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ABSTRACT The initial fault signal of rolling element bearing is extremely weak and could be easily masked

by strong background noise. Different features of vibration signal can be different sensitivity to initial fault

and performance degradation. Moreover, individual features cannot reflect bearing fault rationally and these

features reveal non-monotonic behavior when the bearing condition deteriorates. A Health Indicator (HI)

is proposed based on Mahalanobis Distance and Cumulative Sum (MD-CUMSUM). The time-frequency

domain features extracted through Singular Value Decomposition based onVariationalModeDecomposition

(VMD-SVD) and several optimal time domain features are used to calculate Mahalanobis Distances (MDs).

The coarse-to-fine diagnosing strategy is proposed to determine the initial fault of rolling bearing. The

obtained HI is utilized to estimate the different performance degradation stages of the bearing depending

on the thresholds. This method is verified by utilizing two different experiments. The results demonstrate

that the approach has the capability of estimating initial fault and determining degradation stages of bearing.

INDEX TERMS Coarse-to-fine diagnosing strategy, health indicator, initial fault, MD-CUMSUM,

VMD-SVD.

I. INTRODUCTION

Rolling bearings play an important role in rotating machin-

ery and are widely used in manufacturing equipment [1].

Accidental faults in running bearings can cause shutdown

of the entire machine, which will result in huge economical

losses [2]. Therefore the ability to quickly and accurately

diagnose the initial fault and assess severity of performance

degradation is very important in running bearings [3]–[5].

Recently, the product of health monitoring system has been

becoming critical for intelligent maintenance because of its

capacity to detect, classify and prognose the impending faults

intelligently [6]. Thus, extracting useful fault information

from stationary and non-stationary vibration signals is signif-

icant for detecting the wear and diagnosing the fault of bear-

ings [7]–[12]. The models of fault diagnosis and prognostic
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for rolling element bearings are divided into physical models,

knowledgeable models, data-driven models and combined

models [13]–[15].

Performance analysis (e.g. stages of bearing wear) of

rolling element bearings is a valid manner to determine

whether the machine is operating normally or not [16]. There

are a lot of efforts on extracting fault information from the

vibration signals and detecting early fault [17]–[19]. In fact,

one feature is only sensitive to specific fault in the particu-

lar performance degradation phase, while time domain, fre-

quency domain and time-frequency domain features cannot

simultaneously satisfy the sensitivity and stability of rolling

bearing performance degradation. Therefore, it is important

to establish a composite indicator which is sensitive to incip-

ient fault and rises steadily as the damage increases [20], [21].

In recent years, a variety of data-driven methods (such

as artificial neural network, principal component analysis,

machine learning and cluster analysis) have been used for
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condition monitoring of rolling bearing [1]–[3], [6], [8]. The

performance degradation process could be quantified through

data-driven methods without creating a specific model that

is difficult to obtain. Generally, data-driven prediction for

rolling bearing involves three stages containing data acqui-

sition, Health Indicator (HI) construction and residual useful

life prediction [22]. The performance degradation process

could be identified and quantified by means of the HI [23].

The HI should fuse the information of multi-domain fea-

tures. [24]. Therefore, it is of great significance to construct

HIs to effectively reveal the degradation process of rolling

bearings. The Mahalanobis-Taguchi System (MTS) has been

used in fault diagnosis and prognosis for rolling bearings

[25], [26]. MTS is also a multivariate pattern recognition

technique and can be easily applied to measure the degree

of abnormity of data and provide accurate results even with

smaller sample sizes and without any prior information [27].

MTS uses Mahalanobis Distance (MD) to fuse all relevant

information into a single metric. Additionally, the Signal-to-

Noise Ratio (SNR) is used to evaluate the effectiveness of

MTS. Orthogonal Array (OA) is used to select the variables

with the largest SNR [25].

MTS has succeeded in the field of fault diagnosis

and prognosis for rolling bearing. Hu et al. [28] utilized

MTS-SOM to identify and assess the bearing degrada-

tion. Shakya et al. [29], [30] proposed a method by using

Mahalanobis-Taguchi-Gram-Schmidt, which can detect dif-

ferent performance degradation stages of bearings online.

Wang et al. [31] used the MTS based on EMD-SVD to assess

the degradation of rolling bearings. Soylemezoglu et al. [32]

presented the MD-based fault clustering method to detect the

rolling bearing fault.

Aiming at applying MTS in fault diagnosis, it is necessary

to extract appropriate feature parameters from multi-domain

features of bearing vibration signals [31]. Lin and Chen [33]

proposed an approach by utilizing multifractal detrended

function analysis as the fault parameter of MTS to extract

features. Shen et al. [20] utilized Fuzzy Support Vector

Data Description (FSVDD) to construct a monotonic degra-

dation assessment index for bearings. Lei et al. [34] sum-

marized the research and development of EMD for rolling

bearing fault diagnosis. Chen et al. [35] utilized Ensem-

ble Empirical Mode Decomposition (EEMD) and adjust-

ment MTS to assess the health states for rolling bearing.

Despite EEMD alleviates the mode mixing problem, some

apparent limitations still exist [36]. The Variational Mode

Decomposition (VMD) method is proposed to avoid those

disadvantages. VMD theory was founded by Dragomiret-

skiy and Zosso. A multi-component signals could be non-

recursively decomposed into multiple Band-Limited Intrin-

sic Mode Functions (BLIMF) [37]. In particular, the VMD

algorithm could more effectively eliminate the noise and

decompose signals compared with the EMD-based adaptive

decomposition method [37]. Matrix Singular Value Decom-

position (SVD) techniques have the ability of noise reduction

and signal estimation [38]. The Intrinsic Mode Functions

(IMFs) decomposed by VMD are used to establish the origi-

nal matrix for SVD.

It is difficult for the initial fault diagnosis and performance

degradation monitoring to be implemented because of the

nonlinearity and uncertainty for the vibration signal [28].

Yu [39] used contribution-analysis-basedmethod and Hidden

Markov Model (HMM) to assess the performance degrada-

tion of rolling bearing. Loutas et al. [40] utilized probabilis-

tic Support Vector Regression (SVR) to predict the residual

useful life for rolling bearings. An et al. [41] proposed an

approach to predict the remaining useful life for rolling bear-

ing by using a degraded characteristic based on the amplitude

reduction of a particular frequency. The change of entropy at

particular frequencies are used to extract degradation infor-

mation from vibration signal. All of these methodsmentioned

above show the capacities of residual service life predic-

tion for rolling bearings. However, these methods would fail

to identify the different performance degradation stages of

rolling bearing. Reuben and Mba [42] presented an approach

for estimating bearing failure time by utilizing the features

of spectral analysis. The models can be used to identify the

third and the fourth performance degradation stages of the

rolling bearing, but they failed to estimate the normal and

initial fault stages. Sassi et al. [43] put forward an approach

named TALAF to track rolling bearing surface degradation

using time domain indicator. This method can identify four

performance degradation stages for rolling element bearing

by using the indicator changes in slope. However, it can only

intuitionally identify the different performance degradation

stages rather than quantitatively determine the degradation

stages.

Therefore, four key issues should be paid more attention to

determine the initial fault as early as possible and identify the

different performance degradation stages quantitatively, such

as (1) a relatively appropriate approach should be chosen to

extract features from vibration signals, (2) the incipient fault

stage could be detected as accurately and soon as possible

before the severe degradation occurs, (3) the most represen-

tative and sensitive feature parameters should be optimized

from these original characteristics to reveal the performance

degradation for rolling element bearing, (4) the HI should be

constructed to reflect the initial fault and performance degra-

dation, and quantitatively identify the different performance

degradation stages based on the thresholds.

Aiming at solving the four issues mentioned above

and effectively realize initial fault detection and condition

monitoring, an approach of HI construction is proposed

based on MD-CUMSUM with multi-domain features selec-

tion. Firstly, vibration signal features are extracted through

VMD-SVD. Secondly, the optimal time domain and time-

frequency domain characteristics are fused into Mahalanobis

Distances (MDs). The coarse-to-fine diagnosing strategy is

used to determine the initial fault of rolling bearing. These

features associated with the performance degradation are

fused into MD1 and Cumulative Sum (CUMSUM) is utilized

to obtain monotonically HI with bearing degradation process.
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Finally, different four performance degradation stages could

be identified depending on the thresholds of HI and the

sampling point of initial fault.

The rest of this paper is arranged as follows: In section 2,

the methodologies such as VMD, SVD and MTS are

introduced briefly. In section 3, the proposed method about

coarse-to-fine diagnosing strategy for initial fault and HI con-

struction utilizingMD-CUMSUMare described. In section 4,

the proposed method is validated by the experimental results

and some discussions are made. In section 5, some conclu-

sions are given.

II. METHODOLOGIES

A. VARIATIONAL MODE DECOMPOSITION

An ensemble of band-limited IMFs could be obtained when

a multi-component signal is nonrecursively decomposed by

VMD [37]. IMF uk (t) here is defined as an AM-FM sig-

nal [37].

uk (t) = Ak (t) cos(φk (t)) (1)

where φk (t) is a non-decreasing function, and Ak (t) is an

envelope, the instantaneous frequency ωk (t) = φ′
k (t) is non-

negative and varying slower than the φk (t).

VMD is represented by the following equation [37] :

min
{uk },{ωk }

{

K
∑

k=1

∥

∥

∥

∥

∂t

[(

δ(t) + j

π t

)

∗ uk (t)
]

e−jωk t
∥

∥
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2

2

}

s.t.

K
∑

k=1

uk = f (2)

where uk is the k
th mode. ωk is the center frequency.

Eq. (2) is determined by the quadratic penalty and

Lagrangian multipliers. The augmented Lagrangian is given

in the following equation:

L({uk} , {ωk} , λ)

= α

K
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∥

2
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+
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λ(t), f (t) −
K
∑
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uk (t)

〉

(3)

where α is the balancing parameter, and λ denotes Lagrangian

multiplier.

Eq. (3) is decided by the alternate direction method of

multipliers. The modes obtained from spectral domain are

given as:

ûk (ω) =
f̂ (ω) −

∑

i 6=k ûi(ω) +
(

λ̂(ω)
/

2
)

1 + 2α(ω − ωk )2
(4)

VMD mainly includes the following steps.

1) The modes ûn+1
k (ω) are updated as shown in Eq. (5).

ûn+1
k (ω)

=
f̂ (ω) −

∑

i<k û
n+1
i (ω)−

∑

i>k û
n
i (ω) +

(

λ̂n(ω)
/

2
)

1 + 2α(ω − ωn
k )

2
(5)

2) The center frequencies ωn+1
k are updated by Eq. (6).

ωn+1
k =

∫∞
0 ω

∣

∣

∣
ûn+1
k (ω)

∣

∣

∣

2
dω

∫∞
0

∣

∣

∣
ûn+1
k (ω)

∣

∣

∣

2
dω

(6)

3) λ̂n+1 is updated for all ω ≥ 0 by Eq. (7) until
K
∑

k=1

(

∥

∥

∥
ûn+1
k − ûnk

∥

∥

∥

2

2

/

∥

∥ûnk

∥

∥

2

2

)

< ε,

λ̂n+1 = λ̂n + τ

(

f̂ −
K
∑

k=1

ûn+1
k

)

(7)

VMD method described in detail is shown in Ref. [37].

B. SINGULAR VALUE DECOMPOSITION

The feature extraction of rolling bearing fault diagnosis has

been implemented by using SVD [31], [44]. The SVD is

defined as follows:

Matrix Am×n could be decomposed by Eq. (8) according to

SVD algorithm

A = U6V
T (8)

where Um×n and Vn×n are orthogonal matrices and
∑

m×n
is diagonal matrix (

∑

ij 6= 0 if i = j and
∑

11 ≥
∑

22 ≥
· · · ≥ 0).

Singular vectors with large singular values represent more

information for the original matrix.

C. MAHALANOBIS-TAGUCHI SYSTEM

MTS has been used for pattern recognition, multivariable

diagnosis and forecasting [26]. In MTS, MD is calcu-

lated to distinguish the abnormal data from the original

data [31], [32]. The performance degradation of rolling bear-

ing will be monitored through the tendency of MD. The MTS

shown in Fig. 1 consists of three stages:

Stage 1 Construction of the Mahalanobis Space (MS)

In order to distinguish degradation stages of the bearings

through the tendency of MD, the Mahalanobis reference

space should be constructed in advance. The reference space

is determined by the variables of normal condition obtained

through the feature parameters of properly lubricated new

bearings. The steps to construct MS are as follows [32].

1. Let xij be the i-th feature in the j-th observation. n is

the number of observations and k is the total amount of

characteristics. Mean x̄i (i = 1, 2, 3, · · · , k) for the normal

dataset is calculated as:

x̄i =

n
∑

j=1

xij

n
(9)

138530 VOLUME 7, 2019



Q. Li et al.: HI Construction Based on MD-CUMSUM With Multi-Domain Features Selection

FIGURE 1. Steps of MTS.

2. Standard deviation si (i = 1, 2, 3, · · · , k) for each

characteristic is calculated as:

si =

√

√

√

√

√

n
∑

j=1

(

xij − x̄i
)2

n− 1
(10)

3. Normalize each characteristic, and take its transpose ZT
ij

from the normalized data matrix Zij:

Zij =
(

xij − x̄i
)

si
(11)

4. cij of the correlation matrix C are computed as:

cij =

n
∑

m=1

(

ZimZjm
)

n− 1
(12)

5. MD of normal dataMDnormal is calculated as:

MDnormal = 1

k
ZT
j C

−1Zj (13)

whereMDnormal is the MD of the normal state of the running

bearings.

Stage 2 Validation of MS

Aiming at verifying the MS, the correlation matrix, mean

and standard deviation of the normal case are utilized to

calculate the abnormal case of MD. The MS will be valid

if the MD have the capacity to distinguish the abnormal data

with the normal data. If the abnormal data cannot be identified

by MD, then the combination of the other characteristics is

used to detect until the correct features set are found.

Stage 3 Calculation of the MD of sample space

The mean x̄i, correlation matrix C and standard deviation

si of the valid reference space are utilized to normalize the

data of sample space and calculate the MD. The performance

degradation of the running bearing will be monitored accord-

ing to the tendency of MDs.

Ŷij =
(

Yij − x̄i
)

si
(i = 1, 2, . . . , k; j = 1, 2, · · · , n)

(14)

MDsample = 1

k
Ŷ T
j C

−1Ŷj (j = 1, 2, · · · , n) (15)

where Ŷij is the normalized data matrix of sample space, and

MDsample is the MD of sample space.

III. PROPOSED METHODS

The proposed method shown in Fig. 2 mainly consists of two

stages such as coarse-to-fine diagnosing strategy for initial

fault and HI construction by using MD-CUMSUM. In Fig. 2,

the features sensitive to initial fault are fused into MD2,

which could provide useful information for the coarse-to-

fine diagnosing strategy when diagnose the initial fault. MD1

fuses the features related to the performance degradation,

which is the basis for the construction of HI. The detailed

description of the methods is as follows.

A. COARSE-TO-FINE DIAGNOSING STRATEGY FOR INITIAL

FAULT

Initial fault diagnosis plays an important role in rolling bear-

ing condition monitoring. However, the initial fault vibration

signal is difficult to be extracted from the highly background

noise. In order to overcome this tough problem, the coarse-to-

fine diagnosing strategy shown in Fig. 3 is proposed to deter-

mine the earliest fault, which mainly contains three parts.

Part 1 3σ criterion of 1MD2

The optimal time domain features being sensitive to initial

fault and singular values of time-frequency domain features

are used to construct Mahalanobis reference space and the

MD2 is calculated.

The application of 3σ criterion of the increment 1MD2 is

under the condition that 1MD2 satisfies normal distribution.

The probability distribution function of the normal distribu-

tion is as:

y = f (Xi, µ, σ ) = 1

Xiσ
√
2π

exp(− (Xi − µ)2

2σ 2
)

(i = 1, 2, · · · , n) (16)

where n is the total number of random variables. Xi is the i
th

random variables, y is the probability density of Xi, µ is the

mean of Xi and σ is the standard deviation of Xi.

When the increment 1MD2 ∼ N (µ, σ 2), the probability

of 1MD2 in (µ−3σ, µ+3σ ) is 0.9974. It could be regarded

as the abnormal state of rolling bearings when the 1MD2

exceeds the range of µ ± 3σ .

Part 2 Determining fault sample

The vibration signal S(t) of rolling bearing is decomposed

through VMD and the IMFs can be obtained. The optimal

IMFs are obtained through the maximum value of kurtosis

and correlation coefficient. Then the envelope spectrum of
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FIGURE 2. Schematic of proposed methods.

FIGURE 3. Flowchart of coarse-to-fine diagnosing strategy for initial fault.

the optimal IMFs denoised by Multipoint Optimal Mini-

mum Entropy Deconvolution Adjusted (MOMEDA) [45] is

obtained through Hilbert transformation. The Autogram [46]

is used to optimize the central frequency and bandwidth for

the envelope analysis. The fault could be identified by the

fault feature frequency from the envelope spectrum.

Part 3 Backtracking algorithm

The sampling point determined by 3σ criterion of 1MD2

indicates that the bearing has been in abnormal state, but

it may not be the real initial fault. Aiming at this problem,

the backtracking algorithm is used to determine the earliest

sampling point of fault, which mainly contains the following

steps.

TABLE 1. Parameters of the tested bearing.

Step 1 Initially, let a = 0 and b = θ .Where θ is the number

of rolling bearing sampling point determined by 3σ criterion

of MD2.

Step 2 Let

Sc = S[(a+b)/2] (17)

where [·] is the integral function that could be used to obtain

the largest integer that does not exceed the real number. Sc is

the cth sampling point of rolling bearing.

Step 3 If Sc is the fault sample, let b = c, else let a = c.

Then go to Step 2 if (b− a) > 1, else go to Step 4.

Step 4 Sb could be regarded as the initial fault sample if it

meets the β deviation criterion (the β deviation criterion can

only be executed once).

The content of the β deviation criterion is: Let β=10 (the

value of β is determined by the empirical analysis), a = c−β

and b = c. Then go to Step 2.

The reason for using β deviation criterion is to avoid Sb
is not the expected initial fault due to the complex operation

condition of rolling bearings. For example, the bearing fault

feature could be detected at a certain time, however the fault

feature could not be detected in the following sampling time

due to the uncertainty of the operating state, then the fault

feature could be detected again.

B. HI CONSTRUCTION BY USING MD-CUMSUM

The optimal multiple domain features are used to construct

Mahalanobis reference space. n-IMFs of vibration signal are
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extracted using VMD. The singular value (time-frequency

domain) of each IMF is calculated through SVD. These fea-

tures in time-frequency domain and time domain consistent

with the performance degradation are used to construct the

Mahalanobis reference space and fused into MD1. The per-

formance degradation condition could be evaluated by MD1.

Although the MD1 has a good performance in reflecting

the similarity among these data, it is difficult to simply reflect

the state of each data sample from the MD1 when there

is a continuous small change among these data samples.

Therefore, the CUMSUM method is introduced to optimize

the MD1 and extract the required HI, which can accurately

reflect the monotony of the bearing health status.

CUMSUM is a perfect way to monitor the out-of-

control processes [47], [48]. The CUMSUM can provide a

monotonous growth curve when the rolling bearing starts to

degrade [49]:

CS+
i = max(0,MD1i − (µ0 + e) + CS+

i−1) (18)

CS−
i = max(0, (µ0 − e) −MD1i + CS−

i−1) (19)

where the CS+
i and CS−

i are the upward and downward

CUMSUM. µ0 is the target value, which is calculated by the

mean of the standard values. e is the error value, which is

typically half of the sample standard deviation.

The HI′ is given as following:

HI ′ = CS+
i (20)

In order to facilitate calculation and analysis, the HI is

obtained by normalizing HI′ through Eq. (21).

HI =
HI ′ − N ′

min

N ′
max − N ′

min

(21)

where 0 ≤ HI ≤ 1.

A largerHImeans a worse bearing health state, and it indi-

cates that the bearing is completely damagedwhenHI=1. The

different performance degradation stages of rolling element

bearing will be determined by the thresholds of HI.

The performance degradation process of rolling bearing

should generally involve different four stages such as normal,

incipient fault, severe degradation and failure [8], [28], [50].

In order to determine the different performance degradation

stage, the standard of the degradation stages takes the advan-

tages of the slope change in the curve indicator and setting

the appropriate thresholds to clearly differentiate the different

degradation stages [28], [43].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

Two datasets from different experiments [51], [52] are uti-

lized to validate the proposed method. The rolling bearings

vibration signals with natural evolution defects are obtained

in these two experiments.

A. EXPERIMENT 1

The dataset acquired from ‘‘IEEE PHM 2012 Prognostic

Challenge’’ with an experimental rig called PRONOSTIA

FIGURE 4. Test rig of PRONOSTIA.

FIGURE 5. RMS and Peak of raw data collected from the test rig.

are performed firstly. PRONOSTIA test rig is shown in

Fig. 4 [51]. The motor power equals to 250 W and the sec-

ondary shaft speed is less than 2000 rpm. The radial force

reduces the service life by setting the maximum dynamic

load 4000 N. The vibration data were collected every 10s.

Besides, the length of data was 2,560 points with the sampling

rate 25.6 kHz. The basic parameters of the tested bearing are

shown in Table 1 and the BPFI is calculated as 221.66 Hz.

The dataset is processed by using the proposed method

mentioned in Section 3. According to the research results

of our team, the trends of RMS and Peak shown in Fig. 5

are consistent with the bearing performance degradation

through calculating the correlation between the features in

time domain and MD [52]. The trends of singular values of 4

IMFs extracted from time-frequency domain features through

VMD are shown in Fig. 6, which are similar to RMS and Peak

and could reveal the degrading process of rolling element

bearing. Therefore the RMS, Peak and singular values of 4

IMFs could be used to construct the Mahalanobis reference

space and fused into MD1. The five optimal time domain fea-

tures shown in Fig. 7 containing Clearance factor, Kurtosis,

Crest factor, Impulse factor and Shape factor are sensitive

to initial failure of rolling element bearing [52], which have

the maximum value in the same time. Considering the sin-

gular values of 4 IMFs all abruptly increase simultaneously

and the moment of abrupt increase is similar to that five

optimal time domain features. It means that when a sudden

increase occurs, the rolling bearing moves from the healthy

state to the degraded stage [30]. So these five optimal time
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FIGURE 6. Singular values of IMFs of raw data.

FIGURE 7. Five optimal time domain features of raw data.

FIGURE 8. MD2 of initial fault of rolling element bearing.

domain features and the singular values of 4 IMFs could be

used to construct the Mahalanobis reference space. Since the

test bearing is in good condition before the experiment, the

first 30 datasets of MD2 are used as normal condition data

by vibration signal analysis. The MD2 shown in Fig. 8 is

obtained.

The coarse-to-fine diagnosing strategy is used to determine

the initial fault of bearing. 1MD2 should be confirmed to

obey the normal distribution before applying the 3σ crite-

rion. The values of the increment of MD2 are calculated

as shown in Fig. 9. It can be calculated that 1MD2 ∼
N (0.1170, 6.24112) as shown in Fig. 10. From Fig. 9 it

exceeds the threshold of 3σ from the 1073th sampling point.

Then the earliest fault of bearing is determined by the back-

tracking algorithm. After using the backtracking algorithm,

the envelope spectrums of the 1071th and 1070th sampling

points are shown in Fig. 11. It is shown in Fig. 11(a) that the

FIGURE 9. Increment of MD2.

FIGURE 10. Normal distribution of increment of MD2.

FIGURE 11. Envelope spectrum of sampling points.

high impact of the 1071th sampling point can be seen most

conspicuously at 225 Hz and the harmonics around 2X of

BPFI. There is a difference of 3.34 Hz between the identified

characteristic frequency (225 Hz) and the theoretical value

(221.66 Hz), because of the slip and preload of rolling bear-

ing. However, the envelope spectrum of the 1070th sampling

point presented in Fig. 11(b) does not clearly reveal the 2X

138534 VOLUME 7, 2019



Q. Li et al.: HI Construction Based on MD-CUMSUM With Multi-Domain Features Selection

FIGURE 12. MD1 of condition monitoring of rolling element bearing.

FIGURE 13. HI and thresholds of rolling element bearing.

of inner race fault characteristic frequency, which is masked

by the background noise. Therefore the 1071th data point can

be regarded as the sampling point of initial fault, which is the

boundary between normal stage and incipient fault of rolling

bearing.

To determine the boundary between incipient fault and

severe degradation and the boundary between severe degra-

dation and failure of rolling element bearing, HI using

MD-CUMSUM needs to be calculated. MD1 shown in

Fig. 12 demonstrates severe fluctuation because of unstable

damage propagation in rolling element bearing. The first

30 datasets of MD1 are also used as normal condition data

of rolling element bearing, which are regarded as standard

values, therefore the target value µ0 is calculated as 0.9401.

The error value e is 47.1415, which is half of the sample

standard deviation.

According to Eq. (18), Eq. (20) and Eq. (21), HI is cal-

culated as shown in Fig. 13. Compared with Fig. 12, the

HI using MD-CUMSUM is more stable and consistent with

the monotonic principle of bearing performance degradation

state. In Fig. 13, the 1179th data point exceeds the threshold

of 0.1 and the 1304th data point exceeds the threshold of 0.5.

Therefore, the 1179th data point is regarded as the boundary

between incipient failure and severe degradation of rolling

element bearing, and the 1304th data point is the boundary

between severe degradation and failure of bearing.

According to the determined sampling point of initial fault

and the thresholds in Fig. 13, four degradation stages of

rolling element bearing can be determined by HI as Fig. 14,

such as (1) Normal stage: from the 1st sampling point to the

FIGURE 14. HI using MD-CUMSUM.

FIGURE 15. Test rig of bearings run to failure.

TABLE 2. Parameters of tested Rexnord ZA-2115 bearing.

1070th sampling point, (2) Incipient fault: from the 1071th

sampling point to the 1178th sampling point, (3) Severe

degradation: from the 1179th sampling point to the 1303th

sampling point, (4) Failure: from the 1304th sampling point

to the last sampling point.

B. EXPERIMENT 2

Aiming at making a further verification of the presented

method, the second tested dataset is used. This data set

was provided by the Intelligent Maintenance System (IMS)

Center. Four Rexnord ZA-2115 double-row bearings were

installed on a shaft of the test rig as shown in Fig. 15 [53]. The

shaft was driven by an AC motor at 2000 rpm and connected

by a friction belt, and a 6000 lbs radial load was put on the

shaft by a spring mechanism. The vibration signal data was

collected every 10 minutes with a sampling rate of 20 kHz

and the data length was 20,480 points. It took 7 days for the

rolling element bearing to fail. The basic parameters for the

tested bearing are shown in Table 2 and BPFO is 236.42 Hz.

MD1 andMD2 are calculated by using the same method as

experiment 1. The first 30 datasets of MD2 shown in Fig. 16

are used as normal state data for rolling bearing. The values

for the increment of MD2 are calculated as shown in Fig. 17.
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FIGURE 16. MD2 of initial fault of rolling element bearing.

FIGURE 17. Increment of MD2.

FIGURE 18. Normal distribution of increment of MD2.

Because 1MD2 ∼ N (0.1267, 5.17942) as shown in Fig. 18,

the 3σ criterion could be utilized. It exceeds the threshold

of 3σ from the 703th sampling point as shown in Fig. 17.

Autogram is a newly developed and valid method to optimize

the central frequency and bandwidth for envelope analysis

[46]. After the backtracking algorithm, the 533th sampling

point is shown in Fig. 19. It could be observed in Fig. 19

that the central frequency is 4921.875 Hz and the bandwidth

is 156.25 Hz. However, according to Ref. [54], it is clear and

important for diagnosis when the selected bandwidth includes

3 to 5 harmonics of the characteristic frequency. Because

the BPFO is 236.42 Hz, and the bandwidth reselected as

1150 Hz is appropriate. The Autogram of the 532th sampling

point is shown in Fig. 20. The optimal center frequency

shown in Fig. 20 is 4375 Hz and the bandwidth is 1250 Hz,

which could be regarded as the optimal filter parameters. The

squared envelope spectrum based filtering algorithm of the

533th sampling point is displayed in Fig. 21(a). It is shown

FIGURE 19. Autogram of the 533th sampling point.

FIGURE 20. Autogram of the 532th sampling point.

in Fig. 21(a) that the high impact of the 533th sampling

point can be seen most conspicuously at 230.7 Hz and the

harmonics around 2X and 3X. These high impacts are close

to the theoretical value 236.42 Hz of the outer race fault

characteristic frequency. However, it could be observed in

Fig. 21(b) that the squared envelope spectrum of the 532th

sampling point does not clearly reveal the outer race fault

characteristic frequency, which is masked by the background

noise. Therefore the 533th sampling point can be regarded as

incipient failure, which is the boundary between normal stage

and incipient fault of rolling bearing.

Aiming at determining the boundary between incipient

fault and severe degradation and the boundary between severe

degradation and failure of rolling element bearing, MD1 is

calculated and shown in Fig. 22. The first 30 datasets of MD1

are used as normal condition data of rolling element bearing,

therefore, the target value µ0 is calculated as 0.9187 and the

error value e is 13.9740. According to Eq. (18), Eq. (20) and

Eq. (21), the calculation of HI MD-CUMSUM is shown in

Fig. 23. In Fig. 23, it exceeds the given threshold of 0.1 from

the 727th data point and exceeds the threshold of 0.5 from

the 921th data point. Therefore, the 727th data point can be

considered as the boundary between incipient fault and severe

degradation, and the 921th data point is the boundary between

severe degradation and failure of bearing.

According to the sampling point of initial fault and thresh-

olds in Fig. 23, four degradation stages of rolling bearing can

be identified by HI as shown in Fig. 24, such as (1) Normal
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FIGURE 21. Envelope spectrum of sampling points.

FIGURE 22. MD1 of condition monitoring of rolling element bearing.

FIGURE 23. HI and thresholds of rolling element bearing.

stage: from the 1st data point to the 532th data point, (2)

Incipient fault: from the 533th data point to the 726th data

point, (3) Severe degradation: from the 727th data point to

FIGURE 24. HI using MD-CUMSUM.

FIGURE 25. Kurtosis of tested data.

the 920th data point, (4) Failure: from the 921th data point to

the last data point.

C. DISCUSSIONS

Aiming at demonstrating the advantages of the proposed

method when detecting the initial fault of rolling bearing,

an approach by using ICD and tunable Q-factor wavelet

transform [19] is used for comparison. In Ref. [19], the first

experimental dataset was provided by IMS, which is the same

with our proposed method as described in section 4.2. In their

method, the result by means of kurtosis indicator is presented

in Fig. 25, and the kurtosis indicator increases abruptly at

the 643th sampling point. The occurring time of the 643th

sampling point could be regarded as the severe fault [55].

Because the value of kurtosis at the 534th sampling point is

nearly the same as the normal state (1-533 sampling point),

the 534th sampling point is regarded as the incipient fault

of rolling bearing. The envelope demodulation spectrum of

the 534th data group after using ICD-OTQWT method is

presented in Fig. 26, and the outer race fault feature fre-

quency fBPFO = 236.42Hz and its side frequencies can be

extracted. However, compared with our result as shown in

Fig. 21(a), our method has the capacity to reveal the outer

race fault of the rolling bearing from the data group 648 to

533, which is 1 data group (10 minutes) earlier than Fig. 26.

Even Fig. 26 fails to reveal the 2X and 3X of outer race fault

characteristic frequency, which is immersed in heavy back-

ground noise. The reason is that the selecting of frequency

band is important for the demodulation, and using the de-

noised process to increase the SNR before envelope analysis
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FIGURE 26. Envelope spectrum of low Q-factor component.

TABLE 3. Comparison between ICD-OTQWT and the proposed method.

FIGURE 27. RMS of tested data.

with demodulation is necessary. The comparison between

ICD-OTQWT and the proposed method is shown in Table 3.

Aiming at verifying the presented method when determin-

ing the performance degradation stages of rolling element

bearing, a case in Ref. [56] is used for comparison. In their

method as shown in Fig. 27, the whole life of rolling element

bearing is drawn by the RMS of the vibration signal, which

uses the same test data provided by IMS as described in

section 4.2. According to the change of RMS, the perfor-

mance degradation of rolling bearing in the entire life is

divided into three stages [56], [57]. A test point selected one

day before the beginning of stage II is used to accurately

detect the incipient fault of rolling bearing. From Fig. 28, the

fault characteristic frequency could be revealed through the

envelope spectrum of the target mode. The harmonics could

be clearly seen after using their proposed method, which

indicates that the selected test point is fault and could be

regarded as initial fault of the rolling bearing. Compared with

their result, the tendency of the condition monitoring curve

MD1 shown in Fig. 29 is basically the same as Fig. 27, and the

boundary data point between each performance degradation

stage depended on the Fig. 24 is similar to theirs. Further-

more, the sampling point of initial fault (boundary between

Stage I and Stage II) shown in Fig. 24 is determined by using

coarse-to-fine diagnosing strategy, which can reveal the fault

at an early time more reasonably than the test point selected

intuitively as shown in Fig. 27. Therefore the correctness and

rationality of the HI are verified when dividing the stages of

FIGURE 28. Envelope of final optimal target mode.

FIGURE 29. MD1 of tested data.

TABLE 4. Comparison between the RMS and the proposed method.

performance degradation for rolling bearing. The comparison

between RMS and the proposed method is shown in Table 4.

Because the features correlated with performance degrada-

tion of rolling element bearing are fused into a single HI by

using MD-CUMSUM, the HI is more robust than the single

feature RMS. Through comparison and discussion, it can be

drawn that the HI is effective in estimating the performance

degradation state and identifying the fault at an early stage of

rolling element bearing.

Although the choice of the two experimental data are low

speed (around 2000 rpm), the proposed method is still appli-

cable to high speed bearings experiment. When it comes to

high speed bearings, the amplitude of HI will be larger than

that in low speed bearings, and it will take less time to cause

bearing failure, especially in Stage II, Stage III and Stage IV.

Compared with experiment 2, the Autogram has been

actually tried for experiment 1, but it fails to reveal the

appropriate demodulation band for square envelope analysis.

So the center frequency and bandwidth are selected semi-

empirically in experiment 1 [46]. The reason why Autogram

is not applicable that the data lengths of experiment 1 (2,560

points for each sample) is too short. The data length (20,480

points for each sample in experiment 2) is large enough could

make the result of Autogram more accurate and reliable.

The proposed method could be used in initial fault diag-

nosis and state monitoring under the constant speed condi-

tions, the future work may focus on the fault diagnosis and
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performance degradation assessment of rolling bearing under

speed variation conditions.

V. CONCLUSION

An approach about HI construction based onMD-CUMSUM

is proposed to evaluate the different degradation stages of

rolling bearing. Two experiments are used to verify the

proposed methods in initial fault diagnosis and degradation

stages division of bearing. The conclusions can be drawn as

follows.

(1) The coarse-to-fine diagnosing strategy could be used

to determine the initial fault of rolling bearin1g as early and

accurately as possible.

(2) The HI usingMD-CUMSUMovercomes the shortcom-

ing that MD is inconspicuously to reflect the small variation

of sample and the monotonicity of the bearing health state.

The four performance degradation stages of bearing can be

more rationally reflected depend on the sampling point of

initial fault and the thresholds of normalized HI.

(3) The proposed method based on MD-CUMUM with

multi-domain features selection has the ability to be

employed in real-time production due to the effectiveness and

efficiency of the used algorithms.
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