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Abstract: To many people, home is a sanctuary. For those people who need special
medical care, they may need to be pulled out of their home to meet their medical
needs. As the population ages, the percentage of people in this group is increasing
and the effects are expensive as well as unsatisfying. We hypothesize that many people
with disabilities can lead independent lives in their own homes with the aid of at-
home automated assistance and health monitoring. In order to accomplish this, robust
methods must be developed to collect relevant data and process it dynamically and
adaptively to detect and/or predict threatening long-term trends or immediate crises.
The main objective of this paper is to investigate techniques for using agent-based
smart home technologies to provide this at-home health monitoring and assistance. To
this end, we have developed novel inhabitant modeling and automation algorithms that
provide remote health monitoring for caregivers. Specifically, we address the following
technological challenges: 1) identifying lifestyle trends, 2) detecting anomalies in current
data, and 3) designing a reminder assistance system. Our solution approaches are being
tested in simulation and with volunteers at the UTA’s MavHome site, an agent-based
smart home project.
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1 Introduction and Motivation

Since the beginning, people have lived in places that provide shelter and basic
comfort and support, but as society and technology advance there is a grow-
ing interest in improving the intelligence of the environments in which we live
and work. The MavHome (Managing an adaptive versatile Home) project is
focused on providing such environments [Das et al., 2002]. We take the view-
point of treating an environment as an intelligent agent, which perceives the
state of the environment using sensors and acts upon the environment using
device controllers in a way that can optimize a number of different goals in-
cluding maximizing comfort of the inhabitants, minimizing the consumption of
resources, and maintaining safety of the environment and its inhabitants. In this
paper we discuss methods by which we can adapt a smart home environment
such as MavHome to perform health monitoring and assistance for persons with
disabilities and for aging adults.

As Lanspery and Hyde [Lanspery et al., 1997] state, ”For most of us, the
word ‘home’ evokes powerful emotions [and is] a refuge”. They note that older
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adults and people with disabilities want to remain in their homes even when their
conditions worsen and the home cannot sustain their safety. In a national survey,
researchers found that 71% of the respondents felt strongly that they wanted to
remain in their current residence as long as possible, and another 12% were
somewhat likely to remain there [AARP, 2000]. Nearly 1/4 of the respondents
expected that they or a member of their household would have problems getting
around their house in the next five years. Of these respondents, 86% stated that
they had made at least one modification to their home to make it easier to live
there, and nearly 70% believe that the modifications will allow them to live in
the current homes longer than would have otherwise been possible. A separate
study supported these results and found that the most common modifications
were an easy-to-use climate control system and a personal alert system.

Zola [Zola, 1997] maintains that the problems of aging and disability are
converging. Improvements in medical care are resulting in increased survival into
old age, thus problems of mobility, vision, hearing, and cognitive impairments
will increase [Pynoos, 2002, Parr and Russell, 1997]. As the baby boomers enter
old age, this trend will be magnified. By 2040, 23% will fall into the 65+ category
[Lanspery et al., 1997]. An AARP report [AARP, 2000, AARP, 2003] strongly
encourages increased funding for home modifications that can keep older adults
with disabilities independent in their own homes.

While use of technology can be expensive, it may be more cost effective than
the alternative [Grayons, 1997]. Nursing home care is generally paid either out-
of-pocket or by Medicaid. Typical nursing home costs are about $40,000 a year,
and the $197 billion of free care offered by family members comes at the sacrifice
of independence and job opportunities by the family caregivers.

In this paper, our goal is to assist the elderly and individuals with disabilities
by providing home capabilities that will monitor health trends and assist in the
inhabitant’s day to day activities in their own homes. The result will save money
for the individuals, their families, and the state.

2 Overview of the MavHome Smart Home

We define an intelligent environment as one that is able to acquire and apply
knowledge about its inhabitants and their surroundings in order to adapt to the
inhabitants and meet the goals of comfort and efficiency [Cook and Das, 2004].
These capabilities rely upon effective prediction, decision making, robotics, wire-
less and sensor networking, mobile computing, databases, and multimedia tech-
nologies. With these capabilities, the home can adaptively control many aspects
of the environment such as climate, water, lighting, maintenance, and multi-
media entertainment. Intelligent automation of these activities can reduce the
amount of interaction required by inhabitants, reduce energy consumption and
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other potential wastages, and provide a mechanism for ensuring the health and
safety of the environment occupants [Das and Cook, 2004b].

As the need for automating these personal environments grows, so does the
number of researchers investigating this topic. Some design interactive confer-
ence rooms, offices, kiosks, and furniture with seamless integration between het-
erogeneous devices and multiple user applications in order to facilitate collabo-
rate work environments [AIRE Group, 2004, Fox et al., 2000, Romn et al., 2002,
Streitz et al., 1999]. Abowd and Mynatt’s work [Abowd and Mynatt, 2005] fo-
cuses on ease of interaction with a smart space, and work such as the Gator Tech
Smart House [Helal et al., 2005] focuses on application of smart environments to
elder care.

Mozer’s Adaptive Home [Mozer, 2005] uses neural network and reinforcement
learning to control lighting, HVAC, and water temperature to reduce operating
cost. In contrast, the approach taken by the iDorm project [Hagras et al., 2004] is
to use a fuzzy expert system to learn rules that replicate inhabitant interactions
with devices, but will not find an alternative control strategy that improves upon
manual control for considerations such as energy expenditure.

These projects have laid a foundation for our work. However, unlike related
projects, we learn a decision policy to control an environment in a way that op-
timizes a variety of possible criteria, including minimizing manual interactions,
improving operating efficiency, and ensuring inhabitant health and safety. We
also ensure that our software need not be redesigned as new devices are reg-
istered, new spaces are tested, or new inhabitants move into the environment.
To accomplish this goal, our intelligent environment must harness the features
of multiple heterogeneous learning algorithms in order to identify repeatable
behaviors, predict inhabitant activity, and learn a control strategy for a large,
complex environment.

The MavHome architecture shown in Figure 1 consists of cooperating layers
[Cook and Das, 2004, Das and Cook, 2005]. Perception is a bottom-up process.
Sensors monitor the environment using physical components (e.g., sensors) and
make information available through the interface layers. The database stores
this information while other information components process the raw informa-
tion into more useful knowledge (e.g., patterns, predictions). New information
is presented to the decision making applications (top layer) upon request or by
prior arrangement. Action execution flows top-down. The decision action is com-
municated to the services layer which records the action and communicates it to
the physical components. The physical layer performs the action using powerline
control, and other automated hardware, thus changing the state of the world and
triggering a new perception.

All of the MavHome components are implemented and are being tested in two
physical environments, the MavLab workplace environment and an on-campus
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Figure 1: MavHome architecture (left) and MavPad sensor layout (right).

apartment. Powerline control automates all lights and appliances, as well as
HVAC, fans, and miniblinds. Perception of light, humidity, temperature, smoke,
gas, motion, and switch settings is performed through a sensor network devel-
oped in-house. Inhabitant localization is performed using passive infrared sensors
yielding a detection rate of 95% accuracy [Youngblood et al., 2005a].

Communication between high-level components is performed using CORBA,
and each component registers its presence using zero configuration (ZeroConf)
technologies. Implemented services include a PostgreSQL database that stores
sensor readings, prediction components, data mining components, and logical
proxy aggregators. Resource utilization services monitor current utility consump-
tion rates and provide usage estimates and consumption queries.

MavHome is designed to optimize a number of alternative functions, but
for this evaluation we focus on minimization of manual interactions with de-
vices. The MavHome components are fully implemented and are automating
the environments shown in Figure 2 [Youngblood et al., 2005b]. The MavLab
environment contains work areas, cubicles, a break area, a lounge, and a con-
ference room. MavLab is automated using 54 X-10 controllers and the current
state is determined using light, temperature, humidity, motion, and door/seat
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Figure 2: The MavLab (left) and MavPad (right) environments.

status sensors. The MavPad is an on-campus apartment hosting a full-time stu-
dent occupant. MavPad is automated using 25 controllers and provides sensing
for light, temperature, humidity, leak detection, vent position, smoke detection,
CO detection, motion, and door/window/seat status sensors. Figure 1 shows the
MavPad sensor layout.

3 Core Technologies

To automate our smart environment, we collect observations of manual inhabi-
tant activities and interactions with the environment. We then mine sequential
patterns from this data using a sequence mining algorithm. Next, we predict the
inhabitant’s upcoming actions using observed historical data. Finally, a hierar-
chical Markov model is created using low-level state information and high-level
sequential patterns, and is used to learn an action policy for the environment.
Figure 3 shows how these components work together to improve the overall per-
formance of the smart environment. Here we describe the learning algorithms
that play a role in this approach.

3.1 Mining Sequential Patterns Using ED

In order to minimize resource usage, maximize comfort, and adapt to inhabitants,
we rely upon machine learning techniques for automated discovery, prediction,
and decision making. A smart home inhabitant typically interacts with various
devices as part of his routine activities. These interactions may be considered
as a sequence of events, with some inherent pattern of recurrence. Agrawal and
Srikant [Agrawal and Srikant, 1995] pioneered work in mining sequential pat-
terns from time-ordered transactions, and our work is loosely modeled on this
approach.
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Figure 3: Integration of AI techniques into MavHome architecture.

Typically, each inhabitant-home interaction event is characterized as a triple
consisting of the device manipulated, the resulting change that occurred in that
device, and the time of interaction. We move a window in a single pass through
the history of events or inhabitant actions, looking for episodes (sequences)
within the window that merit attention. Candidate episodes are collected within
the window together with frequency information for each candidate. Candidate
episodes are evaluated and the episodes with values above a minimum acceptable
compression amount are reported. The window size can be selected automati-
cally using the size that achieves the best compression performance over a sample
of the input data.

When evaluating candidate episodes, the Episode Discovery (ED) algorithm
[Heierman and Cook, 2003] looks for patterns that minimize the description
length of the input stream, O, using the Minimum Description Length (MDL)
principle [Rissanen, 1989]. The MDL principle targets patterns that can be used
to minimize the description length of a database by replacing each instance of
the pattern with a pointer to the pattern definition.

Our MDL-based evaluation measure thus identifies patterns that balance
frequency and length. Periodicity (daily, every other day, weekly occurrence)
of episodes is detected using autocorrelation and included in the episode de-
scription. If the instances of a pattern are highly periodic (occur at predictable
intervals), the exact timings do not need to be encoded (just the pattern defini-
tion with periodicity information) and the resulting pattern yields even greater
compression. Although event sequences with minor deviations from the pattern
definition can be included as pattern instances, the deviations need to be en-
coded and the result thus increases the overall description length. ED reports
the patterns and encodings that yield the greatest MDL value.

Deviations from the pattern definition in terms of missing events, extra
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events, or changes in the regularity of the occurrence add to the description
length because extra bits must be used to encode the change, thus lowering
the value of the pattern. The larger the potential amount of description length
compression a pattern provides, the more representative the pattern is of the
history as a whole, and thus the potential impact that results from automating
the pattern is greater.

In this way, ED identifies patterns of events that can be used to better un-
derstand the nature of inhabitant activity in the environment. Once the data is
compressed using discovered results, ED can be run again to find an abstrac-
tion hierarchy of patterns within the event data. As the following sections show,
the results can also be used to enhance performance of predictors and decision
makers that automate the environment.

3.2 Predicting Activities Using ALZ

To predict inhabitant activities, we borrow ideas from text compression, in this
case the LZ78 compression algorithm [Ziv and Lempel, 1978]. By predicting in-
habitant actions, the home can automate or improve upon anticipated events
that inhabitants would normally perform in the home. Well-investigated text
compression methods have established that good compression algorithms also
make good predictors. According to information theory, a predictor with an or-
der (size of history used) that grows at a rate approximating the entropy rate
of the source is an optimal predictor. Other approaches to prediction or infer-
ring activities often use a fixed context size to build the model or focus on one
attribute such as motion [Cielniak et al., 2003, Philipose et al., 2004].

LZ78 incrementally processes an input string of characters, which in our case
is a string representing the history of device interactions, and stores them in a
trie. The algorithm parses the string x1, x2, . . . , xi into substrings w1, w2, wc(i)

such that for all j > 0, the prefix of the substring wj is equal to some wi for
1 < i < j. Thus when parsing the sequence of symbols aaababbbbbaabccddcbaaaa,
the substring a is created, followed by aa, b, ab, bb, bba, and so forth.

Our Active LeZi (ALZ) algorithm enhances the LZ78 algorithm by recaptur-
ing information lost across phrase boundaries. Frequency of symbols is stored
along with phrase information in a trie, and information from multiple context
sizes are combined to provide the probability for each potential symbol, or inhab-
itant action, as being the next one to occur. In effect, ALZ gradually changes the
order of the corresponding model that is used to predict the next symbol in the
sequence. As a result, we gain a better convergence rate to optimal predictability
as well as achieve greater predictive accuracy. Figure 4 shows the trie formed by
the Active-LeZi parsing of the input sequence aaababbbbbaabccddcbaaaa.

To perform prediction, ALZ calculates the probability of each symbol (in-
habitant action) occurring in the parsed sequence, and predicts the action with
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c(1)a(2) d(1)d(1)a(1)c(1)a(1)a(2)c(1)b(1)

a(5) d(1)c(1)d(1)c(1)b(1)c(1)b(4)a(3)b(3)

b(8) d(2)c(3)a(10)

b(1)

Figure 4: Trie formed by ALZ parsing.

the highest probability. To achieve optimal predictability, we use a mixture of
all possible higher-order models (phrase sizes) when determining the probability
estimate. Specifically, we incorporate the Prediction by Partial Match strategy
of exclusion [Bell et al., 1990] to gather information from all available context
sizes in assigning the next symbol its probability value.

We initially evaluated the ability of ALZ to perform inhabitant action pre-
diction on synthetic data based on six embedded tasks with 20% noise. In this
case the predictive accuracy converges to 86%. Real data collected based on six
students in the MavLab for one month was much more chaotic, and on this
data ALZ reached a predictive performance of 30% (although it outperformed
other methods). However, when we combine ALZ and ED by only perform-
ing predictions when the current activity is part of a sequential pattern identi-
fied by ED, ALZ performance increases by 14% [Gopalratnam and Cook, 2004,
Gopalratnam and Cook, 2005].

3.3 Decision Making Using ProPHeT

In our final learning step, we employ reinforcement learning to generate an au-
tomation strategy for the intelligent environment. To apply reinforcement learn-
ing, the underlying system (i.e., the house and its inhabitants) could be modeled
as a Markov Decision Process (MDP). This can be described by a four-tuple
< S, A, Pr, R >, where S is a set of system states, A is the set of available
actions, and R : S → R is the reward that the learning agent receives for being
in a given state. The behavior of the MDP is described by the transition func-
tion, Pr : S × A × S → [0, 1], representing the probability with which action at

executed in state st leads to state st+1.
With the increasing complexity of tasks being addressed, recent work in de-

cision making under uncertainty has popularized the use of Partially Observable
Markov Decision Processes (POMDPs). Recently, there have been many pub-
lished hierarchical extensions that allow for the partitioning of large domains into
a tree of manageable POMDPs [Pineau et al., 2001, Theocharous et al., 2001].
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Figure 5: Hierarchical model constructed from static (left) and dynamic (right)
smart home data.

Research has shown that strategies for new tasks can be learned faster if poli-
cies for subtasks are already available [Precup and Sutton, 1997]. Although a
Hierarchical POMDP (HPOMDP) is appropriate for an intelligent environment
domain, current approaches generally require a priori construction of the hier-
archical model. Unlike other approaches to creating a hierarchical model, our
decision learner, ProPHeT, actually automates model creation by using the ED-
mined sequences to represent the nodes in the higher levels of the model hierar-
chy.

The lowest-level nodes in our model represent a single event observed by
ED. Next, ED is run multiple iterations on this data until no more patterns can
be identified, and the corresponding abstract patterns comprise the higher-level
nodes in the Markov model. The higher-level task nodes point to the first event
node for each permutation of the sequence that is found in the environment
history. Vertical transition values are labeled with the fraction of occurrences for
the corresponding pattern permutation, and horizontal transitions are seeded
using the relative frequency of transitions from one event to the next in the
observed history. As a result, the n-tier hierarchical model is thus learned from
collected data. An example hierarchical model constructed from MavHome test
data is shown on the left in Figure 5.
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Given the current event state and recent history, ED supplies membership
probabilities of the state in each of the identified patterns. Using this information
along with the ALZ-predicted next action, ProPHeT maintains a belief state and
selects the highest-utility action.

To learn an automation strategy, the agent explores the effects of its decisions
over time and uses this experience within a temporal-difference reinforcement
learning framework [Sutton and Barto, 1998] to form control policies which op-
timize the expected future reward. The current version of MavHome receives
negative reinforcement (observes a negative reward) when the inhabitant im-
mediately reverses an automation decision (e.g., turns the light back off) or
an automation decision contradicts Arbiter-supplied safety and comfort con-
straints.

Before an action is executed it is checked against the policies in the policy
engine, Arbiter. These policies contain designed safety and security knowledge
and inhabitant standing rules. Through the policy engine the system is prevented
from engaging in erroneous actions that may perform actions such as turning the
heater to 120oF or from violating the inhabitant’s stated wishes (e.g., a standing
rule to never turn off the inhabitant’s night light).

4 Initial Case Study

As an illustration of the above techniques, we have evaluated a week in an
inhabitant’s life with the goal of reducing the manual interactions in the MavLab.
The data was generated from a virtual inhabitant based on captured data from
the MavLab and was restricted to just motion and lighting interactions which
account for an average of 1400 events per day.

ALZ processed the data and converged to 99.99% accuracy after 10 iterations
through the training data. When automation decisions were made using ALZ
alone, interactions were reduced by 9.7% on average. Next, ED processed the
data and found three episodes to use as abstract nodes in the HPOMDP. Living
room patterns consisted of lab entry and exit patterns with light interactions, and
the office also reflected entry and exit patterns. The other patterns occurred over
the remaining 8 areas and usually involved light interactions at desks and some
equipment upkeep activity patterns. The hierarchical Markov model with no
abstract nodes reduced interactions by 38.3%, and the combined-learning system
(ProPHeT bootstrapped using ED and ALZ) was able to reduce interactions by
76%, as shown in Figure 6 (left).

Experimentation in the MavPad using real inhabitant data has yielded simi-
lar results. In this case, ALZ alone reduced interactions from 18 to 17 events, the
HPOMDP with no abstract nodes reduced interactions by 33.3% to 12 events,
while the bootstrapped HPOMDP reduced interactions by 72.2% to 5 events.
These results are graphed in Figure 6 (right).
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Figure 6: Interaction reduction.

5 Using a Smart Home to Assist Elderly and Disabled

The data mining, prediction, and multiagent technologies available in MavHome
can be employed to provide health care assistance in living environments. Specif-
ically, models can be constructed of inhabitant activities and used to learn ac-
tivity trends, detect anomalies, intelligently predict possible problems and make
health care decisions, and provide automation assistance for inhabitants with
special needs.

A variety of approaches have been investigated in recent years to auto-
mate caregiver services. Many of the efforts offer supporting technologies in
specialized areas, such as using computer vision techniques to track inhabitants
through the environment and specialized sensors to detect falls or other crises.
Some special-purpose prediction algorithms have been implemented using factors
such as measurement of stand-sit and sit-stand transitions and medical history
[Cameron et al., 1997, Najafi et al., 2002, Najafi et al., 2003], but are limited in
terms of what they predict and how they use the results. Remote monitoring
systems have been designed with the common motivation that learning and pre-
dicting inhabitant activities is key for health monitoring, but very little work has
combined the remote monitoring capabilities with prediction for the purpose of
health monitoring. Some work has also progressed toward using typical behav-
ior patterns to provide reminders, particularly useful for the elderly and patients
suffering from various types of dementia [Kautz et al., 2002, Pollack et al., 2003].

Our smart environment can identify patterns indicating or predicting a change
in health status and can provide inhabitants with needed automation assis-
tance. Collected data includes movement patterns of the individual, periodic
vital signs (blood pressure, pulse, body temperature), water and device usage,
use of food items in the kitchen, exercise regimen, medicine intake (prescribed
and actual), and sleep patterns [Das and Cook, 2004a, Das and Cook, 2004b].
Given this data, models can be constructed of inhabitant activities and use to
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learn lifestyle trends, detect anomalies, and provide reminder and automation
assistance.

5.1 Capability 1: Identify lifestyle trends

Our ED algorithm is designed to process data as it arrives. Because of this
feature, trends in the data including increasing / decreasing pattern frequency,
introduction of patterns, and change in pattern details can be automatically de-
tected [Heierman, 2004]. When changing patterns include health-specific events
(vital signs, medication intake, or events targeted by the caregiver), a report will
be given to the inhabitant and caregiver of these trends.

5.2 Capability 2: Detect anomalies in current data

The ED data mining algorithm and ALZ predictor can work together to detect
anomalies in event data. ED identifies the most significant and frequent pat-
terns of inhabitant behavior, as well as the likelihood that the current state is a
member of one of these patterns. Whenever the current state falls within one of
these patterns, ALZ can determine the probability distribution of next events.
As a result, when the next event has a low probability of occurrence, or when the
expected next event does not occur at the expected time, the result is considered
an anomaly.

When an anomaly occurs, the home will first try to contact the inhabitant
(through the interactive display for a lesser critical anomaly, or through the
sound system for a more critical anomaly). If the inhabitant does not respond
and the criticality of the anomaly is high, the caregiver will be notified.

5.3 Capability 3: Design reminder assistance system

Reminders can be triggered by two situations. First, if the inhabitant queries the
home for his next routine activity, the activity with the highest probability will
be given based on the ALZ prediction. Second, if a critical anomaly is detected,
the environment will initiate contact with the inhabitant and remind him of the
next typical activity. Such a reminder service will be particularly beneficial for
individuals suffering from dementia.

As described in the initial MavHome design, automation assistance is always
available for inhabitants, which is beneficial if some activities are difficult to per-
form. A useful feature of the architecture is that safety constraints are embedded
in the Arbiter rule engine. If the inhabitant or the environment is about to
conflict with these constraints, a preventative action is taken and the inhabitant
notified. This can prevent accidents such as forgetting to turn off the water in
the bathtub or leaving the house with doors unlocked.
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6 Conclusion

The MavHome software architecture has successfully monitored and provided
automation assistance for volunteers living in the MavPad site. We are currently
collecting health-specific data in the MavHome sites and will be testing in the
living environments of recruited residents at the C.C. Young Retirement Com-
munity in Dallas, Texas.
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