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Abstract 

In a panel setting, we analyse the speed of (beta) convergence of (cause-specific) mortality and life 

expectancy at birth in EU countries between 1995-2009. Our contribution is threefold. First, in 

contrast to earlier literature, we allow the convergence rate to vary and thereby uncover significant 

differences in the speed of convergence across time and regions. Second, we control for spatial 

correlations across regions. Third, we estimate convergence among regions, rather than countries, 

and thereby highlight noteworthy variations within a country. Although we find (beta) convergence 

on average, we also identify significant differences in the catching-up process both across time and 

regions. Moreover, we use the coefficient of variation to measure the dynamics of dispersion levels 

of mortality and life expectancy (sigma convergence) and, surprisingly, find no reduction on average 

in dispersion levels. Consequently, if the reduction of dispersion is the ultimate measure of 

convergence then, to the best of our knowledge, our study is the first that shows a lack of 

convergence in health across EU regions. 

 

Key words:  health convergence, beta-convergence, sigma-convergence, catching-up, spatio-

temporal modelling, Bayesian models, INLA.  

 

 

JEL: I14, I15, C33, C11 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

2 

 

 

1.- Introduction 

Numerous previous studies have analysed economic convergence, i.e. the reduction of disparities in 

GDP per capita and productivity, and its determinants (for a survey, see Durlauf et al. [1]). Economic 

convergence, however, can only give a partial picture of the dynamics of inequalities across 

countries [2]. Well-being is multifaceted and typically involves many aspects beyond income. 

Therefore, to analyse the reduction of disparities in well-being across countries, it would appear that 

simple income measures are insufficient. It is of course impossible to directly control for all the 

dimensions of life quality. However, it is possible to employ summary measures that encompass a 

wider range of factors of well-being [3,4].  

The main objective of this paper is to capture a wider set of dimensions for the quality of life. As a 

result, in an effort to look beyond income, we analyse convergence using life expectancy and 

(cause-specific) mortality in the European Union (EU-27) regions from 1995 to 2009. Our 

contribution is threefold. First, in contrast to earlier literature, we allow the convergence rate to vary 

and thereby uncover significant differences in the speed of convergence across time and space. 

Second, we control for spatial correlations across regions. Third, our dataset is more disaggregated 

because it comprises of regions rather than countries, and allows us to develop a more detailed 

picture of disparity dynamics. 

Both life expectancy and mortality have been suggested as valid measures for the quality of life. 

Sen [4] and Maslow [5] argue, for instance, that one of our most basic needs is to prevent diseases 

and premature death. Furthermore, Becker et al. [6] propose longevity (i.e. life expectancy at birth) 

as not only a quantity but also a quality measure of well-being. Mayer [7] also proposes life 

expectancy as a suitable measure, arguing that it is the best indicator of population welfare 

available. Similarly, Sen [3] advocates mortality as an indicator of social ill-being. Mortality is directly 

and naturally related to many factors that determine quality of life. For instance, mortality can be 

taken as a summary measure of the availability of health care, social services and orderliness of 

urban living, among others. 

From another point of view, there is abundant literature dealing with income-dependent health 

inequalities [8-18]. The literature indicates a causal relationship between health inequalities and 

income. However this causation can be bidirectional [19]. This topic has motivated the construction 

of different measures of health inequalities. In this sense, the Concentration Index measures the 

socioeconomic inequality of health taking into account both the level of health of each individual and 

as well as the rank of each individual in the socioeconomic domain [17]. This index, similar to the 

Gini coefficient used in our paper, is not without controversy related to, among others, the mirror 

property and the invariance to measurement scale [20-27].  
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Starting with Wennberg and Gittelsohn [28], there is also a large health economics literature on 

‘small area variations’, analysing regional differences in health care spending and outcomes1. In 

fact, this connects with another brand of literature, more general from a macroeconomic point of 

view, on the concept of ‘agglomeration’. One of the earliest and well-known theory is the Myrdal 

‘cumulative causation’ [29]. According to this, one region will grow at the expense of another. 

Following Myrdal’s agglomeration concept, Friedmann [30] attributes concentration to industrial and 

capital investment growth, Keeble et al [31] introduced the problem of accessibility and Krugman 

[32] with the ‘New Economic Geography’ aimed to explain the formation of economic agglomeration 

in certain geographical areas. These last theories have encouraged different applications of the 

concepts aiming to understand the variations among regions. For instance, a recent paper of Felder 

and Tauchman [33], uses these lasts concepts to determine the differences in the efficiency of 

health production in the German regions.  

 

Convergence and Health 

The concept of convergence, in its most general sense, is the reduction or equalising of disparities 

[34]. Convergence is a real and long-term phenomenon directly related to growth processes; that is, 

convergence exists when two or more countries’ levels of wellbeing or development tend towards 

one another over time [35]. 

There are two well-known convergence hypotheses; the absolute and the conditional convergence 

hypothesis. In the former, the per capita income of countries or regions converges in the long term 

without taking into account initial conditions. Poorer countries and regions tend to grow faster than 

richer ones and there is a negative relationship between average growth rates and initial levels of 

income. It is assumed that all economies converge to the same stationary state [36].  

On the other hand, the conditional convergence hypothesis assumes that the per capita income of 

countries and regions converge in the long term provided that their structural characteristics (i.e. 

technology, human capital, institutions, population growth rates, preferences) are the same [36,37]. 

With absolute convergence, the initial conditions are irrelevant. However, with conditional 

convergence, the equilibrium in each economy varies and each tends toward its own equilibrium.  

Beta and sigma convergence 

The customary and most widely used instrument for measuring convergence is beta-convergence 

analysis. This began with the studies conducted by Baumol [38] and steadily grew in popularity [35, 

                                                 
1
 Pointed out by one of the anonymous reviewers 
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36, 39, 40]. Beta-convergence is defined as the negative relationship between the initial level of 

income and the subsequent income growth. 

Another instrument used to measure convergence, which became popular with the work of Quah 

[41], is sigma-convergence. This author showed that the traditional relationship in initial growth level 

did not give a clear answer for convergence, as it tended to be negative if differences in income 

were not reduced. According to his theory, there is sigma-convergence if the dispersion and 

inequalities between countries are reduced over time. Sigma-convergence can be calculated using 

different dispersion measures (variance, standard deviation or coefficient of variation). 

Health convergence 

Life expectancy and mortality, instead of GDP, have both been suggested as valid measures for the 

quality of life. In a cross-country study comprising of virtually the entire world, Preston [42] showed 

that while keeping income constant, the change in the longevity-income profile represented gains of 

fifteen years in life expectancy. In fact, macroeconomic studies of economic growth, such as Barro 

[43], have already found that life expectancy is a key predictor of economic growth. Pritchett and 

Summers [44] corroborated by using instrumental variables that countries with higher incomes enjoy 

greater health, suggesting, as did Anand and Ravallion [45], that the main reason for this 

relationship is the income levels of the poor in addition to public expenditure on healthcare. Wilson 

[46] studied the world distribution of life expectancy and found a decrease in its dispersion (i.e. 

sigma-convergence). Becker et al. [6], also in a worldwide study examining whether there is a 

positive correlation between longevity and income per capita, showed that convergence exists with 

longevity, while it does not with income. Glei et al. [47] find that there is no sigma-convergence for 

life expectancy at older ages in high-income countries. Edwards [48] points out that there is beta-

convergence but not sigma-convergence in life expectancy at birth across countries (although he 

finds sigma-convergence within countries). Clark [49], however, does not find beta-convergence, but 

rather that improvements in life expectancy have been greater for developing countries. Similarly, 

Eggleston and Fuchs [50], studying life expectancy in industrialised countries, point out that most 

gains in life expectancy have occurred in adult mortality, in particular for those over 65.  

In terms of mortality, Edwards and Tuljapurkar [51] examining differences in the age pattern of 

mortality between countries over time (for practically the whole world), show that there is no sigma-

convergence in mortality in industrialised countries. In the study previously referred to, Clark [49] 

finds that reductions in infant mortality are greater in high-income countries. Edwards [48] finds that 

reductions in infant mortality are greater in high income countries. If there is  a positive correlation 

between initial income and mortality, then we could say that neither Edwards [48] and Clark [49] find 

(beta) convergence. Finally, d’Albis et al. [52] did not find (beta and sigma) convergence across 
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countries when they considered the entire sample of industrialised countries, but they do provide 

some evidence of (sigma) convergence among a subset of countries.  

Earlier literature does not give conclusive results for the use of these variables as measures of well-

being. The main reason is that these variables have little variation in the short run. Significant 

changes are needed in social, health and demographic factors to provoke sufficient variation in 

mortality and life expectancy. However, in the long run, mortality and life expectancy variables can 

be more sensitive to changes than GDP [3].  

EU-27 convergence 

Our interest in the regions of the twenty-seven countries of the European Union (EU-27) lies 

specifically in one of the main priorities of the Treaty establishing the European Community: 

specifically economic and social cohesion. In keeping with Monfort [53], Article 158 of the Treaty 

(and its updated version Article 174) states, ‘In particular, the Community shall aim at reducing the 

disparities between the levels of development of the various regions and the backwardness of the 

least favoured regions or islands, including rural areas.’ Although it is true that the purpose of the 

cohesion policy goes far beyond mere economic convergence, the reduction of regional disparities 

has been measured as the convergence of regional levels of GDP per capita. In fact, pure economic 

convergence has become a major aspect in assessing the effectiveness of the European Cohesion 

Policy [53].  

In respect of this, and adhering to Eckey and Türk [54], despite differences in model specification 

and observations, most studies on convergence in regional GDP per capita estimated (beta) 

convergence among EU countries, at both EU-15 and EU-27 level. However, the speed of 

convergence is not constant, neither in time nor between regions [53, 55]. With regards to sigma-

convergence, Monfort [26] shows that convergence between EU-15 regions was strong up until the 

mid-90s and stabilised thereafter (his analysis ends in 2005). However, as he found that disparities 

continued to decrease rapidly for the EU-27 regions, he concluded that the poorest regions in the 

new Member States were catching up with the Union’s richer territories.  

In summary, we formulate three hypotheses. Our first hypothesis is that by analysing regions 

instead of countries we can observe sufficient variability in the health variables of interest to 

estimate the (dis)similarity of their distribution over time. Since, at least at the aggregate level, there 

is much evidence of a positive association between income and health, our second hypothesis is 

that, when considering the time period at the end of the economic boom (i.e. 2005-2009), there will 

be beta-convergence in health between the EU-27 regions, but not sigma-convergence. Our third 

hypothesis is that, like economic convergence, the speed of health convergence is neither constant 

in time nor between regions. 
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The rest of the paper is organised as follows. We explain the methodology in section two. The 

results of the model are explained and discussed in section three. Finally, we conclude in section 

four. 

2.- Methods 

Data setting 

We use data from 271 regions of the 27 EU member countries from 1995 to 2009. Data are 

obtained from EUROSTAT [56]. 

Our rationale for using regional data is twofold. First, it is the regions, rather than the countries, 

which are the subject of cohesion policies. Second, as we will explain below, with limited time series 

(T), as in our case (i.e., 1995-2009, 15 years), in order to obtain consistent estimates of the 

parameters of interest we needed a large N (thus instead of only seventeen countries, we have two 

hundred seventy-one regions). 

 

Econometric model 

Models are specified based on the well-known beta-convergence hypothesis [35-39], originally 

specified as a cross-section model: 

 

 2

0 ~ 0,T ug y u u N I            {1} 

 

where gT  denotes the vector of (dependent variable) average growth rate in the period (0,T); y0 is 

the vector of (dependent variable) initial levels; u is a zero-mean and homoskedastic (
2

u  is the 

constant variance) normally distributed disturbance term; and  and  denote (unknown) 

parameters. 

 

The absolute β-convergence hypothesis (equation {1}) rests on the assumption that there is a 

negative correlation between the initial level (of the dependent variable) and the growth rate (of such 

a variable). Therefore, β–convergence exists if the estimated value for β, the coefficient of interest, 

is (statistically significant) negative. If this is true, poorer economies (periphery) grow faster than 

richer ones (core) and will catch them up in the long run.  

 

However, it is more reasonable to assume that a negative correlation exists between growth rate 

and, rather than level, the distance the level of the dependent variable is from its steady state 

equilibrium. Therefore, poorer regions do not necessarily grow faster than richer regions, because 
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the latter may be even further from their steady state equilibria [57]. As a consequence, in this paper 

we use the conditional specification of the β-convergence hypothesis: 

 

 2

0 ~ 0,T ug y X u u N I             {2} 

 

where X is a matrix of explanatory variables (of convergence); and  the associated (unknown) 

parameters.  

 

In contrast to more standard studies, we do not specify cross-section, but rather spatio-temporal 

models, i.e. dynamic panel data, from a Bayesian approach. In fact, we want to explicitly consider 

the time dimension in our data. As we have argued, the convergence rate may have been different 

for each country and/or have varied during the period under analysis. Furthermore, with small T, we 

need a large N in order to obtain consistent estimates. 

 

In particular, we have specified the following model: 

 

       

       

         

 

1 1 2 1

3 2 4 1 5 2 6

7 8 9 10 11

12

log log log log

log log log log

log sec log log exp log log

log bpg

ijt j jt ijt jt jt jt

jt jt jt jt jt

ijt ijt jt ijt ijt

jt i

y y gdppc gdppc

gdppc gdppc rate gdppc rate Gini

univ pub umy ufy

S

   

   

    



 

  

    

   

    

 ijtu

                {3} 

Where y denotes one of the four dependent variables we chose. First, as in most previous studies 

on health (in concurrence with the seminal paper of Sen [4]), we use life expectancy at birth (in 

years). However, instead of using total mortality, we prefer to use here (several) cause-specific 

mortality. Total mortality is actually a combination of many phenomena that could undermine this 

variable as an indicator of social ill-being [3]. In particular, we chose those causes of mortality most 

associated with socioeconomic deprivation in the literature [58-60]: ischemic heart disease mortality; 

cancer mortality; and larynx, trachea, bronchus and lung cancer mortality (cause-specific mortality 

was standardised as death rate per 100,000 inhabitants, 3-year average).  

The subscript i denotes region (i=1,…,271); j country (j=1,…,27); t year (t=1995 1996,…, 2009); α, β  

and γ denote unknown parameters; S denotes spatial random effects (see below); and u normally 

distributed disturbance term. Some data is missing for the four dependent variables mainly for the 

beginning of the period and specifically for some regions of Belgium, Denmark, Italy, Poland, 

Romania and Slovenia.  
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The main explanatory variables of the growth rate of the dependent variables are the GDP per 

capita (gdppc) (data available regionally), and the Gini index (Gini) (data available only at country 

level). We believe that the growth rate of the dependent variables is determined not only by the level 

of GDP per capita in absolute terms but also by its growth rate (gdppcrate). Note that we assume 

that the effects, if any, of GDP per capita (both in levels and as rates) on health convergence, are 

distributed in time. Hence, we include the current level (t) and two lags (t-1 and t-2) of GDP per 

capita and two lags (t-1 and t-2) of GDP per capita rate.  

According to the EUROSTAT [56], the Gini index is defined as the relationship of cumulative shares 

of the population arranged according to the level of equivalised disposable income, to the 

cumulative share of the equivalised total disposable income received by them. More conveniently, it 

can be defined as twice the covariance between income and income ranks2. The Gini coefficient 

ranges between 0 and 1, with 0 signifying complete income equality and 1 signifying complete 

inequality. In a meta-analysis of multilevel studies, involving a total of more than 61 million subjects, 

Kondo et al. [61] conclude that people living in regions with high income inequality (a higher Gini 

coefficient) have an increased risk of premature death, regardless of individual socioeconomic 

status, age, or gender. In particular, the mortality risk increases 8% per 0.05 increase in the Gini 

coefficient. Furthermore, these authors also seem to confirm a theoretical ‘threshold effect’ (a Gini 

coefficient equal to 0.3) above which disparities in health outcomes are observed. 

Moreover, we also consider additional variables that may secondarily contribute to health 

convergence. These variables are available both at the regional and country level. The panel that 

we create with these data is unbalanced. Data was not available for all period and for all regions.  

Regional level:  

Umy: Youth male unemployment rate. Unemployment rate (15-24 years old) for young males from 

1999 to 2009 in average for the regions of EU. For some 

regions, some data is missing for some years, mainly for the 

last period.  

                                                 
2
 We appreciate this definition from the other anonymous reviewers. 
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Ufy: Youth female unemployment rate Unemployment rate (15-24 years old) for young female from 

1999 to 2009.  

Sec: Percentage of secondary 

students 

Ratio of the sum of level 2 students (lower secondary or 

second stage of basic education), level 3 students (upper 

secondary education) and level 4 students (post-secondary 

non-tertiary education) over total population from 1999 to 

2009. Some data is missing, mainly from Germany, Greece, 

Spain and United Kingdom regions.  

Univ: Percentage of university 

students 

Ratio of the sum of level 5 and 6 students (tertiary education) 

over total population from 1999 to 2009. Data is missing also 

for the same countries as for the secondary students 

variables. These countries do not report to EUROSTAT all 

data on education. 

 

Country level: 

Bpg: External balance  The ratio of exported goods minus imported goods over the 

country’s GDP. All data available from 1995 to 2009, except 

for the first years of the period in Greece.  

Pubexp: Public expenditure rate Ratio of goods and services bought by the State over the 

country’s GDP. All data available from 1995 to 2009. 

 

There are three reasons that led us to include these variables. First, since the main explanatory 

variable is the convergence of GDP per capita and given that in a previous study we found them to 

be associated with economic convergence in the EU (see details in Maynou et al. [28]), these 

additional variables might influence, at least, the initial situation prior to convergence. Second, some 

of these variables could be clearly associated with socioeconomic deprivation, e.g. unemployment 

and percentage of secondary and tertiary students [56]. Third, when estimating the models these 

variables are the ones giving us the best model in terms of goodness of fit (DIC criteria).  
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Some of the coefficients, and in particular the coefficient of interest, β, have subscripts. In fact, we 

specify (dynamic) random coefficient panel data models [62] or, in mixed models terminology, we 

allow (some of the) coefficients to be random effects [63]. In other words, we have allowed them to 

be different for the various levels we have considered. Thus, for example, the coefficient of interest, 

β, varies per year, 

 

t t     

 

and also per country, 

  

jt jt     

 

With respect to the other explanatory variables, the random effects are associated with different 

levels depending on the final model3.   

 

When the random effects vary by country, we assume they are identical and independent Gaussian 

random variables with constant variance, i.e.  2~ 0,jt N   . When the random effects vary by 

year, we assume a random walk of order 1 (i.e. independent increments) for the Gaussian random 

effects vector (although we also assume a constant variance) [65]. 

 

 2

1 ~ 0,jt jt jt jt N          

 

Spatio-temporal adjustment 

 

In all models, the disturbance terms, although Gaussian, are not identically and independently 

distributed. In fact, with spatial data, as is in our case, it is necessary to distinguish between two 

sources of extra variability, ‘spatial dependence’ or clustering, and non-spatial heterogeneity [66, 

67]. In our case, as we have the time dimension in our data, there is also temporal dependency (i.e. 

serial autocorrelation). 

To take into account this spatio-temporal extra-variability, we introduce some structure into the 

model. Heterogeneity is captured by using the random effect associated with the intercept (j) 

                                                 
3
 We have a preliminary estimation of all models allowing variation on the three levels (country/time) for all 

coefficients. In the specification shown, we have provided only the best final models. Results not shown can 

be requested from the authors.  
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(varying at a country level j). Temporal dependency is approximated through the random walk of 

order 1, and linked to the random effect associated with the parameter of interest, t (varying at a 

year level, t). 

For spatial dependency, we follow the recent work of Lindgren et al. [68], and specify a Matérn 

structure [69]. In short, we use a representation of the Gaussian Markov Random Field (GMRF) 

explicitly constructed through stochastic partial differential equations (SPDE) which has as a 

solution a Gaussian Field (GF) with a Matérn covariance function [68].  

Inference 

To estimate the models we have chosen to use a conditional approach and not a marginal 

approach, for example, the 'fixed effects  model’. Three were the reasons that made us doing so. 

First, as is known, the fixed effects estimators eliminate unobserved individual heterogeneity. In fact, 

we are not only interested in control for this heterogeneity but also in model it, in particular as 

regards to the coefficient of interest. Secondly, we use a very complex design with multiple levels 

(regions, countries) and dimensions (spatial and temporal). This fact implies the existence of 

important heterogeneity both in the initial conditions (i.e. intercept), in the coefficient of interest, as in 

the coefficients associated with the other explanatory variables. Third, and maybe most important, in 

dynamic panel data models the fixed effects estimator is inconsistent, particularly with small T and 

large N, as in our case. This arises because the demeaning process, used to remove individual 

heterogeneity, creates a non-zero correlation between the regressors and the error [70-72].  The 

most popular consistent solution in the context of dynamic panel data models, is the use of the 

Generalized Method of Moments (GMM) estimator in first differences, also known as Arellano-Bond 

estimator [73,74], or its extension the ‘System GMM’ estimator [75]. In dynamic panel data models, 

however, unless the initial levels of the dependent variables are fixed constants [76], the lagged 

dependent variable and the error term values are correlated, which leads to inconsistent estimators, 

even for sufficiently large T and N [62]. This is the known problem of ‘state dependence’ [77,78]. 

 

In random coefficient dynamic panel data models, with the lagged dependent as the explanatory 

variable and, typically, with finite T, as a consequence, at least, of the state dependence problem, 

the assumption of independence between the regressors and the random effects does not hold 

[71,72]. However, Hsiao et al. [76] show that, even in this case, the use of a Bayesian approach 

performed fairly well. Under the Bayesian perspective, Zhang and Small [79], building on the Hsiao 

et al. estimator [76], allow the initial values to be correlated with the unit-specific coefficients and 

imposing stationarity on the unit-specific AR(1) coefficients. Their approach provides good estimates 

even when T is small. Maynou and Saez [80] show how the greater flexibility of the Bayesian 

estimation, a consequence of its hierarchical strategy, leads to better control of the biases 
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associated to dynamic panel data models. This control allows us to obtain estimates of the 

parameter of interest with less bias and greater efficiency than other estimators commonly used in 

dynamic panel data models (in particular, GMM estimates).  

 

Here inferences are performed using a Bayesian framework. This approach is considered the most 

suitable for accounting model uncertainty, both in the parameters and in the specification of the 

models, either in cross-sectional studies [81-83] or in panel data models [76, 62, 84, 85]. 

Furthermore, only under the Bayesian approach is possible to model both spatial (heterogeneity and 

spatial dependence) and temporal extra variability, with relatively sparse data in some cases (see 

Table 1). Finally, within the Bayesian approach, it is easy to specify a hierarchical structure on the 

(observable) data and (unobservable) parameters, all considered random quantities.  

 

Moreover, in this paper we prefer to relax the assumption of strict exogeneity, allowing a weak 

exogeneity of the lagged dependent variable, that is to say, that current shocks only affect future 

values of the dependent variable [84]. By doing this, we are able to obtain consistent estimates of 

the parameters of interest (even with fixed T). It is important to point out that this relaxation involves 

two requirements; first, a large N; i.e. obtained in our case by considering regional data; second, 

identically and independently distributed error terms. This can only be achieved by the space-time 

adjustment explained above, imposing a certain structure on the original disturbance term. 

 

Within the (pure) Bayesian framework, we follow the Integrated Nested Laplace Approximation 

(INLA) approach [86] (see [87] for further details).  

All analyses are made with the free software R (version 2.15.3) [89], though the INLA library [65, 

86]. 

3.- Results and discussion 

Descriptive 

In Table 1, we provide the descriptive statistics of the variables used in the models. This table 

collects the mean, the standard deviation, the minimum and the maximum value and the number of 

observations for each dependent and explanatory variables. In addition to this information, we have 

constructed maps (Figures 1 to 6), showing the evolution of these variables across regions for the 

study period. Figures 1 to 6 analyse the four dependent variables plus two representative 

explanatory variables.  
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Combining the results of Table 1 and the Figures, we can explain the evolution of these variables. 

For our first dependent, life expectancy, we can see that regions are moving towards the upper 

levels. Even if the trend of this variable in all EU countries has been a gradual increase, we find 

some heterogeneity during the last fifteen years, ranging from Latvia (mean: 71.413) to Italy (mean: 

80.317). For mortality due to ischemic heart disease and cancer mortality, the common trend in the 

EU has been a gradual decrease. Eastern European countries are those with the higher rates for 

both causes of mortality, while France and Spain have the lowest levels for ischemic heart disease 

mortality and Cyprus and Sweden the lowest levels for cancer mortality. For the last dependent 

variable, lung cancer mortality, there was no common trend for the EU countries from 1995 to 2009.  

GDP per capita and the Gini index are the two other variables represented in the maps. Figure 5 

shows that during the period studied, there was a common growth in the GDP per capita among all 

the EU countries. However, while until 2005 some levels rose, after that date some central regions 

experienced a drop in their GDPPC. In the last fifteen years, Luxembourg was the EU country with 

highest GDPPC, while Bulgaria had the lowest GDPPC. In terms of the GINI index, inequalities 

have increased or decreased in the EU countries, with no common path. The regions with more 

inequalities were in the east, while for the southern and central regions there has been a reduction 

in inequalities in the last fifteen years.  

Results of estimating health convergence models 

The results of estimating the models are shown in Tables 2. As stated above, the coefficient of 

interest in this analysis was β, which shows whether convergence or divergence existed between 

countries. However, we are not only interested in the existence of convergence; we also want to see 

the rate/speed of convergence/divergence. For this reason, we use the formula proposed by 

Šlander and Ogorevc [90] to compute the average speed of convergence4.  

In Table 2.1, we show the results of the estimations for the four models. For the variable 

corresponding to life expectancy, we found significant convergence between EU countries, as the 

coefficient was negative, -0.819%, (that is to say, a convergence rate equal to 0.819%) and 

statistically significant (the 95% credible interval did not contain the zero). The only explanatory 

variable which had a (statistically) significant effect on the convergence of life expectancy was 

external balance (0.0001%). For mortality due to ischemic heart disease, we also found 

convergence between EU countries, as the coefficient of interest was negative, -1.557%, and 

statistically significant. In this model the significant explanatory variables which have an effect on 
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convergence were GDP rates, 0.1214% (lag 1) and 0.12% (lag 2), and public expenditure,                

-0.0045%. As for standardised cancer rates, the model also showed convergence, -1.934%. In this 

case, the explanatory variables which had an effect on the convergence of cancer mortality were 

secondary students, -0.00183%, university students, 0.00075%, and young unemployed male,          

-0.00047%. For lung cancer mortality, we also found significant convergence among EU countries,     

-0.744%. The explanatory variables which had an effect on the convergence of lung cancer mortality 

were GDPPC, -0.00429% (lag 1), secondary students, -0.00269%, university students, 0.00142% 

young unemployed female, -0.00051%, and external balance, 0.00205%. 

Summing up, our results indicate that there was (statistically) significant beta-convergence in life 

expectancy and mortality (ischemic heart disease, lung cancer and cancer) among the EU-27 

regions for the studied period. In particular, the speed of the beta-convergence was, on average       

-1.934% per year (cancer mortality); -1.557% per year (mortality for ischemic heart disease);             

-0.819% per year (life expectancy); and -0.819% (mortality for lung cancer).   

This means that, in terms of health, there was a catching-up process between the EU-27 regions 

between 1995 and 2009. Given the association (in the aggregate) between income and health 

variables, it might be reasonable to suppose that this catching-up process reflected the same 

process followed by economic convergence. The lower rate in beta-convergence in most of the 

health variables analysed for 2008 and 2009, two years after the start of the economic crisis, might 

exemplify this. 

Table 2.2 shows the results of estimating the random effects. Note that the coefficients of some 

variables that were not statistically significant as fixed effects were estimated as statistically 

significant when considering them random effects. This was the case with the Gini coefficient. Our 

interpretation, therefore, is that although the Gini coefficient had no effect on convergence in health 

on average, it did have an effect on health convergence for some countries and in some of the 

years. Note also that this effect was very heterogeneous.  

Although there was average beta-convergence for the regions of the EU-27 in the four health 

variables considered (i.e., the coefficient of interest, , was negative and statistically significant), 

there were discontinuities in both convergence and the speed of this convergence between 

countries and over time. While there was no divergence in any country, the rate of convergence in 

life expectancy at birth was less than average in Malta and higher in Portugal and the UK (in that 

order). As regards to mortality from ischemic heart disease, note that in Estonia, Luxembourg, 

Romania and Malta (in descending order) there was no convergence (because the coefficient 

associated, which was the sum of both the fixed and random effect for that country, was positive). 

Moreover, even with convergence (because in this case, the sum of both the fixed and random 
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effect for that country, was still negative), it was not as fast as the average for the Netherlands but 

faster than Finland, Bulgaria and Greece. With regard to cancer mortality, France, Romania, and 

Ireland and, to a much lesser extent, Spain showed divergence. Moreover, the convergence rate 

was somewhat lower than average in the UK and higher in Greece, Finland, Portugal and Italy. 

Finally, with regard to mortality from lung cancer, we estimate a very slight divergence in Poland, 

Hungary and Austria. Among the converged countries, France and the United Kingdom converged 

at a slower rate and Greece at a much faster than average speed. 

As regards to discontinuities in time, we estimated divergence only in cancer mortality for the year 

2009. There were, however, differences in the rate of convergence for all variables. We estimated 

an above average rate for mortality from cancer (year 2008) and only slightly higher for lung cancer 

mortality (year 1999) and life expectancy (2003). Mortality from ischemic heart disease (2009) and 

lung cancer (2008 and 2009) were below average. 

That is to say, although we find (beta) convergence on average, we also identify significant 

differences in the catching-up process both across time and regions. This spatio-temporal 

heterogeneity is not only different from those found for the European regions in economic 

convergence analysis (Eckey and Türk [54]. for EU-15 and EU-27; Monfort [53] for EU-27; Maynou 

et al. [55], for the Eurozone) but also from the health convergence analysis between countries [52], 

suggesting that beta-convergence in health may be the result of different phenomena than those 

affecting economic convergence. In this respect, for instance, following their entry into the EU in 

2004, eastern European countries benefited from the EU cohesion policies that had boosted 

economic convergence; although in view of the results it is not clear that these policies also promote 

health convergence, at any rate for all of these countries and for all of the health variables. This can 

perhaps be attributed to the fact that prior to 2004 the health system in these countries had already 

reached quite high standards.  

In order to analyse sigma convergence, we used the coefficient of variation for each health variable 

(Figure 7). It is important to note, however, that instead of using the coefficient of variation 

calculated on the original variables, we used the calculated on the fitted values from the model {3}5. 

Note that sigma convergence did not occur in all cases. Only in life expectancy and lung cancer 

mortality were disparities reduced among the regions of the EU-27 for 1995-2009. However, the 

greatest reductions in disparities in life expectancy at birth occurred between 1995 and 2003, before 

                                                 

5
 That is to say,     

1
2

ijt ijtCV E y Var y , both estimated in model {3}. Also note that this calculation can 

only be done easily following a the Bayesian approach, where it is easier to make inferences about functions 

of parameters and/or predictions, in particular when the function is non-linear, as in our case (i.e. the 

dependent variables in {3} were non-linear functions of the health variables). 
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increasing and then remaining stable from 2005 onwards. In the case of lung cancer mortality, 

disparities were reduced in 1999, before increasing until 2008 and then falling in the final year 

considered. 

 
Using the coefficient of variation as a summary measure of sigma-convergence, we were unable to 

estimate a reduction in disparities between EU-27 regions over the fifteen years. As Sala-i-Martin 

[36] states, beta convergence is a necessary but not a sufficient condition for sigma convergence. 

But also, beta and sigma convergence do not always show up together because they capture 

different aspects [36]. Sigma convergence analyses whether the cross-country distribution of the 

(health, in our case) variable shrinks over time or not, while beta convergence relates to mobility 

within the given variable distribution. Therefore, we have estimated mobility within the distribution 

but the distribution itself has remained unchanged. In summary, if, as Quah [41] and other authors 

suggest, the concept of sigma-convergence is that which best reveals the reality of convergence, 

we cannot conclude that there was convergence in health among the regions of the EU-27 between 

1995 and 2009. 

Although we allowed the parameters, and in particular those of interest, to vary regionally, we were 

only able to estimate heterogeneity at a country-level. In a previous work on economic convergence 

between European regions, albeit in a smaller geographic area (the Eurozone), we were not able to 

estimate a spatial heterogeneity at the regional level either [55]. We believe that this is a 

consequence of how European policies are implemented, which, even if they have a regional 

dimension, are operational on a country level. 

The effect of unequal income distribution, measured by means of the Gini index, on health 

convergence was very heterogeneous both between countries and between years.  

Discussion 

The work could have several limitations. Let us discuss that in the same hierarchy used in the 

estimation of our models. First, we might have chosen other variables that would have explained the 

growth rate of the health dependent variables. We considered this possibility, but they could not be 

included due to a lack of data. In this respect, data for some variables are available at country level 

up to a maximum of three years, such as the abortion rate in the case of life expectancy, lifestyle as 

a percentage of smokers or drinkers, or the prevalence of obesity in cause-specific mortality. Other 

variables, such as immigrants from developing countries, are available at a country level for very 

few countries throughout the entire period considered in our paper (1995-2009). We preferred to 

include the Gini index as a proxy for income inequality and not include other variables such as 

poverty and social exclusion because of a lack of conclusive evidence regarding these variables, at 
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least compared to the high position in the hierarchy of evidence provided by the study of Kondo et 

al. [61]. 

Second, the consistency of the estimates is totally dependent on the fulfilment of the hypothesis of 

weak exogeneity. This, in turn, depends on, at least one of their requirements. Once we made the 

spatio-temporal adjustment, the error terms should be identically and independently distributed. In 

this sense, we checked the absence of autocorrelation, or spatial or temporal, in the standardized 

residuals of all three models. In addition, using cross-correlation functions, we also checked the 

absence of (contemporary) correlation between the error terms and each of the regressors, 

including lagged dependent variables in particular. 

 

Third, as in any Bayesian analysis, the choice of the prior may have a considerable impact on the 

results. In the second stage of the hierarchy we used, we allowed variation on the different levels for 

all coefficients, i.e. we allowed all the coefficients to be random effects. Then, we tested that the 

variance of the effects was equal to zero, i.e. the effects were actually fixed. Only when we rejected 

this null hypothesis, did we maintain the coefficient as a random effect. Furthermore, as regards to 

the third stage in the hierarchy, by increasing the precision (lowering the variance) we performed 

sensitivity analyses to assess how the prior on the hyperparameters influences the estimation. We 

found no significant differences. 

 

An alternative structure for the spatial dependence would be the non-parametric approximation, 

conditional autoregressive model, CAR, either in its intrinsic [91] (the between-area covariance 

matrix is not positive definite) or proper [92] (matrix positive definite) versions. To use this approach, 

areas (regions in our case) are taken to be neighbours if they share a common boundary. This 

approach provides good results if all regions are of a similar size and are arranged in a regular 

pattern, but results are not promising in other sets of circumstances [93]. In fact, as Simpson et al. 

[94] point out, CAR relies heavily on the regularity of the lattice and it is quite difficult to construct a 

CAR on an irregular lattice that is resolution consistent [95]. This is the main reason we chose to 

follow the SPDE approach in our work. As we mentioned earlier, instead of relying on a regular 

lattice, we specified the structure of the spatial Matérn covariance in a triangulation of the studied 

area, implying a low computational cost and much greater efficiency. 

 

4.- Conclusions 

Our main objective was to analyse the speed of convergence (beta) of (cause-specific) mortality and 

life expectancy at birth in EU regions between 1995-2009. Our results show that, in terms of health, 

there has been a catching-up process among the EU regions. Although we found (beta) 

convergence on average, we also identified significant differences in the catching-up process both 
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across time and regions. This last finding differs from other studies done for the EU regions. 

Moreover, by using the coefficient of variation to measure the dynamics of dispersion levels of 

mortality and life expectancy (sigma convergence), we, surprisingly, find no reduction on average in 

dispersion levels. Consequently, if the reduction of dispersion is the ultimate measure of 

convergence, as various authors have agreed (e.g. Quah, [15]), then our study shows a lack of 

convergence of health across EU regions. 
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Table 1.- Descriptive statistics of the variables 
  
 

Variables Mean Std. D Min Max N 

       

Life expectancy 78.14 2.81 67.70 83.30 3286 

Ischemic heart disease mortality  109.49 62.56 18.70 414.20 2596 

Cancer mortality 180.58 30.47 61.10 477.30 2613 

Lung cancer mortality 40.21 10.98 10.20 100.3 2661 

GDP per capita in PPS 19474.51 8422.08 3200 81400 3605 

GINI index 29.65 3.64 20 39.20 3339 

Secondary students (% population) 9.76 1.66 4.19 15.16 1699 

University students (% population) 22.10 3.72 10.53 37.12 1962 

Young male unemployment rate (%) 18 10.09 1.40 60.10 2601 

Young female unemployment rate (%) 20.07 13.04 1.90 78.90 2529 

External balance (% ) −1.43 6.83 −32.40 27.60 3992 

Public expenditure rate (%) 46.52 5.58 31.20 64.90 4065 

 
Source: Eurostat and own construction 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

28 

 

28 

Table 2.1- Results of estimating the models. Fixed effects. 

 
1
mean (standard deviation); the 95% credible interval did not contain the zero (statistically significant). 

Source: own construction 

Dependent variables Life expectancy Ischemic heart disease crude 
rate 

Cancer standardized 
rate 

Lung cancer crude rate 

  -0.1307(0.0142)**
1
 -0.2630(0.0830)** -0.3366(0.1407)**  -0.1181(0.0413)** 

Fixed effects: 
GDPPC  
GDPPC_1 
GDPPC_2 
GDPPC rate_1 
GDPPC rate_2 
Sec 
Univ 
Pubexp 
Umy 
Ufy 
Bpg 
Gini 

 
 0.0031(0.0023) 
 0.0001(0.0001) 
 -0.0002(0.0001) 
 -0.0068(0.0038) 
 0.00055(0.0045) 
 -0.000004(0.00005) 
 -0.00003(0.00006) 
 -0.00007(0.00002) 
 -0.00002(0.00002) 
 0.000007(0.00001) 
 0.00011(0.00004)** 
 -0.01526(0.0189) 

 
-0.00151(0.0174) 
-0.00141(0.0020) 
0.00146(0.0049) 
0.1214(0.0510)** 
0.1200(0.0565)** 
-0.00145(0.0007) 
-0.00004(0.0003)) 
-0.0045(0.0012)** 
0.00038(0.00027) 
0.000001(0.00022) 
-0.00043(0.0008) 
-0.2553(0.2820) 

 
-0.00454(0.0145) 
0.00304(0.0018) 
-0.0038(0.00436) 
0.09215(0.0462) 
0.02609(0.0539) 
-0.00183(0.0006)** 
0.00075(0.0003)** 
0.00045(0.0009) 
-0.00047(0.0002)** 
-0.00026(0.0002) 
0.00089(0.0007) 
-0.0531(0.3206) 

 
 0.00150(0.0017) 
 -0.00429(0.0020)** 
 0.0007(0.0028) 
 0.0481(0.052) 
 -0.0355(0.0544) 
 -0.00269(0.00075)** 
 0.00142(0.00035)** 
 0.0014(0.00098) 
 0.000203(0.00029) 
 -0.00051(0.00024)** 
 0.00205(0.0008)**   
 0.02948(0.1091) 

Standard deviation of 
random effects: 
Heterogeneity 
αj 
βj  
βt 

γgdppcj 
γgdppct 

γginij 
γginit 

 
 
 0.0461(0.0007) 
 0.7777(0.1201) 
 0.0759(0.0121) 
 0.0031(0.0006) 
 0.0110(0.0016) 
 0.0028(0.0005) 
 0.0271(0.0062) 
 0.0040(0.0009) 

 
 
0.0504(0.0008) 
3.0965(0.4745) 
0.3217(0.0397) 
0.0726(0.0144) 
 
0.0347(0.0090) 
0.8757(0.1340) 
0.1929(0.0503) 

 
 
0.0376(0.0008) 
2.6601(0.4717) 
0.4497(0.0679) 
0.2829(0.0537) 
0.0435(0.0117) 
0.00729(0.0029) 
0.8743(0.1449) 
0.3672(0.0781) 

 
 
 0.06362(0.0012) 
 0.01068(0.0064) 
 0.1800(0.0332) 
 0.00625(0.00212) 
  
 
 0.1942(0.03500) 
 0.0067(0.0023) 

DIC 
Effective number of 
parameters 
-log(mean(cpo)) 

 -28009.40 
 
 2710.75 
 -1.6383 

-6554.70 
 
254.13 
-1.639 

-7514.33 
 
303.63 
-1.6395 

 -5577.65 
  
135.88 
 -1.6394 
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Table 2.2- Results of estimating the models. Random effects1. 
 

 

1
Only those coefficients where the 95% credible interval did not contain the zero (statistically significant); 

2
 mean (standard deviation) 

Source: own construction 
 

Standard 
deviation of 
random effects 

Life expectancy Ischemic heart disease crude rate Cancer standardized rate Lung cancer crude rate 

αj  Bulgaria 7.9855(1.4220) 
Czech Republic -5.9847(1.3797) 
Finland 9.6170(1.3112) 
Poland -5.0229(1.4860) 

Finland 6.8965(0.9709) 
Greece -5.4328(1.0596) 
Portugal 4.1434(1.4078) 
UK -3.0494(1.0514) 

 

βj Malta -0.0436(-0.0235)
2
 

Portugal 0.0332(0.0163) 
UK 0.0245(0.0125) 

Bulgaria -0.7441(0.1117) 
Estonia 2.8070(0.1396) 
Finland -0.5451(0.1025) 
Greece -1.0776(0.0925) 
Luxembourg 0.4856(0.1516) 
Malta 0.3493(0.1596) 
Netherlands 0.1761(0.0874) 
Romania 0.3714(0.1053) 

Finland -0.7364(0.1173) 
France 2.6596(0.1234) 
Greece -1.4436(0.1113) 
Ireland 0.4454(0.2001) 
Italy -0.5197(0.1185) 
Portugal -0.5399(0.1165) 
Romania 0.4549(0.1315) 
Spain 0.3640(0.1269) 
United Kingdom 0.3108(0.1165) 

 Austria 0.12168(0.0549) 
 Finland -0.1267(0.0637) 
 France 0.0990(0.0447) 
 Greece -0.7050(0.0736) 
 Hungary 0.1225(0.05299) 
 Netherlands 0.0993(0.0503) 
 Poland 0.1283(0.0549) 
 UK 0.0971(0.0438) 

βt 2003 -0.00316(0.0015) 2009 0.2010(0.0279) 2008 -0.2162(0.0986) 
2009 0.5854(0.1011) 

 1999 -0.0131(0.0073) 
 2008 0.01674(0.0089) 
 2009 0.02255(0.0101) 

γ gdppcj Cyprus 0.0129(0.0061) 
Malta 0.0474(0.0025) 
Poland -0.00517(0.0026) 

 Czech Republic -0.05786(0.0245) 
Greece 0.1038(0.0330)) 
 

 

γ gdppct 1998 0.00050(0.00024) 
2003 0.00063(0.00023) 
2005 0.00067(0.00024) 
2008 -0.0022(0.00072) 

2009 0.0870(0.0229) 2008 -0.1255(0.0066) 
2009 -0.0230(0.0103) 

 

γ ginij Greece 0.0379(0.01494) 
Malta -0.0820(0.02891) 

Austria 1.1912(0.6014) 
Bulgaria -1.2913(0.3439) 
Czech Republic 1.7244(0.3770) 
Finland -2.1168(0.3354) 
Greece 0.9246(0.3375) 
Poland 1.2568(0.3978) 

Finland -1.0312(0.2975) 
Greece 3.3630(0.3162) 
 

 Austria -0.1473(0.0606) 
 France -0.1116(0.0485)  
 Greece 0.75553(0.07857) 
 Hungary -0.1449(0.06145) 
 Netherlands -0.11834(0.05614) 
 UK -0.1006(0.0475) 

γ ginit 1996 -0.00477(0.00244) 
1998 -0.00429(0.00207) 
2009 0.0055(0.0.00242) 

2009 -0.4911(0.0939) 2008 0.3663(0.1407) 
2009 -0.7714(0.1451) 

 1999 0.0128(0.0080)  
 2006 -0.0137(0.0078) 
 2007 -0.0166(0.0087) 
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Figure 1.- Life expectancy at birth in three periods, 1995-2000; 2000-2005 and 
2005-2009 (Index, 100 EU-27 average per period) 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 2.- Ischemic heart mortality in three periods, 1995-2000; 2000-2005 and 
2005-2009 (Index, 100 EU-27 average per period) 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 3.- Cancer mortality in three periods, 1995-2000; 2000-2005 and 2005-2009 
(Index, 100 EU-27 average per period) 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 4.- Lung cancer mortality in three periods, 1995-2000; 2000-2005 and 2005-
2009 (Index, 100 EU-27 average per period) 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 5.- GDP per capita (quartiles) in three periods, 1995-2000; 2000-2005 and 
2005-2009 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 6.- Gini index (quartiles) in three periods, 1995-2000; 2000-2005 and 2005-
2009 
 
First quartile - light yellow; second quartile - ocher; third quartile - light green; fourth 
quartile - dark green 
 
Figure 7.- Sigma convergence. Conditional1 coefficient of variation2 in the 
variable between regions of EU-27.  
 
a.- Life expectancy at birth – EU 27 
b.- Lung cancer mortality – EU 27 
c.- Ischemic heart disease – EU 27 
d.- Cancer mortality – EU 27 
 
1 Computed from the model 
2 CV=(sd/mean) 
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