an explicit model that could simulate 
initiation and growth of cracks in the microstructure of the 
solder joint. Finally, based on the growth rate of the cracks in 
the solder joint, estimates were made of the cycles to failure for 
the electronic component.  

Nasser et al. [28] also applied PoF based PHM 
methodology to predict failure of the power supply. They 
subdivided the power supply into component elements based 
on specific material characteristics. Predicted degradation 
within any one or combination of component elements could 
be extrapolated into an overall reliability prediction for the 
entire power supply system. Their PHM technique consisted of 
four steps: (1) acquiring the temperature profile using sensors; 
(2) conducting finite element analysis to perform stress 
analysis; (3) conducting fatigue prediction of each solder joint; 
(4) predicting the probability of failure of the power supply 
system. 

Electronic Systems: Home Appliances 
The European Union funded a project from September 

2001 through February 2005 called the Environmental Life 
Cycle Information Management and Acquisition (ELIMA) for 
consumer products, which aimed to develop better ways of 
managing the life cycles of products [29]. The objective of this 
work was to provide a basic model for predicting the remaining 
lifetime of parts removed from products based on the dynamic 
data collected by the ELIMA system, and it is a fusion based 
PHM approach. The ELIMA technology included sensors and 
memory built into the product to record dynamic data such as 
operation time, temperature, and power consumption. This was 
added to static data about materials and manufacturing. As a 
case study, the member companies monitored the application 
conditions of a game console and a household refrigerator. The 
work concluded that for the remaining life time prediction it 
was usually essential that the environments associated with all 
life intervals of the equipment be considered. These included 
not only the operational and maintenance environments, but 
also the pre-operational environment, when stresses imposed 
on the parts during manufacturing, assembly, inspection, 
testing, shipping, and installation might have a significant 
impact on the eventual reliability of the equipment. Stresses 
imposed during the pre-operational phase were often 
overlooked before the development of ELIMA.  

Electronic Components: Circuit Board Components 
Gu et al. [30] developed a PoF based methodology for 

monitoring, recording, and analyzing the life cycle vibration 
loads for remaining-life prognostics of electronics. The printed 
circuit board (PCB) with electronic components was mounted 
on the vibration shaker, which could generate random vibration 
loading. The responses of PCB to vibration loading in terms of 
bending curvature were monitored using strain gauges in situ. 
The interconnect strain values were then calculated from the 
measured PCB response and used in a vibration failure fatigue 
model for damage assessment. Damage estimates were 
accumulated using Miner’s rule and then used to predict the 
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life consumed and remaining life. The methodology was shown 
to be effective for the remaining-life prognostics of a printed 
circuit board.  

Jaai et al. [31] applied a data-trending prognostics approach 
to ball grid array (BGA) components subjected to accelerated 
temperature cycling tests. This study used the multivariate state 
estimation technique (MSET) and sequential probability ratio 
test (SPRT) to detect the onset of failure of BGA components 
by monitoring the changes in the resistance in the BGAs as a 
failure precursor. The time to detection of anomalies was found 
to be earlier than the time to failure of the BGA components, 
which provided a potential prognostic distance for calculating 
remaining life. 

Electronic Components: Battery 
Rufus et al. [32] presented prototype battery health 

monitoring algorithms (support vector machine, dynamic 
neural network, confidence prediction neural network, and 
usage pattern analysis). It is a data-trending based approach. 
The health of batteries is important in back-up environments 
such as telecommunications, UPS and other storage 
applications. The various algorithms were used and tested on 
the battery data (voltage, current, temperature, etc.) collected 
from several lithium ion battery cells supplied by United 
Lithium Systems. The battery data was collected under 
different operating conditions (storage and charge/discharge 
cycling under room and 50°C temperatures). The results 
showed that the battery health monitoring algorithms were 
effective in determining the health status of a lithium ion cell, 
and allowing for estimation the probability of battery failure 
with time. 

Electronic Components: Capacitor 
Gu et al. [33] presents a data-trending based prognostics 

approach that detects the performance degradation of 
multilayer ceramic capacitors (MLCC) under temperature-
humidity-bias conditions and then predicts remaining useful 
life. In the tests, three performance parameters (capacitance, 
dissipation factor, and insulation resistance) were monitored in 
situ. A prognostics approach was developed to detect and 
predict failures using a multi-parameter regression, residual, 
detection and prediction analysis on four types of MLCC. It 
was found that the training process for the prognostics 
approach depended only on the capacitor type and not on the 
test conditions (such as different DC bias levels). For 8 failed 
capacitors out of the 96 capacitors, all failures could be 
detected with no missed alarms. 5 out of the 8 failed capacitors 
yielded advanced warning of failure.  

Electronic Components: Transistors 
Insulated Gate Bipolar Transistors (IGBTs) are used in 

applications such as the switching of automobile and train 
traction motors, high voltage power supplies, and in aerospace 
applications such as switch mode power supplies to regulate 
DC voltage. The failure of these switches can reduce the 
efficiency of the system or lead to system failure. Patil et al. 
[34] developed a fusion based prognostics methodology to 
predict and avert IGBT failures by identifying failure precursor 
parameters and monitoring them. In this study, failure analysis 
of IGBTs was conducted, and IGBTs aged by 
thermal/electrical stresses were evaluated in comparison with 

new components to determine the electrical parameters that 
change with stressing. Three potential precursor parameter 
candidates, threshold voltage, transconductance, and collector-
emitter (ON) voltage, were evaluated by comparing aged and 
new IGBTs under temperature ranging from 25 to 200°C. The 
trends in the three electrical parameters with temperature were 
correlated to device degradation. Then these precursors were 
monitored in-situ and precursor trending data are input into 
PoF models to allow for anomaly detection and prediction of 
remaining life of these devices.  

Goodman et al. [35] used a PoF based prognostic cell to 
monitor the time-dependent dielectric breakdown of the metal-
oxide semiconductor field-effect transistor (MOSFET) on 
integrated circuits. The tests were conducted under accelerated 
conditions. Acceleration of the breakdown of an oxide was 
achieved by applying a voltage higher than the supply voltage 
to increase the electric field across the oxide. When the 
prognostics cell failed, a certain fraction of the circuit lifetime 
was used up. The fraction of consumed circuit life was 
dependent on the amount of over-voltage applied and could be 
estimated from the known distribution of failure times. Thus 
the prognostics cell could operate autonomously and give 
advance warning of impending failure of integrated circuits. 

Zhang et al. [36] used a data-trending based prognostics 
approach for field effect transistors (FETs) that were used in 
airborne electronic systems. They used direct drain quiescent 
current (IDDQ) as a failure precursor. A thorough failure 
mechanism study for FETs was performed in order to select a 
subset of failure mechanisms that caused progressive 
degradation and were related to IDDQ signals. With the 
selected failure mechanisms, they utilized the symbolic 
dynamics-based method to perform fault degradation status 
estimation and utilized an uncertainty-adjusted prognostics 
method to predict the remaining life. 

IV. CONCLUSIONS 
Traditional reliability predictions based on handbook 

methods are inaccurate and misleading. PHM is more suitable 
for reliability (remaining life) assessment, since it considers 
actual operational and environmental loading condition for 
individual product. Currently research is being conducted to 
build-up physics-based damage models for electronics, 
obtaining the life cycle data of product, and developing data-
trending approach in order to make the PHM more realistic. 
More research is also being conducted on fusion approach, 
advance sensor technologies, communication technologies, 
decision making methods, and return of investment methods. In 
addition, from the applications and examples listed above, it is 
clear that PHM can be incorporated into various electronics 
systems and can benefit many facets of daily life. In the future, 
due to the increasing amount of electronics in the world and the 
competitive drive toward more reliable products, PHM will be 
looked upon as a cost-effective solution for predicting the 
reliability of all electronic products and systems. 
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