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Abstract: Rolling bearings play a crucial role in rotary machinery systems, and their operating

state affects the entire mechanical system. In most cases, the fault of a rolling bearing can only

be identified when it has developed to a certain degree. At that moment, there is already not

much time for maintenance, and could cause serious damage to the entire mechanical system.

This paper proposes a novel approach to health degradation monitoring and early fault diagnosis

of rolling bearings based on a complete ensemble empirical mode decomposition with adaptive

noise (CEEMDAN) and improved multivariate multiscale sample entropy (MMSE). The smoothed

coarse graining process was proposed to improve the conventional MMSE. Numerical simulation

results indicate that CEEMDAN can alleviate the mode mixing problem and enable accurate intrinsic

mode functions (IMFs), and improved MMSE can reflect intrinsic dynamic characteristics of the

rolling bearing more accurately. During application studies, rolling bearing signals are decomposed

by CEEMDAN to obtain IMFs. Then improved MMSE values of effective IMFs are computed to

accomplish health degradation monitoring of rolling bearings, aiming at identifying the early weak

fault phase. Afterwards, CEEMDAN is performed to extract the fault characteristic frequency during

the early weak fault phase. The experimental results indicate the proposed method can obtain a better

performance than other techniques in objective analysis, which demonstrates the effectiveness of

the proposed method in practical application. The theoretical derivations, numerical simulations,

and application studies all confirmed that the proposed health degradation monitoring and early

fault diagnosis approach is promising in the field of prognostic and fault diagnosis of rolling bearings.

Keywords: health degradation monitoring; early fault diagnosis; CEEMDAN; improved MMSE;

smoothed coarse graining process; rolling bearing

1. Introduction

Rolling bearings are a crucial part of the mechanical system, and its operational state directly

affects the normal operation of the entire system. When the failure of a rolling bearing occurs,

the change of the dynamic characteristics can be reflected from collected vibration signals [1–4],

however, in most cases, the early fault of the rolling bearing is difficult to identify during the initial
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phase of the fault. The dynamic characteristics generated by early fault are usually submerged in

strong background noise, thus, the weak fault is difficult to extract, and the exact time when the

fault starts to happen is difficult to identify [5–8]. In most cases, the fault of the rolling bearing can

only be identified when it has developed to a certain degree. At that moment, there is already not

much time for maintenance, and could cause serious damage to the whole mechanical system in

a short time thereafter. Therefore, to find an effective way to identify early faults of rolling bearings

and conduct fault diagnosis in advance of serious faults is critical [9]. The early weak fault phase,

namely when the fault begins to occur initially, needs to be identified, then some technical means

could be implemented to avoid a serious fault from happening, for instance, by replacing machine

parts or conducting maintenance after shutting down the mechanical system. The health degradation

monitoring of rolling bearings can spare a great deal of time for maintenance, avoid unnecessary losses,

and reduce the risk of catastrophic consequences to great extents [10,11]. The early weak fault phase

can be identified during health degradation monitoring processes. Afterwards, early fault diagnosis

can detect the weak fault of the rolling bearing, and determine the fault type of the rolling bearing,

thereby, the parts can be maintained or replaced in time [12]. Hence, the health degradation monitoring

and early fault diagnosis is significant in the field of prognostic and fault diagnosis of rolling bearings.

Many nonlinear signal processing methods have been proposed and developed in recent

years, such as wavelet packet decomposition (WPD) [13], short-time Fourier transform (STFT) [14],

independent component analysis (ICA) [15], empirical mode decomposition (EMD) [16], and empirical

wavelet transform (EWT) [17]. Among all of the above methods, EMD [18] was proposed to adaptively

decompose a time series into several approximating stationary time series, which is called the intrinsic

mode function (IMF). Compared to other signal processing methods in the field of mechanical fault

diagnosis, EMD is an adaptive nonlinear and nonstationary signal processing method, and has no

requirement of basic functions. However, EMD still has modal aliasing and end effect problems,

and the ensemble empirical mode decomposition (EEMD) [19–21] was proposed to alleviate the

mode aliasing problem by utilizing the property of frequency uniform distribution of Gaussian white

noise. Then complementary ensemble empirical mode decomposition (CEEMD) [22] was proposed to

improve EEMD by adding positive and negative Gaussian white noise. In this way, it can guarantee

the same decomposition effect as EEMD, and also reduce the sequence reconstruction errors caused by

added white noise. However, CEEMD still cannot solve the problem of different orders of obtained

IMFs caused by adding different noise signals, which promotes the emergence of the complete

ensemble empirical mode decomposition with adaptive noise (CEEMDAN) [23,24]. CEEMDAN is

an important development of the EEMD method, and CEEMDAN can realize the approximate perfect

reconstruction of the decomposed signal, while also avoiding the problem that different noise signals

generate different orders of IMFs.

Entropy is a method of measuring the complexity of a time series. The approximate entropy [25]

was proposed at the first beginning, and sample entropy (SE) [26] was proposed afterwards as

an improvement method. SE analysis can reflect the single scale time series information. In the

related traditional entropy-based analysis methods, such as permutation entropy [27,28], information

entropy [29,30], and wavelet packet entropy [31], they can both measure the regularity and orderliness

of the time series. The SE value decreases along with the decrease of disorder of the time series.

The SE algorithm is a typical method proposed to measure the complexity and quantization of time

series [26] and has been successfully applied to physiological time series analysis. The SE algorithm

compares the data with itself, namely self-matching. Hence, the approximate entropy is the measure

of new information of the generated time series, which makes the results occasionally contain false

information. Compared with other nonlinear dynamic methods, such as the Lyapunov exponent [32]

and fractal dimension [33], the SE can obtain a stable estimation value with less data, and tolerate

a larger range of parameter values which need to be selected.

To analyze the complexity of time series on different time scales, multiscale sample entropy

(MSE) [34] was proposed based on SE. In the MSE algorithm, the coarse graining process is adopted to
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obtain the multiscale time series, instead of the original single-scale time series. Then the obtained

signal is analyzed at each scale. The obtained MSE values can better reflect the dynamic characteristic

changes of the time series. MSE has been widely applied to nonlinear and nonstationary data

analysis [35,36], and it only requires short data to gain stable entropy values and has better anti-noise

ability. The MSE greatly enriches the meaning of SE. The greater the probability of generating new

patterns, and the more complex the time series is, the larger the entropy value is. Hence, the value

can be used as the judgmental index and characteristic parameter to characterize the complexity of

fault signals. MSE has a good performance in analyzing scalar time series, but when it comes to

multivariate time series, it can only calculate the data of each channel separately. It cannot reflect the

correlations and relationships between multivariate data, which can reflect the dynamic characteristics

of multivariate time series more clearly and accurately. Later multivariate multiscale sample entropy

(MMSE) [37] was proposed as a follow up study of MSE, and it can compute the MSE of multivariate

time series, and deal with different embedding dimensions, delay time, and range of data channels in

a strict and unified manner. On account of the internal essence of SE that it can measure the regularity

and complexity of dynamic systems, MMSE can be adopted to continuously detect the characteristic

change of time series [38,39]. Hence, it can be used to monitor the health condition and performance

degradation of rolling bearings.

This paper proposed a novel approach to health degradation monitoring and early fault diagnosis

of rolling bearings based on CEEMDAN and improved MMSE. The conventional MMSE is improved

by the smoothed coarse graining process. During the health degradation monitoring of rolling

bearings, all signals continuously collected from the mechanical system can be decomposed by

CEEMDAN to obtain IMFs, and MMSE values of effective IMFs are computed. By analyzing the

MMSE values of all signals in the long-term, the operating condition of the mechanical systems can

be monitored. The improved MMSE of IMFs obtained by CEEMDAN can amplify the dynamic

change characteristics to solve the problem that an early weak fault is difficult to identify and extract.

After identifying the early weak fault stage, the early fault diagnosis of the rolling bearing can be

accomplished by CEEMDAN. CEEMDAN can remove the strong background noise of the early weak

fault signal, while extracting the fault characteristic frequency accurately. The proposed approach

mainly aims at conducting health degradation monitoring of rolling bearings in complex mechanical

systems, to determine the early weak fault phase in the whole wear-out process of a rolling bearing,

and, thus, conduct early fault diagnosis of rolling bearings.

The rest of this paper is organized as follows: Section 2 introduces the methodology of CEEMDAN

and MMSE improved by the smoothed coarse graining process and the proposed novel health

degradation monitoring and early fault diagnosis approach. Section 3 presents the numerical

simulations of CEEMDAN and MMSE, including the comparison between CEEMDAN and EEMD,

MMSE with smoothed coarse graining process, and conventional MMSE. Section 4 presents the

application studies of the proposed method to run-to-failure fault rolling bearing signals, to verify its

effectiveness and validity. Section 5 concludes the paper.

2. Methodology

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

EMD is an adaptive signal decomposition method for analyzing nonlinear and non-stationary

signals [18]. EMD is analogous to wavelet analysis, while EMD can overcome the difficulty that wavelet

decomposition requires a reasonable choice of wavelet basis functions. Its essence is to decompose

the original signal in order of different fluctuations. A series of IMFs with different amplitudes are

obtained. The IMF in the EMD method must satisfy: (1) The number of extreme points and the number

of zero crossings must be equal or, at most, one difference; and (2) the upper envelope consists of the

local maximum points, the lower envelope consists of the local minimum points, and the average

values of the upper and lower envelops are all 0. The detailed procedures of EMD are below:
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(1) Given a signal x, and calculate all the maximum and minimum values of rk (k = 0), here rk = x.

(2) Use the cubic spline to interpolate all maximum and minimum points of rk to obtain the upper

and lower envelopes emax and emin, respectively.

(3) Calculate the average of the upper and lower envelopes m = (emax + emin)/2.

(4) Calculate the IMF by rk − m = hk+1, and decide if hk+1 satisfies the conditions of IMF, if not, repeat

(2)–(3) to obtain the envelope average that satisfies the conditions.

(5) Separate hk+1 from x to get rk+1, then let k = k + 1, repeat steps (2)–(4) with regarding rk as the

original time series.

rk+1 = x −
k

∑
i=1

hi (1)

(6) Repeat the above steps until the residual that meets the stop condition is obtained.

To solve the mode mixing problem exists in EMD, which would result in IMF distortion,

EEMD was proposed [19–21]. The EEMD algorithm is a noise-assisted signal processing method,

and EEMD performs EMD multiple times on the signal superimposed with Gaussian white noise.

The superimposed signal has continuity on various frequency scales, on account that Gaussian white

noise has the statistical characteristics of uniform distribution. Hence, EEMD can help to alleviate the

mode mixing problem in the IMF component. The computational framework of the EEMD is basically

the same as EMD, and different white noise w(i) (i = 1, . . . , I), where I is the ensemble size, can provide

a consistent reference structure for the time domain distribution of the remaining components after

each decomposition. The illustration of EEMD is shown in Figure 1, and the ensemble size determines

the times of EMD conducted on the superimposed signal. The detailed procedures of EEMD are below:

−

+
=

= −∑

Gaussian white noise

Original signal

Superimposed signal

EMD

Multi-sets of IMFs 

IMFs of EEMD 

Zero-mean principle

 

εw
εw

=

= +∑

=

= ∑

Figure 1. The illustration of EEMD.

(1) Add Gaussian white noise to the signal to form a superimposed signal x(i) = x + εw(i).

(2) Add Gaussian white noise to the signal to form a superimposed signal x(i) = x + εw(i).

(3) Perform EMD of x(i) to obtain IMFs dk
(i) (k = 1, . . . , K), K is the number of all IMFs:

x(i) =
K

∑
k=1

d
(i)
k + r(i) (2)

(4) Adopt the zero-mean principle of Gaussian white noise to eliminate the influence by taking Gaussian

white noise as a time domain distribution reference structure. Then the IMFs can be expressed as:

dk =
1

I

I

∑
i=1

d
(i)
k (3)
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Among the above procedures, the input signal of each EMD is rk
(i) = rk+1

(i) − dk
(i), and there is no

correlation between the rk
(i) of the EMD of different noise signals. It would make EEMD suffer from

reconstruction error and generate different numbers of IMFs due to different EMD of various noise

signals. To solve the reconstruction error in EEMD, CEEMD was proposed [22], in which Gaussian

white noise is added into x in pairs (one positive and one negative) for twice EEMD, as shown in:

[

y
(i)
1

y
(i)
2

]

=

[

1 1

1 −1

][

x

w(i)

]

(4)

Such a method can reduce the reconstruction error to great extents, however, it still cannot

guarantee the same number of IMFs generated by EMD of y1
(i) and y2

(i), which makes it difficult to

compute the average. Thus, CEEMDAN [23,24] was put forward to ensure the same number of IMFs

can be obtained, and reconstruction error can be eliminated at the same time. The first-order IMF

obtained by CEEMDAN equals the first-order IMF obtained by EEMD, and the first residual r1 can be

obtained by adding specific noise to make rk of each decomposition invariable.

The detailed procedures of CEEMDAN can be expressed as follows, among them Ek(·) is defined

as the operator of kth IMF, and w(i) is defined as zero-mean Gaussian white noise:

(1) Perform EMD towards x(i) = x + β0w(i) (i = 1, . . . , I), and the first order IMF is:

d̂1 =
1

I

I

∑
i=1

d
(i)
1 = d1 (5)

(2) Compute the first residual: r1 = x − d̂1

(3) Perform EMD to obtain the first IMF of r1 + β1E1(w(i)) (i = 1, . . . , I), and the second IMF is:

d̂2 =
1

I

I

∑
i=1

E1(r1 + β1E1(w
(i))) (6)

(4) Compute kth residual for k = 2, 3, . . . , K:

rk = r(k+1) − d̂k (7)

(5) Perform EMD to obtain the first IMF of rk + βkEk(w(i)) (i = 1, . . . , I), and the (k + 1)th IMF is:

d̂(k+1) =
1

I

I

∑
i=1

E1(rk + βkEk(w
(i))) (8)

(6) Return to step (4) to compute the next order IMF, and repeat steps (4)–(6) until the residual cannot

be decomposed by EMD. The coefficient βk = εk std(rk) allows the SNR to be selected during each

iteration, and std(·) is the standard deviation operator.

2.2. Improved Multivariate Multiscale Sample Entropy

The SE [26] is an improved algorithm of approximate entropy, which can reflect the dissimilar

probability of two similar sequences. The detailed procedures of SE are below:

(1) For the original time series X = {x1, x2, . . . , xN}, X(i) = [xi, xi+1, . . . , xi+m−1], (1 ≤ i ≤ N − m) can

be defined, m is the embedding dimension.

(2) Compute dij (1≤ j ≤ N − m, j 6= i) of X(i) and X(j), and calculate num(dij < r) when dij < r. dij is the

maximum absolute value of difference of X(i) and X(j). Define Bim(r) = num(dij < r)/(N − m − 1).

(3) Compute the mean value of Bim(r), denoted by Bm(r).
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(4) As for the dimension of m + 1, repeat above procedures to obtain Bim+1(r), then Bm+1(r) can

be obtained.

(5) The SE can be expressed as:

SE(m, r, N) = InBm(r)− InBm+1(r) (9)

Define the time scale on account of the coarse graining process aiming at the time series {xk,i}, in

which i = 1, 2, . . . , N, and k = 1, 2, . . . , p. p is the number of variables, and N is the number of the

points of each variable. As for any scale ϕ, the obtained multiple variable time series by the coarse

graining process is as follows:

y
ϕ
k,j =

1

ϕ

jϕ

∑
i=(j−1)ϕ+1

xk,i (10)

where 1 ≤ j ≤ N/ϕ, k = 1, 2, . . . , p. Take scale = 3 as an example, the conventional coarse graining

process is illustrated in Figure 2.

φ

ϕ
ϕ

ϕϕ = − +

= ∑
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Figure 2. The illustration of the conventional coarse graining process.

It can be seen from Figure 2 that the conventional coarse graining process compresses the time

series by scale factors. Along with the increase of scale, the size of the coarse grained time series

decreases, and when the length of the original time series is not an integral multiple of the scale factor,

some of the data will be lost during the coarse graining process. All of the above phenomena would

inevitably affect the calculation accuracy of the MMSE algorithm [37]. Aiming at improving such

disadvantages, the smoothed coarse graining process, which adopts a sliding average method during

the coarse graining process, is proposed. This method avoids data loss, and ensures the coarse-grained

time series are the same length as the original time series at each scale, both significantly improving

the accuracy of subsequent algorithms. The smoothed coarse graining process is illustrated in Figure 3.
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Figure 3. The illustration of proposed smoothed coarse graining process.
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Then the multivariate SE of each multiple variable ykj
ϕ is computed, the multivariate embedded

vector needs to be constructed in advance. Embedding theorem [40,41] is used to obtain the embedded

vectors of the multivariate time series. For time series of p-variate time series, the multivariate

embedding reconstruction is as follows:

Xm(i) = [x1,i, · · · x1,i+(m1−1)λ1
, x2,i, · · · x2,i+(m2−1)λ2

, xp,i, · · · xp,i+(mp−1)λp
] (11)

where M = [m1, m2, . . . , mp] ∈ Rp is the embedding vector, and λ = [λ1, λ2, . . . , λp] is the time delay

vector. Xm(i) ∈ Rm (m = m1 + m2 + . . . mp).

As for the above multivariate time series, the MMSE can be computed as follows:

(1) Constitute multivariate embedding vector Xm(i), and define the distance of any two vectors Xm(i)

and Xm(j) as the maximum norm as follows:

D[Xm(i), Xm(j)] = maxl=1,2,··· ,m{|x(i + l − 1)− x(j + l − 1)|} (12)

(2) As for the composite delay vector Xm(i) and a threshold r, determine the number of instances Pi,

where D[Xm(i), Xm(j)] ≤ r, j 6= i. Then compute the occurrence frequency Bi
m(r) = Pi/(N − n − 1),

where n = max{M} × max{λ}.

(3) Compute the average of B, denoted by Bm(r).

Bm(r) =
1

N − n

N−n

∑
i=1

Bm
i (r) (13)

(4) Extend the dimension of multivariate delay factor in (2) from m to (m + 1). Then, as for one embedding

vector M = [m1, m2, . . . , mk . . . , mp], it can be converted into random space with the embedding

vector of M = [m1, m2, . . . , mk+1 . . . , mp] in p different ways. Thus, p × (N − n) vectors Xm+1(i) can

be obtained in Rm+1, where Xm+1(i) represents any embedding vector which increases embedding

dimension mk to (mk + 1) for specific k. Due to the constant of the embedding dimension of other data

channels in this process, the overall embedding dimension of multivariate time series increases from

m to (m +1).

(5) Repeat procedures of (1)–(4) to compute all B
mk+1
i (r), and calculate the mean value Bi

m+1(r) upon

k. Then compute the mean value Bm+1(r) upon i in the (m + 1) dimensional space as:

Bm+1(r) =
1

p(N − n)

p(N−n)

∑
i=1

Bm+1
i (r) (14)

Here, Bm (r) represents the similar possibility in m dimensional space of any two composite delay

vectors, whereas Bm+1 (r) represents the similar possibility upon (m + 1) dimensional space of

two composite delay vectors.

(6) Then the MMSE can be expressed as:

MMSE(M, λ, r, N) = InBm(r)− InBm+1(r) (15)

2.3. The Proposed Novel Health Degradation Monitoring Approach of Rolling Bearings

Studies on the IMFs of EMD and the derived methods demonstrate IMFs of EMD-derived

methods can be adopted to accurately depict signal dynamics, and the unique properties of decoupling

frequency information [42–46]. Hence, the intrinsic analysis method can be applied to detect the change

regularity of complex dynamic systems. In this paper, a novel health degradation monitoring and early

fault diagnosis approach is proposed based on CEEMDAN and improved MMSE, where the smoothed

coarse graining process was proposed to improve the conventional MMSE. All continuously-collected
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signals of rolling bearings can be decomposed by CEEMDAN to obtain IMFs, and MMSE values of

effective IMFs can be computed to accomplish health degradation monitoring of mechanical systems.

After identifying the early weak fault phase, the fault frequency of rolling bearings can be extracted by

CEEMDAN. The schematic diagram of the proposed method in this paper is illustrated in Figure 4.

CEEMDAN

Improved

MMSE

……

1 2( ) ( ( ), ( ), , ( ) )
n

X t x t x t x t

CEEMDANCollected Signals Improved MMSE Health Degradation Monitoring

(Effective IMFs) Health Degradation Monitoring

Time Index /h

IMF ( ) IMF ( )
i k

t t

Theoretic Highlights: 

 EMD — EEMD — CEEMD — CEEMDAN
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(Test To Failure signals)

MMSE value of  

(scale=20)
1( )x t

1 2( ) ( ( ), ( ), , ( ) )
n

X t x t x t x tScale

CEEMDAN Early Fault DiagnosisFaulty Signal of Phase 2 (Health Degradation process)

Frequency Index /HzFrequency Index /Hz

Early Fault DiagnosisOriginal Signal

CEEMDAN

IMFs 

Reconstruction

fr

fo

 

)]    

α β

     

Figure 4. The proposed health degradation monitoring and early fault diagnosis scheme of

a rolling bearing.

3. Numerical Simulations

3.1. Simulation Research of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Mechanical operation signals usually have characteristics of frequency modulated signals,

thus, the frequency modulated signals are used here to verify the effectiveness of the proposed

method in tracking the characteristic change of the simulated signal. The vibrational signal of rolling

bearing can be simplified to a signal model [47] as follows:

x(t) = α sin(2π fbt)[1 + β cos(2π frt)] (16)

where fb denotes the characteristic frequency of the rolling bearing, and fr denotes the rotational

frequency. α and β denote the power size. The collected rolling bearing signal usually has additive

noise, and Gaussian white noise is adopted here to simulate the practical situation [48]. The filter

bank property of EEMD and CEEMDAN is important in alleviating the current mode mixing problem,

which is realized by taking advantage of the frequency uniformly-distributed property of Gaussian

white noise. Hence, the simulated faulty rolling bearing signal can be simulated as follows:

x1(t) = cos(2π f1t) + sin(2π f2t)[1 + cos(2π f3t)] + s (17)
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where f 1 = 35 Hz, f 2 = 80 Hz, f 3 = 10 Hz. s denotes the Gaussian white noise added to the signal,

with the variance of 2, and mean of 0. The sampling point is 2048, and the sampling frequency is

2048 Hz during the numerical simulation. The EEMD and CEEMDAN are applied to the simulated

signal. The standard deviation of the added noise is 0.2, and the ensemble size is 50 in EEMD.

Twenty-five pairs (positive and negative) of added noise are adopted in CEEMDAN. The time domain

plots of IMFs of EEMD and CEEMDAN are shown in Figure 5.
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Figure 5. (a) Time domain plots of IMFs of EEMD; and (b) time domain plots of IMFs of CEEMDAN.

It can be seen from Figure 5 that 10 orders of IMFs are obtained by EEMD, while eight orders

of IMFs are obtained by CEEMDAN. Obviously, CEEMDAN generates fewer orders of IMFs than

EEMD does. To illustrate the effectiveness of CEEMDAN in alleviating the mode mixing problem,

the correlation analysis is conducted to find the effective IMFs, and such a method was elaborated in

authors’ previous studies [49,50]. During the correlation analysis, the 3rd, 4th, and 5th IMFs of EEMD,
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and the 3rd and 4th of CEEMDAN, are effective. The frequency domain plots of effective IMFs of

EEMD and CEEMDAN are shown in Figure 6.

f2 (± f3)

f1

f2

f2 (± f3)

f1

 

 



 

 



 
  
  

τ φ

Figure 6. (a) Frequency domain plots of effective IMFs of EEMD; and (b) frequency domain plots of

effective IMFs of CEEMDAN.

It can be seen from Figure 6 that f 1 = 35 Hz can both be well extracted by EEMD and CEEMDAN

with a slight difference. Furthermore, it can be observed from Figure 6a that the characteristic

frequencies f 2 (±f 3), namely 80 Hz (±10 Hz), can be extracted in the 3rd IMF of EEMD, while f 2 can

also be found in the 4th IMF of EEMD. All characteristic frequencies are disturbed by some additive

noise frequencies in the 3rd and 4th IMF of EEMD. This is exactly the mode mixing phenomenon

existing in the EMD derived method. As for the performance of CEEMDAN, it can be observed from

Figure 6b that characteristic frequencies f 2 (±f 3) can be extracted accurately in 3rd IMF of CEEMDAN,

without additive noise disturbance. It indicates that there is no mode mixing problem appears in

the obtained IMFs of CEEMDAN. It can be concluded based on the above analysis that CEEMDAN

is superior to EEMD in alleviating the mode mixing problem, and can enable more accurate IMFs.

Hence, CEEMDAN can be adopted in the proposed approach to health degradation monitoring and

early fault diagnosis of rolling bearings.

3.2. Simulation Research of Improved Multivariate Multiscale Sample Entropy

To verify the effectiveness and superiority of improved MMSE with smoothed coarse graining

process, here trivariate signal with additive Gaussian white noise is adopted for numerical simulation.

The sampling point is 153,600 and the sampling frequency is 1024 Hz; namely, the sampling time is

150 s. The simulated trivariate rolling bearing signals are shown as follows:

x1(t) = cos(2π f1t)[1 + sin(2π f2t)]

x2(t) = sin(2π f3t)[1 + 0.5 cos(2π f4t)]

x3(t) = cos(2π f5t)

(18)

where f 1 = 40 Hz, f 2 = 15 Hz, f 3 = 120 Hz, f 4 = 35 Hz, f 5 = 50 Hz. To simulate the fault characteristic

change during the health degradation monitoring process, different amplitudes of characteristic signals

containing noise are set at different periods. The time series can be divided into 150 subsequences

1024 points in length. The simulated trivariate faulty rolling bearing signal of multiple periods are

given here as follows:

Xn(t) =











5xi(t) + s, t = 1 ∼ 50s

10xi(t) + s, t = 51 ∼ 100s

15xi(t) + s, t = 101 ∼ 150s

, i = 1, 2, 3, n = 1, 2, 3. (19)
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where s denotes the Gaussian white noise with a variance of 1 and mean of 0. Then, the MMSE of

the trivariate signal of different periods are computed to simulate the health degradation monitoring

process. Here m = 5, τ = 1, sequence length l = 1024, scale ϕ = 20 were adopted in the simulation

studies. The calculated MMSE results at different scales of the 1st second simulated trivariate signal

are shown in Figure 7, respectively adopting the conventional coarse graining process and smoothed

coarse graining process.
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Figure 7. (a) MMSE values of the 1st second simulated trivariate signal adopting the conventional

coarse graining process; and (b) MMSE values of the 1st second simulated trivariate signal adopting

the smoothed coarse graining process.

It can be seen from Figure 7a that the MMSE values of the time series monotonically decrease as

a whole, but when the scales are 5, 8, 10, and 15, the MMSE values are greater than the former ones.

This phenomenon indicates that MMSE values with the conventional coarse graining process have

obvious fluctuations at certain scales, which could be caused by random noise, and would potentially

lead to inaccurate and unstable results. While it can be seen from Figure 7b that the MMSE values of

all scales monotonically decrease, it indicates MMSE values with the smoothed coarse graining process

can reflect intrinsic dynamic characteristics of the faulty rolling bearing signals more accurately and

steadily. Apart from that, it can also imply that the smoothed coarse graining process can alleviate the

negative influence of random noise, which makes such a method more robust. Hence, the proposed

improved MMSE can be adopted in the application studies for health degradation monitoring of

rolling bearing.

Based on the methodology and current studies of MMSE, if the MMSE values of a time series

monotonically decrease, it means that this time series has low self-similarity, and only contains

information at the smallest scale. Namely, the MMSE value of the smallest scale can be adopted as the

indicator during health degradation monitoring of rolling bearings. Therefore, all the 1st (smallest

scale) MMSE values of multiple periods of the simulated trivariate rolling bearing signal are computed,

as shown in Figure 8.

It can be seen from the Figure 8 that the 1st (smallest scale) MMSE values can recognize the

dynamic characteristic of the time series, when the characteristic signal grows larger, namely the

simulated fault gets worse, the 1st (smallest scale) MMSE values indicate the heath degradation

process. When the fault of rolling bearing happens or grows, the less complex the time series is,

the less the MMSE value is. This means that MMSE values can be used for reflecting intrinsic dynamic

characteristics of the faulty rolling bearing. Hence, the proposed approach by adopting MMSE can be

used in health degradation monitoring of rolling bearings.
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Figure 8. 1st MMSE values of all subsequences of simulated trivariate faulty rolling bearing signal.

4. Application Studies on Health Degradation Monitoring and Early Fault Diagnosis
of Rolling Bearings

4.1. Application Studies of the Proposed Health Degradation Monitoring Method of Rolling Bearings

To verify the effectiveness of the proposed method in the application to rolling bearing signal processing,

the run-to-failure fault rolling bearing signals provided by the Intelligent Maintenance Systems (IMS) Center

of the University of Cincinnati (Cincinnati, OR, USA) are adopted for application studies. The recommended

reference paper is given here [51]. The schematic diagram of the experimental apparatus and a photo

of the apparatus is shown in Figure 9. There are four Rexnord ZA-2115 double-row bearings (Rexnord,

Milwaukee, WI, USA) installed on the shaft. A PCB 353B33 high sensitivity quartz ICP accelerometer (PCB,

Buffalo, NY, USA) was vertically installed on the bearing house. The position of the sensor placement is

shown in Figure 9b. Then a test-to-failure experiment was conducted, and all data were collected by a NI

6062E DAQ card (National Instrument, Austin, TX, USA). The No. 2 dataset is used in this paper, during the

experiment 984 sets of data files were obtained with a collection every 10 min (164 h in total), and each file

contains 20,480 points at the sampling rate of 20 kHz. The rotational speed was set at 2000 r/min facilitated

by an AC motor which was coupled to the shaft. Thus, the rotational frequency fr is 33.33 Hz. At the end of

the experiment, bearing 1 had an outer ring wear-out failure, which indicated the experiment recorded the

complete life test data.

Motor

Bearing 1

Acceleration sensor Radial load Thermocouples

 2 3 4

Acceleration sensors

(a) (b)  

Figure 9. (a) The schematic diagram of the apparatus; and (b) a picture of the apparatus.
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As mentioned above, a run-to-failure experiment of a rolling bearing was conducted. The entire

lifetime of the rolling bearing wear-out process can be described in four steps, denoted by Phases 1–4,

as shown in Table 1. The self-balancing and self-healing process during Phase 3 is similar to the

retardation effect during the crack growth of the beam, owing to the reason they have similar

mechanical characteristics.

Table 1. Four phases of the entire time of the rolling bearing wear-out process.

Phase 1 The bearing is operating normally, prior to the occurrence of the early weak fault.

Phase 2
The early weak fault occurs on the rolling bearing and interferes with its running
condition slightly; this is the initial phase of early weak fault.

Phase 3
The fault develops into the middle stage, generating the self-balancing and
self-healing phenomenon, also called the retardation effect. This is the phase that
the rolling bearing fault tends to be serious.

Phase 4
The rolling bearing deteriorates promptly and has a serious fault. It usually
results in the final breakdown of the rolling bearing.

To validate the effectiveness of the proposed health degradation monitoring and early fault

diagnosis approach, EEMD and CEEMDAN of all vibration signals from 984 sets of data files are

performed for comparison in subsequent analysis. Each data file has 20,480 points, and the sampling

frequency is 20 KHz, as mentioned above. The sampling point is chosen as 8192 here, namely the first

8192 points are chosen for subsequent analysis out of 20,480 points. The EEMD and CEEMDAN of one

set of data are shown in Figure 10. The standard deviation of the added noise is 0.2, and the ensemble

size is 50 in EEMD, while 25 pairs (positive and negative) of added noise are adopted in CEEMDAN.

It can be seen from Figure 10 that 14 orders of IMFs are obtained by EEMD, while 11 orders of

IMFs are obtained by CEEMDAN. Obviously CEEMDAN can generate fewer orders of IMFs than EMD,

alleviating the mode mixing problem to obtain accurate IMFs denoting characteristic frequencies. In the

process of extracting accurate frequencies, correlation analysis is adopted here. The correlation analysis

has been studied in authors’ previous studies [49,50]. The noise component and the effective IMFs

denoting fault features can be determined in the correlation analysis, to analyze the main component of

the vibration signal to extract fault frequencies. During the correlation analysis, the top three effective

IMFs of EEMD and CEEMDAN are adopted to obtain the MMSE values, and the same strategy is

employed hereinafter. The MMSE values of the 100th set of data is given here as an example, as shown

in Figure 11. Owing to the reason that MMSE values of a time series monotonically decrease, which has

been illustrated in Section 3.2, the MMSE value of the smallest scale can be adopted as the indicator

during the health degradation monitoring.

To validate the superiority of CEEMDAN over EEMD, and the advantage of MMSE with the

smoothed coarse graining process than the conventional one, six contrastive methods are shown

in Figure 12 regarding the degradation data of the rolling bearing. Parameter values of m = 5,

τ = 1, scale ϕ = 20, were selected for the algorithm. They are, respectively, the health degradation

monitoring of the rolling bearing adopting MSE and EEMD, MSE and CEEMDAN, MMSE (2nd MMSE

values) and EEMD, MMSE (1st MMSE values) and EEMD, MMSE with conventional coarse graining

process and CEEMDAN, and MMSE with the smoothed coarse graining process and CEEMDAN.

All six contrastive methods are shown as follows. To illustrate the effectiveness and superiority of the

proposed method, the specific analysis of the proposed method, which is also presented in Figure 12f,

is shown in Figure 13.
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Figure 10. (a) IMFs obtained by EEMD; and (b) IMFs obtained by CEEMDAN.
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Figure 11. MMSE values of all scales via the proposed health degradation monitoring approach of the

100th set of data.

Phase 1+2
Phase 1+2

Phase 1+2
Phase 1 Phase 2

Phase 1 Phase 2 Phase 1 Phase 2

Figure 12. Comparative study of the six different methods. (a) The MSE values of the optimal IMF obtained

by EEMD; (b) The MSE values of the optimal IMF obtained by CEEMDAN; (c) The 2nd MMSE values

of effective IMFs obtained by EEMD; (d) The 1st MMSE values of effective IMFs obtained by EEMD;

(e) The 1st MMSE values of effective IMFs obtained by CEEMDAN (conventional coarse graining process

within MMSE); and (f) The 1st MMSE values of effective IMFs obtained by CEEMDAN (smoothed coarse

graining process within MMSE).
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Figure 13. The 1st MMSE values of effective IMFs obtained by CEEMDAN (smoothed coarse graining

process with MMSE).

During the health degradation monitoring process, Phase 3 and Phase 4 are relatively easy to

recognize since these are two phases when the fault, respectively, develops to the middle stage

and deteriorates promptly. The proposed approach in this paper aims at early fault diagnosis

after health degradation monitoring, which means Phase 3 and Phase 4 are not research priorities.

Hence, only Phase 1 and Phase 2 are marked in the six contrastive methods in Figure 12 to compare

the effectiveness of all methods, where Phase 2 denotes the early weak fault phase. It can be observed

from Figure 12a–c that the health degradation monitoring method respectively adopting MSE values

of the optimal IMF obtained by EEMD, MSE values of the optimal IMF obtained by CEEMDAN,

and 2nd MMSE values of effective IMFs obtained by EEMD, cannot identify both Phase 1 and Phase 2

separately. It means these three methods fail to reveal the initial phase when an early fault happened;

namely Phase 2 cannot be identified. The characteristic changes are more likely to be submerged by

noise disturbances. From Figure 12d, it can be seen that the drop of the 1st MMSE values of effective

IMFs obtained by EEMD can indicate Phase 2, the value change is more distinct than the former

three methods but, still, the characteristic change is not obvious. From Figure 12e,f, it can be seen that

health degradation monitoring based on CEEMDAN and MMSE (also improved MMSE) can both

clearly show Phase 1 and Phase 2, respectively.

To illustrate the effectiveness of the proposed approach that integrates CEEMDAN and MMSE

with smoothed coarse graining process, the enlarged results of Figure 12f are presented in Figure 13.

Phases 1–4 are all marked in Figure 13 to show the whole health degradation monitoring process

clearly. It can be clearly seen that the proposed approach in this paper can monitor the whole

health degradation process distinctly, which can verify the effectiveness of the proposed approach.

From Figure 13, it can be obtained that Phase 1 consist of 1–520 sets of data, and Phase 2 consists

of 521–700 sets of data. Furthermore, to show the superiority of improved MMSE with smoothed

coarse graining process over the conventional MMSE, the comparison between the results shown in

Figure 12e,f based on numerical analysis are given in Table 2. The slopes of Phase 2 are obtained by

computing the slopes of their approximate linear fitting curves.

Table 2. The comparison between health degradation monitoring methods adopting MMSE with

a conventional coarse graining process and a smoothed coarse graining process.

Methods
Phase 1 Phase 2

Variance Variance Slope

MMSE (Conventional coarse graining) 0.78 × 10−3 2.21 × 10−3 −6.80 × 10−4

MMSE (Smoothed coarse graining) 0.34 × 10−3 1.16 × 10−3 −7.92 × 10−4
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It can be seen from the above numerical analysis of the proposed health degradation monitoring

approaches, respectively adopting conventional and smoothed coarse graining processes, that the variances

of Phase 1 and Phase 2 by using MMSE with adopting smoothed coarse graining are both smaller than

adopting conventional coarse graining. This indicates that MMSE with a smoothed coarse graining process

contributes to more stable and robust results during the health degradation monitoring process. The absolute

value of the slope of Phase 2 by using MMSE by adopting smoothed coarse graining is greater than adopting

conventional coarse graining. This indicates that the smooth coarse graining process can amplify the change

characteristic during the health degradation monitoring process, which also contributes to obtaining more

accurate results. Based on the above analysis, it can be seen that the proposed approach to the health

degradation monitoring process adopting MMSE with smoothed coarse graining can obtain more stable and

legible results than conventional MMSE, and can also obtain much better results than four other methods

shown in Figure 12. In summary, the proposed approach in this paper shows good performance in revealing

the fault change characteristics of rolling bearings in health degradation monitoring.

4.2. Application Research of the Proposed Early Fault Diagnosis Method of Rolling Bearings

It can be concluded from Section 4.1 that Phase 2 denotes the early weak fault stage, which is

when the early weak fault happened for the very first time. Then, in this section, CEEMDAN is

applied to the signal collected from the beginning of Phase 2, aiming at extracting the early weak fault

characteristic frequency. The 520th set of data (denoting the signal around the 86.7th h) is the set of

data that early weak fault started to happen at the very beginning during the wear-out process of

the rolling bearing, and the fault characteristic frequency would not be obvious, or may have a very

slight amplitude. The fault characteristic frequency would have greater amplitude along with the

time. Hence, the 530th set of data (denoting the signal around the 88.3th h) is selected to extract the

early weak fault. The sampling points for frequency spectrum analysis hereinafter is chosen as 8192.

The detailed parameters of the faulty rolling bearing are shown in Table 3. The calculating method of

the characteristic frequency and computed characteristic frequency are shown in Table 4.

Table 3. Detailed parameters of faulty rolling bearing.

Detailed Parameters of Rexnord ZA-2115 Rolling Bearing

Ball number n Contact angle α Ball diameter dr Pitch diameter Dw

16 15.17 0.331 2.815

Table 4. The calculating method and characteristic frequency of a Rexnord ZA-2115 rolling bearing.

Fault Type Fault Frequency Computation Fault Frequency

Outer ring fault fo = 0.5n(1 − drcosα/Dw)fr fo = 236.4

The time and frequency domain plots of the selected data mentioned above are shown in Figure 14,

as follows.

α

− α

Figure 14. Time and frequency domain plots of the 530th set of data (denoting the signal around the

88.3th h), during the beginning of Phase 2 of the rolling bearing wear-out process.
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EEMD and CEEMDAN are applied to the chosen data mentioned above. The standard deviation

of the added noise is 0.2, and the ensemble size is 50 in EEMD, while 25 pairs (positive and negative)

of added noise are adopted in CEEMDAN. The frequency domain plots of the optimal IMFs of EEMD

and CEEMDAN are shown in Figure 15.

 

Figure 15. (a) IMFs obtained by EEMD; and (b) IMFs obtained by CEEMDAN.
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It can be seen from Figure 15 that 14 orders of IMFs are obtained by EEMD, and 11 orders of IMFs

are obtained by CEEMDAN. The advantages of CEEMDAN have also been elaborated in Section 3.1 and

the beginning of Section 4.1. The correlation analysis in the authors’ previous studies [49,50] is adopted to

determine the effective IMFs, then IMFs denoting the noise components will be discarded during the IMF’s

reconstruction. To illustrate the effectiveness of CEEMDAN, the frequency domain plot processed by WPD

is also presented. The wavelet function db15 with 11 layers is adopted during WPD. During EEMD and

CEEMDAN, the effective IMFs are selected to reconstruct the signal. The frequency domain plots of the

original signal and the reconstructed signals respectively processed by WPD, EEMD, and CEEMDAN are

shown in Figure 16.
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Figure 16. Frequency domain plots of the original signal and the reconstructed signals. (a) Frequency

domain plot of the original early weak fault signal; (b) frequency domain plot of the reconstructed

signal processed by WPD; (c) frequency domain plot of the reconstructed signal processed by EEMD;

and (d) frequency domain plot of the reconstructed signal processed by CEEMDAN.

It can be seen from Figure 16a that the original early weak fault frequency fo = 33.33 Hz is

interfered by background noises to a great extent. There are great deal of redundant or disturbing

frequencies, and fault characteristic frequency fo = 236.4 Hz is submerged in those frequencies. It can

be seen from Figure 16b that, after WPD denoising, the fault characteristic frequency fo and rotational

frequency fr can be found, but the results are far from good. Figure 16c shows after EEMD processing,

the frequency domain plot has less disturbing frequencies, but the fault characteristic frequency fr
cannot be well extracted, while in Figure 16d, after the proposed method in this paper, which is

CEEMDAN processing, the fault characteristic frequency fo and rotational frequency fr can be well

extracted. There are few redundant or disturbing frequencies, which indicates that CEEMDAN

is superior to EEMD in alleviating the mode mixing problem, and can extract the accurate fault

characteristic frequency. Hence, the early weak outer ring fault can be extracted by CEEMDAN,

and the results can also ascertain the health degradation monitoring results hereinbefore. Based on the

above analysis, it can be concluded that the proposed early fault diagnosis by adopting CEEMDAN

can achieve a good result in application studies, and the proposed approach is promising in the field

of fault diagnosis of rolling bearings.
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5. Conclusions

In this paper, the research work elaborates the effectiveness of the proposed health degradation

monitoring and early fault diagnosis of rolling bearings based on CEEMDAN and improved MMSE,

which utilizes a smoothed coarse graining process. The theoretical derivation can demonstrate

the significance of the novel approach in this paper, and the effectiveness is verified by numerical

simulations and practical applications. The numerical simulation results indicate that CEEMDAN

can alleviate the mode mixing problem and enable accurate IMFs, and improved MMSE can reflect

intrinsic dynamic characteristics of rolling bearings more accurately and steadily. In the application

research of the proposed health degradation monitoring method of rolling bearings, the results indicate

that Phases 1–4 can be well distinguished by the proposed approach. The change characteristic can be

reflected and the deterioration of the early weak fault phase can be amplified. It contributes a great

deal to clearly identifying Phase 2 during the whole wear-out process, which is significant during

the health degradation monitoring of rolling bearings. The superiority of improved MMSE with the

adopted smoothed coarse graining process to conventional MMSE is also illustrated by numerical

analysis. Afterwards, during the application research of the proposed early fault diagnosis method of

rolling bearings, CEEMDAN can accurately extract the early weak fault characteristic frequency of

the rolling bearing. The results of frequency spectrum analysis indicate that CEEMDAN is superior

to EEMD in alleviating the mode mixing problem, and can enable more accurate IMFs to extract an

early outer ring fault characteristic frequency fo and also the rotational frequency fr. The results of

the early weak fault diagnosis can also ascertain the health degradation monitoring. Based on the

analysis results of the simulated signal and practical experimental data, it can be concluded that the

proposed health degradation monitoring and early fault diagnosis approach is promising in the field

of prognostic and fault diagnosis of rolling bearings.
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