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ABSTRACT The landing gear retraction/extension(R/E) system has a critical impact on the safety of 
aircraft’s take-off and landing, and its health status is important to decision-making of the system’s 
prognostics and health management (PHM). With flight parameter data, a method to monitor the health of 
aircraft landing gear R/E system is proposed based on the improved fuzzy c-means algorithm (FCM).The 
landing gear health status are classified by the FCM cluster, and the granularity principle and density 
function are utilized to optimize the number of FCM algorithm clusters and the initial clustering center to 
better classification. At the same time, an optimized multi-dimensional scaling algorithm (MDS) is used to 
obtain low-dimensional features which facilitate cluster analysis. And the algorithm comparison and case 
analysis results show that the proposed method has a great health monitoring effect. 

INDEX TERMS Landing gear retraction/extension system, fuzzy c-means, MDS, Health monitoring 

I. INTRODUCTION 

The health status of the landing gear R/E system directly 
affects the take-off and landing performance of the aircraft 
and flight safety [1], which plays an important role in 
preventing aircraft structure damage, slowing aircraft flutter, 
improving occupant comfort, and ensuring aircraft flight 
safety [2]. On May 21, 2018, an A330-200 aircraft of Saudi 
Airlines was on the way from Madinah to Dhaka, 
Bangladesh. Due to the failure of the nose landing gear, it 
was urgently diverted. In recent years, condition based 
maintenance (CBM) has been vigorously developed, 
compared with the traditional breakdown maintenance and 
preventive maintenance, the maintenance cost of the aircraft 
life cycle is reduced, and in which, the health status 
acquisition is very important. PHM [3-6] is an upgrade and 
development of CBM to meet the requirements of 
autonomous support and independent diagnosis. Usually 
there are three methods to realize PHM: model-based, data-
driven and probability statistics, in which the data-driven 
method requires less prior knowledge of the target system. 
Based on the collected data, the hidden information can be 
mined by data processing and analysis, and then the 
shortcomings of the model-based and knowledge-based way 
is avoided [7]. 

In recent years, health monitoring technology has been 
rapidly developed in the aeronautics field, such as aircraft 
structures [8], inertial navigation systems [9], engine [10], 
and landing gear systems. Based on expert system, Yang [11] 
proposed a fault prognosis method of system component 
based on characteristic analysis and designed a landing gear 
R/E control diagnosis system. Chen [12] used the H∞ 
filtering to realize the landing gear R/E system failure 
prognosis by utilizing the operational principle, failure 
characteristic analysis and the major failure modes. Although 
several articles [11-12] have been devoted to landing gear 
R/E systems, the model-based expert system method requires 
detailed analysis of the system internal mechanism, which is 
inefficient. 

 With the development of flight data extraction technology, 
the PHM based on data-driven has been advanced. Byington 
[13] proposed a method of health statement assessment based 
on neural network after learning the knowledge of landing 
gear actuator components. And He [14] studied the effect of 
changes in component parameter to extract the fault 
characteristics, and proposed a method to monitor the system 
health based on neural network. But with the massive and 
complex flight data, traditional neural network methods may 
lead to local optimal solutions. 
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Clustering analysis [15-16] is an important classification 
of unsupervised learning in data-driven methods. The general 
clustering algorithm is hard clustering, such as the traditional 
hard-core clustering algorithm K-means algorithm. Hard 
clustering separates the connections and is difficult to express 
the transition between samples, which is easy to fall into 
local optimum [17]. However, the landing gear R/E system is 
a process of gradual degradation, the traditional hard core 
clustering obviously can’t express the transition status. The 
concept of fuzzy membership degree in the fuzzy clustering 
theory is proposed to reflect the relationship more objectively 
between sample data. 

Due to these problems, a new data-driven health 
monitoring method is proposed in this paper. Firstly, the 
health status representation of the landing gear R/E system is 
obtained by the time domain feature extraction. Secondly, the 
manifold learning is used to improve the global aspects of the 
MDS to reduce the initial status features to obtain low-
dimensional features that facilitate cluster analysis. And then 
the FCM clustering algorithm is served as the status classifier 
to realize system’s health monitoring. What’s more, during 
clustering, the granularity principle is utilized to find the best 
number of clusters and the density function which can 
improve the initial cluster centers is used to reduce the 
possibility of falling into local optimum. Finally the 
algorithm comparison and case analysis results show that the 
improved health monitoring method effectively complete the 
health monitoring of landing gear R/E system. 

 
II.  FAILURE AND PERFORMANCE EFFECT ANALYSIS 
OF LANDING GEAR R/E SYSTEM  

A. LANDING GEAR RETRACTION/EXTENSION SYSTEM 

The aircraft landing gear R/E system [18] is used to retract 
the landing gear after the aircraft has taken off, and to extract 
it before the aircraft landed. This system mainly consists of 
three parts: 

(1) The selector valve is a three-position four-way 
electromagnetic reversing valve for switching the hydraulic 
oil circuit to achieve the system’s retracting and releasing 
action. 

(2) The front unlocking actuator cylinder realizes the 
unlocking and locking of the system. While the piston rod is 
extended, the landing gear is unlocked, vice versa. The front 
landing gear R/E actuator is used to retract or lower the front 
landing gear. When the piston rod of the actuator is extended, 
the front landing gear is lowered, vice versa. 

(3) The main landing gear R/E actuator cylinder is used to 
retract or lower the main landing gear: when the piston rod of 
the main landing gear actuator is extended, the main landing 
gear is retracted, vice versa. When the main gear lower 
position lock actuator piston rod is extended, the landing gear 
is locked, vice versa. And the main gear upper position lock 
actuator piston rod is the opposite. 

The basic system configuration of the landing gear R/E 
system is shown as Fig.1.1. 

Left main landing gear 
R/E actuator cylinder

Left main landing gear 
lower lock actuator 

cylinder

Left main landing gear 
upper lock actuator 

cylinder

Right main landing 
gear R/E actuator 

cylinder

Right main landing 
gear lower lock 

actuator cylinder

 Nose landing gear 
R/E actuator cylinder

Nose landing gear 
lock actuator cylinder

Landing gear 
selection valve

Pressure 
supply

Reflux

Right main landing 
gear upper lock 

actuator cylinder  

FIGURE 1.1  The basic system configuration of the landing gear R/E 
system. 

B. SIMULATION ANALYSIS OF SYSTEM FAILURE 

From Fig. 1.1, the actuator cylinder is used to extend and 
retract the landing gear, and the system power is provided by 
the hydraulic source, so that the system failure is closely 
related to hydraulic pressure. In this paper, aiming at the 
landing gear extension stage, AMESim software [19-20] is 
used to simulate two common failure modes in system, 
which is the oil leakage and oil filter plugging. 

The leakage degree of the actuator cylinder can be 
represented by the leakage coefficient set in the AMESim. 
As the leakage occurs, the dynamic pressure and flow rate in 
chamber will change, and then the leakage can be detected by 
the pressure and flow signal of the actuator cylinder. 

Set the initial leakage coefficient as 0.01L/min/bar to 
represent the normal condition as well as the variation from 
0.01L/min/bar to 0.02L/min/bar to represent the system 
performance degradation, and the cavity pressure, actuator 
cylinder flow and displacement variation are shown in Fig. 
1.2-4. 

 

 
FIGURE 1.2  The pressure curves 

 

 
FIGURE 1.3  The flow curves 
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FIGURE 1.4  The displacement curves 

 

As the Fig.1.2 shows, when the leakage coefficient is 
0.01L/min/bar, the cavity pressure is the highest with landing 
gear’s extension, and as the leakage increases, the pressure 
gradually decreases. And as the Fig.1.3-4 shows, the flow is 
the lowest when the leakage coefficient is 0.01L/min/bar, and 
with the leakage increasing, the flow is also increasing to 
meet the drive, as well as the increasing of the actuation time. 

Oil filter plugging is also one of the failure modes in the 
R/E system. If the oil filter cannot be replaced in time, the 
flow will be insufficient and the system function will decline. 
Moreover, through the blockage of the oil filter, it is also 
possible to indirectly cause the wear of the components or 
contamination of the oil. 

Oil filter plugging can be simulated by adjusting the 
equivalent pore size of the oil filter element. On the basis of 
one hydraulic system report which is from our research 
project, the equivalent pore size is set from 0.5 to 1 mm, and 
the simulation results are shown in Fig.1.5-6. 

 

 

FIGURE 1.5  Pump output pressure 

 
FIGURE 1.6  Actuator displacements in different pore size 

As the Fig.1.5-6 shows, when the oil filter pore size is 
varied from 0.5 to 1mm, the displacement of the actuator 
cylinder becomes less, and the pump outlet pressure becomes 
larger. 

In all, the leakage and oil filter blockage have a great 
impact on system operation. And the simulation results show 
that the main hydraulic pressure value is highly sensitive to 

the system performance degradation or failure such as system 
pressure loss, pressure fluctuation and system instability, so 
that the hydraulic pressure is closely related to the health 
status of the system. 

III.  STATUS FEATURE EXTRACTION AND DIMENSION 
REDUCTION 

For the case airplane in this paper, the “main hydraulic 
pressure” sampling frequency is 1 Hz, which obviously limits 
to extract feature from the frequency domain, but it is 
feasible in time domain. 

A.  HEALTH STATUS FEATURE EXTRACTION 

When the system is degrade or failed, the amplitude and 
waveform of the signal will change. Time domain feature of 
sampling data can be used to identify the system status better, 
and the statistical indexes of the time domain include mean, 
variance, standard deviation, root mean square, etc. And their 
detailed descriptions are shown in the Table Ⅰ. 

TABLE I 
TIME DOMAIN FEATURE PARAMETERS 

Feature Name Statistical Feature Formula 

Mean 
1

mean i

i

X x
L

 
 

Variance  2

var

1
i

i

X x x
L

 
 

Standard deviation  21
std i

i

X x x
L

 
 

Peak-to-peak value    1 2 1 2= max , , min , ,pk L LX x x x x x x
 

Kurtosis parameter  4

4

1
ku i

irms

X x x
X

 
 

Margin factor max
clf

smr

X
X

X


 

Crest factor max
cf

rms

X
X

X


 

Feature Name Statistical Feature Formula 

Kurtosis 
 4

1 i

k

i std

x x
X

L X


 

 

Form factor 1
rms

sf

i

i

X
X

x
L




 

Coefficient of Variation std
cv

mean

X
X

X


 

Skewness  3

3

1
sk i

irms

X x x
X

 
 

Maximum  max 1 2max , , LX x x x
 

Minimum  min 1 2min , , LX x x x
 

Root-mean-square 21
rms i

i

X x
L

 
 

 
The main hydraulic pressure curves in the landing gear 

R/E stage of the 261 vehicles are shown in Fig.2.1-2, and 
each vehicle is distinguished by different color. 
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FIGURE 2.1  Pressure curves in retracting stage 
 

 
FIGURE 2.2  Pressure curves in extending stage 

According to the feature parameter in Table Ⅰ, the 
parameters of the main hydraulic pressure variation are 
simulated. And to save the article space, the partial 
parameters are shown in Fig.2.3-9. 

 
FIGURE 2.3  Mean of pressure in the R/E stage 

 
FIGURE 2.4  Root-mean- square of pressure in the R/E Stage 

 
FIGURE 2.5  Standard deviation of pressure in the R/E stage  

 
FIGURE 2.6  Minimum of pressure in the R/E stage 

 
FIGURE 2.7  Kurtosis parameter of pressure in the R/E stage 

 
FIGURE 2.8  Coefficient of pressure in the R/E stage 

 

FIGURE 2.9  Nose (left) and right (right) landing gear retracted time  

B. HEALTH STATUS FEATURE DIMENSION 

REDUCTION 

In order to extract information effectively, it is necessary to 
use the main hydraulic pressure feature value to establish a 
high-dimensional space to fully express system health status. 
But massive data contain a lot of redundant information 
inevitability, which affects the efficiency of health status 
recognition. Therefore, the improved MDS algorithm is 
introduced for dimension reduction. Compared with the 
traditional linear dimension reduction algorithms, such as 
PCA (Principal Component Analysis) and LDA (Linear 
Discriminant Analysis), MDS has better fidelity effect on the 
nonlinear relationship in the original data, and the dimension 
reduction precision is higher. 

The principle of multidimensional scaling [21] is to create 
a suitable low-dimensional space according to the similarity 
between paired data, and in this low-dimensional space, the 
distance and similarity between sample data are as consistent 
as possible.  

According to the principle of MDS, Euclidean distance is 
used to describe the difference between sample data, and due 
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to this, data in high-dimensional space can be mapped into 
low-dimensional space. However, the Euclidean distance has 
some shortcomings in reflecting the overall data. When raw 
data have complex geometric features, as the Fig.2.10 shows, 
point a and c are in the same manifold spaces, and point a, b 
are not. However, the Euclidean distance between point a and 
b is smaller than a and c, which shows that the Euclidean 
distance has limitations in dealing with the data relationship. 
So the distance measure between samples must be considered 
in two aspects: 

1. Local consistency, that is, the distance between 
adjacent data is small. 

2. Global consistency, that is, the distance between 
points on the same manifold space is small. 

 
FIGURE 2.10 Manifold spaces 

 
Therefore, considering the shortcomings of MDS and the 

advantage of manifold distance, a new MDS dimension 
reduction algorithm based on manifold distance measure is 
presented in this Section. Calculate the line segment length 
on the manifold space between the data sample points xi and 
xj as 

 , 1ijd

i j
L x x                        (2-1) 

where 
ijd is the Euclidean distance between 

i
x and 

j
x , and 

1   is the scaling factor. 

And the manifold distance can be expressed as: 
1

1
1

( , ) min ( , )
l

i j k k

k

D x x L p p





 
 
            (2-2) 

where 1 1k l   . 
Suppose characteristic data

1 2[ , , , ]
N

X x x x  is 

represented as 
1 2[y ,y , , y ]

N
Y   and the manifold distance is 

( , )
i j

D x x  in the low dimensional space. So the dimension 

reduction loss function is 
2

( ( , ) (y , ))
i j i j

E D x x D y  , and 

the optimized MDS algorithm is as follows: 
Step 1: Calculate the distance matrix P according the 

formula 2-2, and find the difference matrix 2
D P . P is the 

distance matrix of the input feature set: 

11 1

1

=
n

n nn

d d

P

d d

 
 
 
  

                       (2-3) 

where
ij

d represents the Euclidean distance between the i-th 

sample and the j-th sample. 

Step 2: Construct the inner product matrix 1

2
B JDJ  . 

Where
1

J I ee
N

  , N is the amount of the objects, I is the 

N-order unit matrix, and e is an all 1 column vector of length 
n. 

Step 3: Extract m eigenvalues 1 m
   

and corresponding 
m eigenvectors 1 m

v v in matrix B. 
Step 4: Obtain the dimension reduction result: the 

eigenvectors corresponding to the first k largest eigenvalues. 

III. OPTIMIZED FUZZY C-MEANS CLUSTERING 
ALGORITHM 

A.  FCM CLUSTERING 

The data-driven method is used to monitor the landing gear 
R/E system health status in this paper. The algorithm based 
on the objective function exactly fits this feature to process 
the flight data, and FCM [22] clustering is the typical one. 

Define the data sample as 
k

x , the data element as 

 1 2, , ,
n

A x x x , the number of 
k

x  as s, and the feature 
vector value set of the data sample as 

1 2( ) ( , , , )
k k k ks

p x x x x . The goal of fuzzy c-means 
clustering is to cluster n raw data samples into c subsets 

1, ,
c

A A by the membership function, which is shown as 

 
1 1

| 0,1 ; 1;0 1,
c n

ik ik ik ik

i i

i   
 

 
     

 
 

           

(3-1) 

The principle of the sum of intra-class weighted squared 
errors is introduced as objective function of the FCM 
clustering algorithm, which is shown as follows: 

2

1 1

( , ) ( ) ( )
n c

m

ik ik

k i

J U V d
 


                    

(3-2) 

where,  c n

ik
U    is the fuzzy partition matrix. 

 1 2, , ,
c

V v v v
 
is the fuzzy clustering center of various 

classes. 
ik

  
represents the membership of the k-th sample in 

the i-th class, 
ik

d  is the Euclidean distance between the 
sample 

k
x  and clustering center 

i
v  , and  1,m   is the 

fuzzy weighting coefficient. The smaller the value of 
( , )J U V , the better the effect of clustering. The distance 

between the sample and the cluster center can be shown as 
2( ) ( ) ( )T

ik k i i i k iA
d x v x p A x p    

          
(3-3) 

where, A is an S S -order symmetric positive definite 
matrix.  

As the objective function is established, the fuzzy 
clustering analysis is transformed to an optimal programming 
problem, which is shown as 

2

1 1

min( ( , )) min ( ) ( )
n c

m

ik ik

k i

J U V d
 

 
  

 
 

        

(3-4) 

And 
ik

  should satisfy the formula 3-1. 
Calculate the Eq.3-4 by Lagrange multiplier method to get 

2

1 1

( ) ( ) ( 1)
c c

m

ik ik ik

i i

F d  
 

   
           

(3-5) 
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And then use the derivative method to solve the Eq.3-5 
and get the following relationship lastly: 

12

1

1

*

,

0, , 1,
k

mc
ik

ik k

j jk

ik k ik k

i I

d
I

d

i I I



 









  
          
    

     





          

(3-6) 

Therefore, the cluster center ( )l
V is: 

1

1

( )

( )

n
m

ik k

k

i n
m

ik

k

x

v














                            

(3-7) 

With the above principle, the modeling steps of the FCM 
algorithm can be obtained as follows: 

Step 1: Establish the objective function Eq.3-4. 
Step 2: Set m as the fuzzy weighting coefficient (which is 

set as 2 generally), c as number of cluster classes,  as the 
basis for iterative decision (which is set as 0.01 generally), b 
as the maximum number of iterations. Initialize number of 
iterations 0l  , and the cluster center ( )l

V . 
Step 3: Calculate the membership matrix according to the 

Eq.3-6. 
Step 4: Update the cluster center by the Eq.3-7. 

Step 5: Judge whether ( 1) ( )l l
V V    is true, if it’s true, 

terminate the calculation and output cluster results, and if 
not, let 1l l  , turn to step 3. 

B.  THE OPTIMIZATION OF FCM 

Since the determination principle of the cluster center is to 
give the initial clustering center and then derive the result 
according to the iterative operation, in which the noise points 
may be selected and may cause the algorithm to fall into 
local optimum. What’s more, the number of clusters is 
required at the beginning due to the FCM algorithm, which 
puts forward a priori requirements for clustering data, and 
may undermine the unsupervised nature of the algorithm. So 
if the number of clustering categories is not properly selected, 
it will greatly affect the accuracy of fuzzy clustering results. 

In view of this, the following improvements are proposed: 

1)  IMPROVE THE OPTIMAL NUMBER OF CLUSTERS 
WITH GRANULARITY PRINCIPLE 

The granularity represents a measure of the particle size of 
the object, which is introduced into the fuzzy cluster to 
represent the measure of the sample data information. 
Physical granularity is the basis for the division of specific 
physical quantities, while information granularity represents 
the metrics for refinement of sample data. 

The degree of the information particle coupling 
( )Cd c indicates the degree of tightness between the 

particles in the class. The smaller the coupling degree of the 
information particles is, and the closer the relationship 
between the particles in the class is, which is expressed as 

2

1 1

1
( ) , 1,2

c n
m

ij ij

i j

Cd c d i n
n


 

                (3-8) 

The information particle separation degree ( )Sd c  indicates 
the separation property of the inter-class particles. The 
greater the separation degree is, the weaker the correlation 
between the inter-class particles and the better the separation 
degree are, which is calculated as 

2

, 1,( ) , , 1,2,
( 1) / 2

c

ik

i k i k

d

Sd c i k c
c c

  



           (3-9) 

According to the degree of the information particle 
coupling and information particle separation, define ( )Gd c  

as the effectiveness function: 
1

( ) ( ) (1 )
( )

Gd c Cd c
Sd c

                  (3-10) 

where   and 1   are weighting factors to balance the 
degree of the information particle coupling and information 
particle separation. Between the degree of the information 
particle coupling and the information particle separation, 
the smaller value takes a larger weight, vice versa, thus the 
effects of the two degrees on the effectiveness function can 
be balanced. Therefore, if we want to obtain a more 
appropriate cluster number, the value of the effectiveness 
function should be as small as possible. And the 
enumeration method can be used to calculate the value of 
the effectiveness function under different cluster numbers 
to determine the optimal cluster number. 

2)  OPTIMIZE THE INITIAL CLUSTER CENTER POSITION 

For the same data set, if the initial cluster center position is 
selected unreasonably, the algorithm may be partially 
optimal. The location of the cluster center is closely related to 
the sample space particle density, and this idea is used to 
optimize the initial clustering center of the data sample. 
Define (0)

i
  as the particle density at point 

i
x  in the data set: 

(0)

2
1

1

1

n

i

k d i k
f x x





 


                   

(3-11) 

where 

2

1
d

d

f
r


                              

(3-12) 

From the Eq.3-11, the more data near the point 
i

x  will 
make the value of the density function greater. 

d
r  

is the 
effective radius of the data, its size is related to the 
distribution of the sample data, which means the average 
square root distance between the data points: 

2

2

1 1

1

( 1)

n n

d i k

i k

r x x
n n  

 
                (3-13) 

Finally, the initial cluster center optimization procedure 
is summarized as follows: 

Step 1: Set c as the number of cluster categories, n as the 
total number of samples, and initialize the number of 
iterations 1l  . 
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Step 2: Calculate the density function value of each 
sample data. 

Step 3: Select the density function maximum 

 (0)
1 max , 1,2, ,

i
D i n   as the first fuzzy clustering 

initial center. 
Step 4: If  l c , the algorithm end, and if not, turn to step 

5 to find the next cluster center. 
Step 5: Since the density function value near the existing 

cluster center is very large. In order to avoid the repeated 
cluster centers, the relationship of the density function is 
adjusted as 

( ) ( 1)
1 2

1

1
, 2,3,

1

k k

i i k

d i k

D k c
f x x

  




  
 

   (3-14) 

Step 6: 1l l  , and turn to step 4. 

C.  CLUSTERING PERFORMANCE INDEX 

Clustering performance index [23] is important to measure 
clustering effects, which can help optimize the goals more 
clearly to obtain the more qualified clustering result. And the 
clustering goal is to make intra-class similarity high and 
inter-class similarity low. 

There are two types of clustering performance index. One 
is to compare the clustering result with a reference model, e.g. 
external index. And the other is to directly examine the 
clustering result without referring to any model, e.g. internal 
index. 

1) EXTERNAL INDEX 

Aiming at data set  1 2, , ,
m

D x x x , we can assume that 

the clusters given by the reference model are divided into 

 1 2, , ,
m

C C C C ,and the clusters given by clustering are 

divided into  * * * *
1 2, , ,

m
C C C C . And let   and *  as the 

data categories corresponding to C  and *
C  respectively. 

Define 0
p  as total correct recognition rate 

0 1

N

i

i

a

p
N




, (if *  , 1
i

a  , and if not, 0
i

a  )   (3-15) 

where, N is the total number of sample data. 
Define l

p  as the recognition rate to category l: 
*

1

mn

i
l i

m

b

p
n




, (if *  , 1
i

b  ,and if not, 0
i

b  )    (3-16) 

2) INTERNAL INDEX 

Divide the clustering result clusters into 

 1 2, , ,
m

C C C C , and define: 

1

2
( ) ( , )

( 1)
i j

i j C

avg C dist x x
C C   


 

        

(3-18) 

1
( ) max ( , )

i j
i j C

diam C dist x x
  


               

(3-19) 

min
,

( , ) min ( , )
i i j j

i j i j
x C x C

d C C dist x x
 


            

(3-20) 

( , ) ( , )
cen i j i j

d C C dist  
                    

(3-21) 

where (*)dist  is used to calculate the distance between two 
samples.  represents the center of clusters, and its 
calculation method is 

1

1
i

i C

x
C


 

 
                              

(3-22) 

And ( )avg C  represents the average distance between 
samples in cluster C, ( )diam C  represents the farthest 
distance between samples in cluster C, min ( , )

i j
d C C  

represents the closest distance between samples, and 
( , )

cen i j
d C C  represents the distance of the center of the 
cluster 

i
C and 

j
C . 

Based on the above four Equations, the internal index of 
the cluster can be derived: Davies-Bouldin in Index (DBI) 
and Dunn Index(DI). 

1

( ) ( )1
max

( , )

k
i j

j i
i cen i j

avg C avg C
DBI

k d C C


 
   

 


             

(3-23) 

min

1

1

( , )
min min

max ( )

i j

i k j i
l

i k

d C C
DI

diam C  
 

                           

(3-24) 

The DBI represents the intra-class precision and the 
smaller the better. And then the DI represents the degree of 
separation between classes, and the larger the better. 

IV.  HEALTH MONITORING OF LANDING GEAR R/E 
SYSTEM 
A.  HEALTH MONITORING PROCESS OF LANDING 

GEAR R/E SYSTEM 

The health monitoring process of the landing gear R/E 
system mainly includes three aspects: health status extraction, 
status feature dimension reduction, and status recognition. 
That means, extract the feature of the main hydraulic 
pressure value, use the improved MDS algorithm to reduce 
the dimension, and use the improved FCM algorithm to 
classify and identify the status. This whole monitoring 
process is shown in Fig.4.1. 

FIGURE 4.1  The Health monitoring process of the landing gear R/E 

system 

B.  CASE SIMULATION AND RESULT ANALYSIS 

The original data is derived from the QAR data of 261 
vehicles of a certain type of aircraft for three years, and part 
of them is shown in the Fig.4.2. The performance of the 
landing gear system is seriously degraded. And the original 
data of the aircraft landing gear retracting system is divided 
into three categories: normal data, degraded data and fault 
data. To count the original data of 261 vehicles, there are a 
total of 207 vehicles in the normal state, 49 vehicles in the 
degraded state, and 5 vehicles in the fault state. 

 

1) DETERMINATION OF THE NUMBER OF FCM 
CLUSTERING CATEGORIES 

Data 
collection

Data 
preprocessing

Health status 
feature extraction

Health status feature 
dimension reduction

Status 
recognition
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Set the fuzzy weighting coefficient m to 2, the threshold   
to 0.01, the maximum number of iterations max

b
 to 100, the 

maximum number of classifications max
c
 to 10.Accroding 

to the principle of granularity, the coupling weight   is 
slightly larger than the separation weight 1   since the 
degradation of the system is less, and set  to 0.6. When the 
number of clusters c takes different values, the data obtained 
by dimensionality reduction is substituted into formula 3-10 
to get the corresponding effectiveness function ( )Gd c value 
shown in the Table II. And the relationship image between 
the number of clusters c and ( )Gd c is shown in Fig.4.2. 

 
TABLE Ⅱ 

GD(C) VALUE CORRESPONDING TO THE DIFFERENT CLUSTER NUMBERS C 

The number of clusters c Gd(c) value 

2 0.4792 

3 0.4371 

4 0.4572 

5 0.4978 

6 0.5398 

7 0.6369 

8 0.7590 

9 0.8365 

10 0.9605 

 

 

FIGURE 4.2  The relationship between the number of clusters c and 
Gd(c) 

From the results, the effectiveness function value reaches 
the minimum one when the number of clusters is 3, so that 
the effectiveness function is reasonable. The improved 
FCM algorithm can better solve the problem that the FCM 
algorithm cannot automatically get the optimal number of 
clusters and is sensitive to initialization. Compared with the 
traditional FCM algorithm, it has better clustering effect 
and the convergence is faster. 

2) CLUSTERING IN DIFFERENT DIMENSIONALITY 
REDUCTION METHODS 

Combined four different dimensionality reduction methods 
with FCM, the membership function and clustering results 
can be obtained and shown in the Fig.4.3-10.Where, Fig. 4.3 
-6 are the membership of each category by four different 

dimensionality reduction methods, and Fig.4.7-10 are 
clustering results in each dimensionality reduction method. 
And for the convenience of writing and reading, the two 
cooperative algorithms (dimension reduction algorithm and 
FCM algorithm) are denoted as xxx_FCM, such as 
PCA_FCM. 

From Fig.4.3-10, we can see that: based on the PCA_FCM 
algorithm, the five failures of the original data are separated, 
but a small part of the health and sub-health data has poor 
separation. For the LDA_FCM algorithm, the membership 
function is not sufficiently separated, and only 4 of the 5 
vehicles in the fault categories are recognized. Based on the 
MDS_FCM algorithm, fault data can be fully identified, and 
the separation of health and sub-health data is also good. And 
based on the improved MDS_FCM algorithm, the fight 
parameter data can be clearly separated and the membership 
function value is so close to 1. The fault data can be fully 
identified, and the effect of separating health and sub-health 
data is totally obvious. As a result, the improved MDS 
algorithm can better identify the information in the 
eigenvalues of the original data, and has a high separation 
degree for different health states. 

 

FIGURE 4.3  The membership of each category by PCA-FCM 

 

FIGURE 4.4  The membership of each category by LDA-FCM 
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FIGURE 4.5  The Membership of each category by MDS-FCM 

 

FIGURE 4.6  The membership of each category by optimized MDS-FCM 

 

FIGURE 4.7  Clustering results in PLA-FCM 

 

FIGURE 4.8  Clustering results in LDA-FCM 

 

FIGURE 4.9  Clustering results in MDS-FCM 

 
FIGURE 4.10  Clustering results in optimized MDS-FCM 

 
For the clustering results of the four algorithms, the 

statistical results of the total correct recognition rate, failure 
recognition rate, sub-health recognition rate, the false alarm 
rate that misidentified the health state to sub-health state, and 
the internal evaluation indexes DBI and DI are shown in 
Table III-V: 

TABLE Ⅲ 

STATISTICS OF CLUSTERING RESULTS 

The number of each algorithm 
correct recognition 

Health 
data 

Sub-
health 
data 

Fault 
data 

The number of PCA_FCM 
correct recognition 

184 38 5 

The number of LDA_FCM 
correct recognition 

168 33 4 

The number of MDS_FCM 
correct recognition 

190 40 5 

The number of improved 
MDS_FCM correct recognition 

203 47 5 

 
TABLE Ⅳ 

CORRECT RATE STATISTICS OF CLUSTERING RESULTS 

Clustering 
algorithm 

Total 
correct 

recognition 
rate 

Failure 
recognition 

rate 

Sub-health 
recognition 

rate 

The 
false 
alarm 
rate 

PCA_FCM 89.2% 100% 83.6% 32.7% 
LDA_FCM 82.3% 80% 77.5% 44.1% 
MDS_FCM 92.3% 100% 87.5% 24.5% 
Improved 

MDS_FCM 
97.7% 100% 95.9% 7.8% 

The results of the recognition rates of several clustering 
methods are shown in the Table III and IV. Comparing the 
recognition rates of the four algorithms, it can be seen that 
the improved MDS_FCM algorithm has the highest correct 
rate for identifying the health status of the landing gear R/E 
process, reaching 97.7%, and failures can be fully identified. 
The recognition rate of sub-health vehicles can reach 95.9%, 
which is particularly prominent compared to the other three 
algorithms, and the false alarm rate is only 7.8%, which is 
also significantly lower than the other three algorithms. It 
shows that the improved MDS_FCM algorithm can 
effectively extract the key information in the eigenvalues. 
While achieving dimensionality reduction and discarding 
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redundant information, the non-linear information in the 
high-dimensional data is retained, and the purpose of 
utilizing the manifold distance to optimize the MDS 
algorithm is achieved. 

TABLE Ⅴ 

CLUSTERING INTERNAL EVALUATION INDEXES 

Clustering algorithm DBI DI 
PCA_FCM 0.31 4.31 
LDA_FCM 0.35 3.76 
MDS_FCM 0.25 4.98 

Improved MDS_FCM 0.16 6.34 

The internal evaluation indexes DBI and DI are 
summarized in the Table V, and the results show that the 
improved MDS_FCM method can better concentrate the 
same kind of data, and make different types of data more 
separated. 

V. CONCLUSION 

Based on the characteristics of flight parameter data, this 
paper extracts the time domain characteristic value of the 
main hydraulic pressure in the landing gear R/E period, uses 
different algorithms to reduce the characteristic features, and 
then uses the FCM algorithm to identify the sample data 
category. An improved MDS dimensionality reduction 
algorithm is given to optimize the shortcomings of the PCA, 
LDA, and MDS dimensionality reduction methods. Aiming 
at the limitations of the FCM algorithm, the granularity 
principle and density function are respectively utilized to 
improve the number of FCM algorithm clusters and the 
initial cluster center. And the results show that the improved 
algorithm greatly improves the accuracy of the clustering 
algorithm, and the algorithm model established in this paper 
can effectively assist the health evaluation and decision 
making of the landing gear R/E systems. 
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