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ABSTRACT The running gear is a vital component of a high-speed train to ensure operation safety.

Accurately predicting the future health status of the running gear is significant to keep the reliability and

safety of trains. It is difficult to predict the future health status based on the analytical model of the running

gear system because of its complexity and coupling. Moreover, the fault data are a minor part of tremendous

data in the running and monitoring process of a high-speed train, which obstructs accurately predicting the

health status based on a data-driven method. To solve the above problems, this paper proposes a health

status prediction method based on the belief rule base (BRB) for the running gear system. First, a failure

mechanism is analyzed to confirm the fault characteristics, which can represent the health status of the

running gear system. Second, in order to avoid the limitations of a single sensor acquisition, such as a

lack of comprehensiveness and robustness, singular value decomposition is used to achieve multisensory

information fusion. The fused features are used as the input to the health status prediction model. Data

fusion is a way to improve the precision of the health status prediction in the model input. Then, this model

based on the BRB is established using the fault data and expert knowledge. During the process of prediction,

the subjectivity of experts makes the initial BRB imprecise, so a projection constrained covariance matrix

adaptive evolution strategy algorithm is needed to optimize the initial parameters and improve the accuracy of

the proposed model. Finally, a case study for the running gear system is carried out to verify the effectiveness

and accuracy of the proposed model. The results show that the proposed model can help to accurately predict

the health status of the running gear system.

INDEX TERMS Belief rule base, projection constrained covariance matrix adaptive evolution strategy, fatal

degree, singular value decomposition, health status prediction.

I. INTRODUCTION

As the key equipment of a high-speed train, the failure of

the traveling section will affect the safety and comfort of the

high-speed train, and even make it possible to run off the

track [1], [2]. A reasonable prediction of the health status of a

running gear can effectively improve the safety and reliability

of the system. Additionally, it can prevent casualties and

economic losses due to failures [3], [4]. Therefore, this paper

studies the health status prediction of a high-speed train’s

running gear system to improve the reliability of the running

gear and guarantee the safe operation of the high-speed train.

A high-speed train’s traveling section is typically a

complex electromechanical system with many units and

complex structures. Currently, the common health status

prediction methods for complex electromechanical systems

are divided into three categories: analytical model-based

methods, data-driven approach and qualitative knowledge-

based approach [5]–[7]. Methods based on analytical mod-

els include such as Kalman filtering [8], [9]. By analyzing

the mechanism of the system, a nonlinear analytical model

is established to make a reasonable prediction of the next

step of the system. However, this kind of method relies too
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heavily on the mechanism analysis of the research object,

and it is very difficult to directly establish an analytical

model for a complex electromechanical system. Recently,

the data-driven intelligent learning model has been developed

rapidly and is widely used. This kind of method can solve the

prediction problem of complex nonlinear systems [10], [11]

based on a large amount of monitoring data, such as the sup-

port vector machine (SVM) [12], [13] and the hiddenMarkov

model (HMM) [14]. These are typical methods based on mul-

tivariable statistics, which use monitoring data to establish

nonlinear prediction models of complex systems and judge

system faults by failure thresholds [15], [16], thus predicting

the future status of the system. The models of the BP neural

network and artificial neural network (ANN) [17]–[19] are

based on non-statistical quantitative analysis methods and

do not require knowing the corresponding knowledge in

advance, thus simplifying the complexity of the problem. The

above mentioned data-driven methods have a simple model-

ing mechanism and high prediction accuracy for some prob-

lems when predicting the health status of complex systems.

However, such methods lack an explanation for the mecha-

nism of system changes when they have a large amount of

monitoring data, making it difficult to identify small patterns

from large-scale data and resulting in a poor generalization

ability of the system. There are some methods based on qual-

itative analysis. For example, the document in [20] and [21]

proposes a prediction model based on a fault tree analysis

and establishes several fault trees according to different fault

categories in order to predict the failure mode of the system.

However, when this type of method is used to deal with com-

plex systems, the branch calculation is complex, whichmakes

qualitative analysis difficult. The expert system method is the

most commonly used qualitative knowledge model. Due to

an insufficient analysis of quantitative knowledge contain-

ing a qualitative analysis, the prediction results are not very

accurate. Although the above method can solve the problem

of the health status prediction of a high-speed train travel-

ing section through the data-driven method, in the traveling

section system, there are only small-scale failure data in a

large number of monitoring data, and the effective modal data

are insufficient, resulting in inaccurate prediction results. It is

difficult to construct a health prediction model to reflect the

dynamic changes of future behavior by means of a mecha-

nism analysis because of the close coupling between compo-

nents and the complex structure in the traveling department

system. Therefore, to solve the problem where the existing

methods only consider the limitation of a single knowledge,

fuzzy, uncertain information, etc., Yang et al. described the

belief rule base modeling concept [22] based on the evidence

reasoning method [23] on the basis of the D-S theory [24],

fuzzy theory [25] and the traditional IF-THEN rule base,

where the confidence level is introduced and combined with

expert knowledge to reflect the behavior of the complex sys-

tem.A rule base [26], [27] containing all the confidence levels

of the results can well deal with the problem of the health

status prediction of the complex system [28]. To this end, this

paper proposes a BRB-prediction model based on the health

status for a high-speed train running gear system, which uses

semiquantitative information to establish a health status pre-

diction model for the system. A singular value decomposition

is used to fuse multisensory information. The singular value

after the decomposition cannot correctly correspond to the

information of the sensor, and the singular value is updated by

the QR decomposition, so that the information corresponding

to each sensor is accurately obtained, and the accuracy of the

fusion result is improved, the fused features are used as inputs

of the prediction model. The parameters of the models are

optimized using the P-CMA-ES algorithm [29]. This method

constructs a new prediction model containing semiquantita-

tive information, which not only objectively describes the

system but also accurately predicts the health status.

This article is arranged as follows: in the second part,

the failure mode of the traveling section system and the fatal

degree of the monitorable components are analyzed and then

are reasonably selected as the key characteristic quantity of

the high-speed train’s health status. In the third part, a health

prediction model for the high-speed train running gear is

proposed. The fourth section gives the actual verification of

predicting the health status of the high-speed train traveling

section and illustrates the effectiveness of the proposed algo-

rithm, followed by concluding remarks in the last section

II. MECHANISM ANALYSIS OF HIGH-SPEED

TRAIN RUNNING GEAR

The main task of the high-speed train running gear system is

to maintain the high-speed stability of the train operation and

reduce the wheel-rail interaction force. Its structure diagram

is shown in Fig. 1 below.

FIGURE 1. Diagram of the high-speed train running gear system.

In the running gear system. the frame carries the instal-

lation of various parts of the running gear and also bears

various forces during the running. Including the wheelset in

direct contact with the rail, the gravity of the carriage and the

adhesion traction force and braking force between the rail and

the frame is the frame of the running gear, and the wheelset

makes the high-speed train run normally on the rail through

rotation, which makes the axle box device connecting the

frame and thewheelset components especially important. The

axle box is the key equipment for ensuring the free rotation of

the wheelset and the normal running of the high-speed train,
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which is also the key equipment for ensuring operational

safety.

For the sake of restoring the real running status of various

parts of the train running gear, according to a large amount

of maintenance data collected by the General Administration

of Railways in a certain year, classification processing was

performed to obtain the fault location and fault type table of

the high-speed train running gear, as shown in Table 1.

It is obvious from Table 1 that there are a total of 40

failure modes and 98 specific failures in the running gear sys-

tem, among which the wheel-to-axle box positioning device

includes 33 shafts and axle boxes, which account for 33.6% of

faults. It can be seen from Table 1 that the axle box device has

a high failure rate in several running components, but the true

situation in the failure mode cannot be obtained. Although,

according to Table 1, we understand the failure mode and the

cause of the train running gear, it is still unclear how fatal the

failure mode is for each running function. Therefore, the anal-

ysis can monitor the lethality of the components to grasp the

real operation of the key components, and intuitively reflect

the health of the high-speed train.

When component i fails in failure mode j, the fatal degree

of the component is:

CRij = αijβijλi (1)

The component i in failure mode j; βij is the probability of

a loss in the function condition that component i will cause

component damage in failure mode j. If its value is 1, it means

that damage must occur. Possible damage is indicated by 0.5;

0.1 indicates that damage will rarely occur; and 0 means no

effect. λi is the average failure rate used for the component i to

become a basic failure component. Its calculation formula is:

λi =
ni

∑m
j=1 Tj

(2)

where ni is the total number of failures of component iwithin

the specified time, Tj is the jth fault interval in the fault

interval time series of component i within the specified time,

and m is the number of fault intervals.

After processing and calculation, the fatal degree analysis

results of monitorable components in a high-speed train oper-

ation are shown in Table 2.

The other components in Table 2, including those with

lower dead lies such as couplings and brake calipers, have

a lower risk of failure. Among the detectable components in

operation, the axle box is the most lethal mainly because it

bears the connection between the frame and the wheelset, and

the vibration triggered by the indirect contact between the

components during the running of the train easily damages

the axle box device. In addition, the vibration of the bearings

during operation, poor lubrication, and other factors will

cause the shaft temperature to exceed its limit, changing the

internal structure of the component material. The bearing is

connected to the wheelset group in the running gear system,

so the key components such as the axle box and other com-

ponents will be slightly rubbed. This causes an additional

TABLE 1. Statistics of failure modes of running gear system.

vibration of the bearing. Therefore, the shaft temperature

and bearing vibration are selected as two important features

of the system. Due to the lack of comprehensiveness and
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TABLE 2. Analysis fatal degree of monitorable components (part).

robustness of single sensor acquisition, multisensory infor-

mation fusion will be used to reflect the train health status.

In the health prediction BRB model, the initial parameters

need to be set through expert knowledge and historical data.

However, as the result of a limitation in expert knowl-

edge, the initial parameters are indefinite. Therefore, the
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FIGURE 2. Flow chart of health prediction modeling for high-speed train running gear system.

optimization of initial parameters can update the prediction

model more accurately, reflecting the running gear, i.e., the

actual operating status of the system.

III. HIGH-SPEED TRAIN RUNNING GEAR

HEALTH PREDICTION MODEL

For the sake of predicting the true health of a high-speed train

at runtime, a model with semiquantitative information is pro-

posed to process the prediction problem. As shown in Fig. 2,

the structure of the model is mainly divided into three parts.

In the first part, after the data collected by different measuring

points are merged, a health status prediction model is estab-

lished as a key feature input model. In the second part, based

on faulty data and expert knowledge, a BRB health prediction

model is constructed. The initial parameters in the model are

updated using P-CMA-ES.

A. DATA FUSION

For the sake of reducing the errors caused by environmental

factors, such as sensor quality, and restore the real health

status of trains, multisource sensor data are fused. A more

effective method of data fusion is a singular value decom-

position, which can preserve the original trend while ensur-

ing that the abnormal point is eliminated. It has six steps,

as follows:

Step 1: Build an input matrixM of multisensory measure-

ment results.

M = [M1,M2, · · · ,MN ]

=











M1(1) M2(1) · · · MN (1)

M1(2) M2(2) · · · MN (2)
...

...
. . .

...

M1(l) M2(l) . . . MN (l)











(3)

where Mi represents the observation result of the ith sensor,

The data acquisition value of the traveling section.

i = 1, 2, · · · ,N .

Step 2: Denoise with the LOF (local outlier factor) [30] to

obtain the input matrix.

reach-distk (p, o) = max{k − dist(o), d(p, o)} (4)

lrdk (p) = 1/(

∑

o∈Nk (p)
reach-distk (p, o)

|Nk (p)|
) (5)

LOFk (p) =

∑

0∈Nk (p)
lrdk (o)
lrdk (p)

|Nk (p)|

=

∑

0∈Nk (p)
lrdk (o)

|Nk (p)|
/lrdk (p) (6)

∼

M = [
∼

M
1
,

∼

M
2
, · · · ,

∼

M
N
]

=















∼

M1(1)
∼

M2(1) · · ·
∼

MN(1)
∼

M1(2)
∼

M2(2) · · ·
∼

MN(2)
...

...
. . .

...
∼

M1(l)
∼

M2(l) . . .
∼

MN(l)















(7)

where d(p, o) represents the Euclidean distance between

o and p, dk (p) represents the kth distance of the point of p,

Nk (p) represents the kth distance neighborhood of the point

of p, reach-distk (p, o) represents the kth reachable distance

from point o to point p, lrdk (p) represents the local reachable

density of point p, and LOFk (p) represents the local outlier of

the point of p. If LOFk (p) ≫ 1, the point p is determined to be

an abnormal point or an invalid point, Then all the abnormal

points in the data setM that meet the p point requirement are

eliminated, and n < l, the input matrix
∼

M is updated after

LOF processing.
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Step 3: Calculate the singular value of the sensor observa-

tion matrix
∼

M.

U
∼

MV = diag(σ1, · · · , σp) ∈ Rn×N , p = min{n,N },
∼

M = VJUT, J = diag(σ1, · · · , σp) ∈ Rn×N ,

P = rank(
∼

M) (8)

where the orthogonal arrays U = [u1, · · · , uN ] ∈ Rn×n

and V = [v1, · · · , vN ] ∈ RN×N are singular vectors of
∼

M,

the diagonal matrix J is the singular value matrix of
∼

M, the

diagonal element σ p corresponds to the column vector of each

input matrix
∼

M.

Step 4: Determine the singular value σp and the position in

the input matrix
∼

M by QR decomposition [27].

B = UT
∼

M,
∼

M ∈ Rn×N , n > N

B = (BT)T = (QBRB)
T = RT

BQ
T
B

∼

M = UJ1V
T

J1 = diag(σ ′
1, σ

′
2, · · · , σ

′
p) ∈ Rn×N (9)

whereB is a row vector orthogonalmatrix, updating J1 = RT
B,

VT = QT
B and a singular value σ ′

p.

Step 5: Calculate the influence weight Wp of each sensor

If n < N , then p = 1, 2, · · · ,N .

Wp =
σ ′
p

N
∑

p=1

σ ′
p

N
∑

p=1

Wp = 1 (10)

where σ ′
p is the singular value of N sensors.

Step 6:Calculate the estimated quantityM after data fusion

of N sensors

∧

M =

N
∑

p=1

Wp ·
∼

M
p

(11)

B. INITIAL BRB MODEL FOR HEALTH STATUS

PREDICTION OF RUNNING GEAR SYSTEM

By combining the known detection data with the base rules,

the process provides more information than the IF-THEN

rule operation by introducing parameters such as premise

attribute weights, rule weights, and confidence, which is the

calculation method of the actual situation.

The model k rule is expressed as

If x1(t+ τ ) is Rk1 ∧x2(t+ τ ) is Rk2 ∧· · ·∧xM (t+ τ ) is RkM
Then {(D1, ψ1,k ), · · · , (DN , ψN ,k )}

With a rule weight θk and attribute weight

δ1, · · · , δM (12)

where xi denotes the ith bogie fault characteristic vector.

τ is the delay step. Based on expert prior knowledge and

historical data. Rk denotes a set of reference values entered

by kth rule Rk = {Rk1, · · · ,R
k
M }, (k = 1, · · · ,L). Where

L denotes the total number of rules. ψn,k (n = 1, · · · ,N )

denotes belief degree by which Di is considered as the result

whether (x1(t + τ ), · · · , xM (t + τ )) = (Rk1, · · · ,R
k
M ), M is

the number of estimation results. D denotes a status vector

for health prediction. And D = [D1, · · · ,DN ], where N

denotes the amount of status s including the normal status

of the system.

In the process of BRB reasoning, an evidence Reasoning

analysis [28] method is used. In an ER analysis algorithm,

confidence can be obtained directly.

Step 1: Calculate the confidence of the premise attribute

χki,j relative to the reference value.

χki,j(x
∗
i ) =























xi(k+1) − x∗
i

xi(k+1) − xik
, j = k(xik ≤ xi ≤ xi(k+1))

x∗
i − xik

xi(k+1) − xik
, j = k + 1

0, j = 1, 2, · · · , |xi|, j 6= k, k+1

(13)

where wk ∈ [0, 1], k = 1, 2, · · · ,L, χki,j is the matching

degree of the rule-based or utility-based input information

with respect to the ith premise attribute of the jth rule.

Step 2: Calculation method of activation weight wk in the

kth rule.

wk =

θk

M
∏

i=1

(χki )
−
δi

L
∑

l=1

θl

M
∏

i=1

(χ li )
−
δi

(14)

where wk ∈ [0, 1], k = 1, 2, · · · ,L,
−

δ
i
is attribute weight.

Step 3: Using ER algorithm for reasoning, we can get the

output of BRB.

S(x) = {(DN ,
∧

ψj), j = 1, 2, · · · ,N } (15)

∧

ψj =

µ·[
L
∏

k=1

(wkψj,k+1−wk
M
∑

i=1

ψi,k )−
L
∏

k=1

(1−wk
M
∑

i=1

ψi,k )]

1 − µ · [
L
∏

k=1

(1 − wk )]

(16)

µ = [

N
∑

j=1

L
∏

k=1

(wkψj,k + 1 − wk

M
∑

i=1

ψi,k ) − (N − 1)

×

L
∏

k=1

(1 − wk

N
∑

k=1

ψi,k )]
−1 (17)

y = µ(S(x)) =

N
∑

j=1

µ(DN )ψj (18)

where S(x) is the final output of the BRB model,
∧

ψ j repre-

sents the confidence level relative to the evaluation resultDN ,
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y is the expected utility of the S(x) of the high-speed train

running gear.

C. PARAMETER UPDATE ALGORITHM

BASED ON P-CMA-ES

The health status y is solved and the MSE objective function

in (19).

ϑ(J ) =
1

T − τ

T
∑

t=τ+1

(y(t) −
∧
y(t))

2

(19)

where J = [θk , δi, ψn.k , µ(Dn)]
T denotes a column vector

composed of the parameters in BRB, T is the amount of data,

and θk , δi, ψn,k ,Dn are set up.

For the sake of making
∧
y fit yn as much as possible, obtain

the following objective function.

minϑ(J) (20)

The constraints are as follows:

minϑ(J)

s.t.

N
∑

n=1

ψn,k = 1

0 ≤ ψn,k ≤ 1, n = 1, 2, · · · ,N ; k = 1, 2, · · · ,L

0 ≤ δi ≤ 1, i = 1, 2, · · · ,Mk

0 ≤ θk ≤ 1, k = 1, 2, · · · ,L (21)

where θk , ψn,k are gave in (19), min() denotes the minimum

value of ϑ(J), and δi is the estimated reference value of

attribute weights.

Use the P-CMA-ES algorithm to constrain the optimiza-

tion objective function, and then optimize the proposed

model. The combination of CMA-ES and the projection

matrix can deal with the constraint problem, reduce the com-

plexity of the model and optimize the population convergence

rate.

The specific optimization steps are as follows:

Step 1: Sampling produces new solutions. Set the sampled

population to the expected value, and the population con-

forms to the normal distribution where the initial expectation

is the parameter vector J of the initial BRB model.

Jg+1
q ∼ meang + υgN (0,Cg)(q = 1, · · · , ρ) (22)

where g is the updated gth expectation mean, υ is the updated

step size, and C is the covariance matrix to be updated.

Step 2: Projection operation.

�
g+1
i (1 + ze × (u− 1) : ze × u)

= �
g+1
i (1 + ze × (u− 1) : ze × u)

−BTi × (Be × BTe )
−1 − BTe × (Be × BTe )

−1

×�
g+1
i (1 + ze × (u− 1) : ze × u) × Be (23)

where Be = [1 · · · 1]1×2N is the parameter vector,

ze = (1, · · · , 2Z ) is the number of constraint variables, and

u = (1, · · · , 2Z + 1) is the number of constraint.

Step 3: Multi-objective constraints. Update the objective

function to be optimized according to the constraint. That is,

the confidence level of the kth rule in the constraint parameter

vector Jq, where ψn,k ∈ Jq,
∑N

n=1 ψn,k = 1.

The constraint objective function is

Sk (ψn,k ) =

∣

∣

∣

∣

∑N

n=1
ψn,k − 1

∣

∣

∣

∣

(24)

where Sk (ψn,k ) is the constraint function to be optimized for

the kth rule in the initial BRB.

Step 4: Exchange information and reorganize between dif-

ferent solutions. Combine the selected partial solutions to

obtain the next-generation mean, and then update the target

mean and select ϕ as the updated mean value of the optimal

solution.

meang+1 =

φ
∑

i=1

τiJ
g+1
i:λ (25)

where τ is the individual weight, and the sum of all weights

is 1; λ is the individual number, and J
g+1
i:λ is the ith solution

chosen from λ individuals in g+ 1 generation.

Step 5: Adjust the covariance matrix.

Cg+1 = (1 − a1 − aφ)C
g + a1f

g+1(f g+1)T

+ aφ

φ
∑

i=1

τi(
(J
g+1
i:λ − meang)

υg
)(
(J
g+1
i:λ − meang)

υg
)T

(26)

where a1 and aφare learning factors, and f is the evolutionary

path.

Set the initial parameters of the evolutionary path to 0

according to (26) and then update parameter f .

f g+1 = (1 − ap)f
g +

√

√

√

√

√ap
(

2 − ap
)





φ
∑

i=1

τ 2i





−1

×
meang+1 − meang

υg
(27)

where ap ≤ 1 is the updated parameter of the evolutionary

path and υ is the evolutionary step size.

υg+1 = υg exp(
aυ

dυ
(

∥

∥

∥
f
g+1
υ

∥

∥

∥

E ‖N (0, I)‖
)) (28)

where dυ is the damping coefficient,E ‖N (0, I)‖ is the expec-

tation of ‖N (0, I)‖, and I is the identity matrix.

f g+1
υ = (1 − aυ )f

g
υ +

√

√

√

√aυ (2 − aυ )(

τ
∑

i=1

τ 2i )
−1C(g)− 1

2

×
meang+1 − meang

υg
(29)

where aυ is the parameters of evolutionary path fυ .

Step 6: Iteration.

Through steps 1-5, the most suitable parameter set is deter-

mined. If the condition of the optimal solution is not met, the
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process returns to step 1 and the update is performed until the

condition is met. Then, finish updating parameter set J.

D. CONSTRUCTION STEPS OF THE HEALTH PREDICTION

MODEL FOR HIGH-SPEED TRAIN

RUNNING GEAR SYSTEM

According to the above analysis, four steps of the health

prediction model of the high-speed train running gear are as

follows:

Step 1:Multisensory Data Information Fusion

Step 1-1: Establish an input matrix M of multi-sensor

measurement results (3).

Step 1-2: Use LOF to denoise and get the input

matrix
∼

M (4-7).

Step 1-3:Calculate the singular value of sensor observation

matrix
∼

M (8).

Step 1-4: Use QR decomposition to determine the position

of singular value σp and input matrix
∼

M (9).

Step 1-5: Calculate the influence weight Wp of each

sensor (10).

Step 1-6: Calculate the estimated quantity
∧

M after data

fusion of N sensors (11).

Step 2: Establish a BRB health model with initial

parameters.

Step 2-1: Experts give attribute weights, reference val-

ues and initial confidence levels according to expert

knowledge.

Step 2-2: Establish a BRB-based health prediction model.

Step 3: The parameters are updated using the P-CMA-ES

algorithm.

Step 3-1: Sampling produces new solutions (22).

Step 3-2: Projection operation (23).

Step 3-3:Multi-objective constraints (24).

Step 3-4: Exchange information and reorganize between

different solutions (25).

Step 3-5: Adjusting the covariance matrix (26-29).

Step 3-6: Iteration. Finish updating parameter set J.

Step 4: The ER analysis algorithm is used for

health prediction to obtain a status of health including

confidence.

The high-speed train travel system was set up, and the axle

box temperature rise and vibration were finally selected to

characterize the health status of the high-speed train travel

section. Since the attribute weight measures the importance

of the health status, if the health status of the high-speed train

is estimated, the vibration of the axle box is as important as

the temperature rise. the attribute weight can be determined

to be 1. Assume that the reference value is set to five levels

to measure the change in the predictive input and to predict

the health of the system. As a complex electromechanical

system, the health department is subdivided into five types.

The more reference values, the more detailed the process of

describing the status of health changes. The fourth section

describes the expert knowledge setting process through

cases.

IV. ACTUAL VERIFICATION

For the sake of verifying the validity and reliability of the

semiquantitative information model proposed in this paper,

the high-speed train running system is taken as an example

for practical verification. When the data acquisition of the

running gear is selected, the side of the power running gear

of train No. 2 is selected for sampling. Fig. 3 shows the

position distribution of the sensor points and the sampling

point position. A and B are the two measuring points of the

running gear. They are divided into left (L) and right (R),

and the composite sensor is installed on both sides. For the

sake of ensuring the train is in operation, the monitoring data

with a rotational speed of 1000 r/min or above is verified as a

model. As the high-speed train running system is affected by

the operating environment during real operation, the health

status of the high-speed train running gear will be measured,

which is defined as ‘‘Health,’’ ‘‘Wheel Repair,’’ ‘‘Temporary

Repair,’’ ‘‘Garage Repair,’’ ‘‘Stop to Repair.’’

FIGURE 3. Distribution of axle box measuring points on bogies.

A. DATA FUSION

In the actual monitoring data, there are singular points in

different measuring points due to factors such as sensor qual-

ity problems and the location of points, as shown in Fig. 4

with (a), (b). For the sake of making the monitoring data

better reflect the health status of the system, (3-11) is now

used to fuse multisensory features, filter out relevant singular

points without destroying the original features of the data,

reduce errors caused by external factors, and finally compress

1000 data volumes, as shown in Fig. 5 with (a), (b).

B. BRB TRAINING MODEL

The five health statuses of a high-speed train running system

are defined as follows:

Health: All parts of the high-speed train work well and

fasteners do not loosen that all indicators meet the factory

requirements. When the train is in this status, the temperature

and vibration are normal, and the amplitude is low, so the

high-speed train can ensure safe running.

Wheel Repair: The parts slightly wear and shaped dur-

ing operation. When the train is in this status, the average

vibrational peak is between 10-13 Hz and the temperature
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FIGURE 4. Trend diagram of four measuring points. (a) Temperature (b) Vibration.

FIGURE 5. Trend diagram after fusion. (a) Temperature (b) Vibration.

TABLE 3. The referential points.

is between 20 ◦C-27 ◦C . Checking of appearance, working

condition and general performance of every part work for

preventive and corrective maintenance. Under this status,

the normal running will not effect.

Temporary Repair: High-speed train reaches a tipping

point of health and malfunction. When the train is in this sta-

tus, the average vibration peak value is between 13 and 16 Hz

and the temperature is between 27 ◦C-34 ◦C . In accordance

with the relevant regulations of the Train repair and repair

system, the train needs periodically repair and adjust the

systems and components without disassembling the wheels

in the next maintenance to ensure the normal running of the

train.

Garage Repair: The running function of high-speed train

decreases and some parts are in a bad status, which may lead

to failure. When the train is in this status, the average peak

value of vibration is between 16-19 Hz, and the temperature

is between 34 ◦C-41◦C . As the check seek to improve the

safety of the train. It is necessary to replace or repair the parts

of the train that are monitored.

Stop to Repair: The components of the train are seriously

damaged, and the operation will stop at any time. When the
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TABLE 4. Initial BRB parameter setting.

train is in this status, the average peak value exceeds 19 Hz,

and the temperature exceeds 41 ◦C . At this status, emergency

braking is needed, and the parts of the train monitored should

be repaired immediately to prevent dangerous situations.

In the BRB model, not only are the vibration and tem-

perature indexes important to the health prediction of the

high-speed train running system but also the rule set is equally

important, so αk , R2 can be assigned to 1. When setting the

reference values for vibration and temperature, the number

of reference values determines the number of rules, and an

increase in the number of rules will lead to the complex-

ity of model calculation. According to expert knowledge,

the set temperature has five reference levels, including VL

(Very Low), L (Low), M (Medium), H (High), and VH (Very

High), expressed as VL, L, M, H and VH, with the attribute

values listed in Table 3. The set vibration is also expressed as

five reference levels VL, L, M, H and VH, and the attribute

values are listed in Table 3. The health status reference levels
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TABLE 5. BRB parameters optimized by P-CMS-EA.

output for the BRB model include H (Health), WR (Wheel

repair), TR (Temporary repair), GR (Garage repair), and STR

(Stop to repair), expressed as H, WR, TR, GR, and STR, with

the attribute values listed in Table 3.

The temperature and vibration reference values are divided

into five levels, with a total of 25 confidence rules. According

to expert knowledge, the health prediction the BRB model of

a high-speed train running gear is established.

The Kth rule can be described as:

Rk : If Temperature is Rk1 ∧ Vibration is Rk2

Then health status is {(1 , ψ1,k ), (2 , ψ2,k ), (3 , ψ3,k ),

(4 , ψ4,k ), (5 , ψ5,k )}
(

N
∑

n=1

ψn,k ≤ 1

)

k ∈ {1, · · · , 25}
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FIGURE 6. Two results of the initial BRB model (a) result 1 (b) result 2.

According to expert knowledge, Table 4 sets the initial param-

eters of the BRB model. For example, when the vibration

amplitude is large and the temperature is high, the health

of the high-speed train running gear is poor. The first rule,

VL AND VL, means that the temperature and vibration

are in a very low status and remain normal. The health

status of the high-speed train running gear system should

remain healthy. Thus, the health status of the high-speed

train running gear is assigned to {(D1, 1), (D2, 0), (D3, 0),

(D4, 0), (D5, 0)}. The seventh rule, explains the gradual

change from health to the ‘‘Wheel repair’’ of the running gear

system of the high-speed train running gear. L AND L indi-

cate that both the temperature and vibration are decreased to a

low level, and the health status of the high-speed train running

gear system is in ‘‘Wheel repair.’’ Therefore, the health status

of the high-speed train running gear is given {(D1, 0), (D2, 1),

(D3, 0), (D4, 0), (D5, 0)}.

In the parameter training of BRB, 500 data were selected

from the data set, and the model parameters were updated

using the P-CMA-ES algorithm; with the population size set

to 90 and the number of iteration set to 500. The parameters in

the BRB model were updated as shown in Table 5 after train-

ing. The presumed attribute weights for x1 and x2 are updated

to 1 and 0.6155, respectively. The red line from Fig. 6 (a)

represents the optimized BRB model output, the blue line

represents the true status of the system, the green line rep-

resents the output of the initial BRB model, it can be seen

from the resulting graph that the red line ismore effective than

the green line, and the blue line is well fitted, thus verifying

the effectiveness of the optimized BRB model. As shown

in Fig. 6 (b), the red dot is more suitable than the green dot

to fit the real situation represented by the blue dot. There-

fore, the trained model can better predict the health of the

system.

C. BRB TEST MODEL

The test data includes 500 data points. FromFig. 7 (a) and (b),

the red line can track the trend of the blue line more

than the green line. According to the result, it can be

change of the test data, and the optimized BRB predic-

tion determined that the prediction result can well follow

the result has more than the initial BRB. A good fit con-

firms the effectiveness of optimizing the BRB model. The

mean squared error (MSE) of the optimized BRB model is

set to 0.1045. Therefore, it is obvious that the optimized

BRB model can more reasonably predict the health of the

system.

D. COMPARATIVE SIMULATION

For the sake of further testifying to the validity of the model,

a classical data-driven method was used to compare and

analyze the proposed method. The BP neural network and

particle filtering model are used to predict the health status of

the high-speed train running components, and the feasibility

of the proposed model to solve the practical industrial prob-

lems is verified. The initial value of the parameters’ BP neural

network is set as follows: net. Train Param. epochs=500, net.

Train Param. goal=0.01 and net. Train Param. lr=0.15. The

health status levels are also defined as 1, 2, 3, 4, and 5, denoted

as Health,Wheel repair, Temporary repair, Garage repair, and

Stop to repair, respectively.

Fig. 8 (a) is a comparison of the dynamic change prediction

of the BP neural network compared to the optimized BRB

model. According to the dynamic change prediction results

of the BP neural network, it can be concluded that BP neural

network can initially follow the blue line to predict fit is

better, but the fluctuations are large in the ‘‘Garage repair’’

and ‘‘Stop to Repair,’’ and it is impossible to accurately track

changes and predict the health status. Compared with the
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FIGURE 7. Two results of the trained BRB model (a) result 1 (b) result 2.

FIGURE 8. Comparison with other models (a) with BP (b) with PF.

TABLE 6. The MSE of models.

green line, the red line can accurately track the blue line and

predict its health status.

V. CONCLUSION

This paper proposes a predictive model based on semiquanti-

tative information, which is used to predict the its change,

but it fluctuates greatly in the ‘‘Temporary Repair’’ status

and cannot be accurate. The track changes and predicts the

health status. Compared to the green line, the red line can

accurately track the blue line and predict its health.

The particle filter model for predictive analysis and the ini-

tial particle number M=10 can be seen in Fig. 8 (b). In the

‘‘Temporary Repair’’ status of the Train Param. lr=0.15. The

health status levels are also defined as 1, 2, 3, 4, and 5, denoted

as Health,Wheel repair, Temporary repair, Garage repair, and

Stop to repair, respectively.
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Fig. 8 (a) is a comparison of the dynamic change prediction

of the BP neural network compared to the optimized BRB

model. According to the dynamic change prediction results

of the BP neural network, it can be concluded that BP neural

network can initially follow the blue line to predict its change,

but it fluctuates greatly in the ‘‘Temporary Repair’’ status and

cannot be accurate. The track changes and predicts the health

status. Compared to the green line, the red line can accurately

track the blue line and predict its health.

The particle filter model for predictive analysis and the

initial particle number M=10 can be seen in Fig. 8 (b).

In the ‘‘Temporary Repair’’ status of the system, the degree

of health status of the high-speed train running gear during

actual operation. By analyzing the fault mode and fatality

of the train running system, the real-time key features are

obtained. Due to the quality of the sensor and the location

of the distribution point, the data of the existing measure-

ment points are fused, and the relevant singular points are

filtered out without reducing the original features of the

data, thereby reducing the error caused by external factors.

By using the BRB model to establish the contact between the

health status and quantitative fault data and expert knowl-

edge, the P-CMA-ES algorithm is introduced to solve the

problem of parameter inaccuracy in the BRB model given by

experts, optimize the structure of the model, and improve the

prediction accuracy.

An example analysis based on the health status prediction

of the traveling section of high-speed trains shows that the

BRB system trained with the optimization model proposed

in this paper can predict the health status of the traveling

section system well, and the model has a high applicability

to practical engineering problems. It provides a new solution

for practical engineering that cannot obtain a large number

of effective monitoring data through expert knowledge to

predict the health status of complex systems.

For the sake of verifying the feasibility of the model,

two common data-driven methods, the BP neural network

and particle filtering model, are compared with the proposed

model. The results show that the model proposed in this paper

has a high accuracy in the health prediction of a high-speed

train running gear. The model combines the corresponding

expert knowledge in front of a large amount of historical

data and current data to effectively predict the health sta-

tus of the high-speed train running gear in actual industrial

processes.

When using the BRB model, it is necessary to ensure

that the model inputs are independent of one another,

which is conducive to the establishment of a complete rule

base. However, in the actual industrial process, the input

features of the model may not be completely indepen-

dent of one another. When predicting the health status of

high-speed trains, the prediction accuracy is better than

the traditional method. However, when the actual situa-

tion is considered, further research should be conducted so

as to account for the potential correlation between feature

quantities.
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