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Abstract: Continuous monitoring of health status has the potential to enhance the quality of life and
life expectancy of people suffering from chronic illness and of the elderly. However, such systems
can only come into widespread use if the cost of manufacturing is low. Advancements in material
science and engineering technology have led to a significant decrease in the expense of developing
healthcare monitoring devices. This review aims to investigate the progress of the use of low-cost
sensors in healthcare monitoring and discusses the challenges faced when accomplishing continuous
and real-time monitoring tasks. The major findings include (1) only a small number of publications
(N = 50) have addressed the issue of healthcare monitoring applications using low-cost sensors over
the past two decades; (2) the top three algorithms used to process sensor data include SA (Statistical
Analysis, 30%), SVM (Support Vector Machine, 18%), and KNN (K-Nearest Neighbour, 12%); and
(3) wireless communication techniques (Zigbee, Bluetooth, Wi-Fi, and RF) serve as the major data
transmission tools (77%) followed by cable connection (13%) and SD card data storage (10%). Due to
the small fraction (N = 50) of low-cost sensor-based studies among thousands of published articles
about healthcare monitoring, this review not only summarises the progress of related research but
calls for researchers to devote more effort to the consideration of cost reduction as well as the size of
these components.

Keywords: body area network; healthcare; human skin; low-cost sensor; physiological parameter

1. Introduction

An ageing population and an increasing number of patients with chronic diseases
(e.g., diabetes, neurological disorders, and hypertension) put enormous financial stress on
any healthcare system: For instance, the overall expense of treating cardiovascular diseases
in the EU is around €210 billion annually [1]. In addition, hospitalisation imposes financial
as well as emotional burdens on families, with frequent hospital visits being impractical for
some family members or patients living in remote areas. In contrast to this is the wish of
most people to remain independent of care for longer. However, this can create an added
concern, namely that if a frail or an early-stage dementia patient were to fall and be left
unnoticed for more than two hours, the situation could become life-threatening [2]. To
address the increasing healthcare costs and increasing numbers of aged people, the WHO
has recommended continuous healthcare monitoring as a cost-effective tool for use in many
areas of the healthcare process from preliminary examination, preliminary diagnosis, and
preliminary treatment [3], extending to remote monitoring and enabling people to safely
live independently for longer.
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Health status monitoring appears critically important for any healthy population.
We would like to illustrate this using a now commonplace activity: being seated. Sitting
accounts for one-third of daily activity; however, unhealthy sitting postures and prolonged
periods of sitting can trigger musculoskeletal disorders, such as neck pain [4]. However, if
the person has coexistent health issues, sitting for prolonged periods can exacerbate these.
Furthermore, in those with neurological damage that forces them to sit for prolonged peri-
ods, the accumulated pressure loading along with the increasing temperature and humidity
at the body–seat interface can lead to the deterioration of epithelial and subcutaneous
tissues and ultimately pressure ulcers [5]. In the case of males, it has also been reported
that the rising temperature in the body–seat microenvironment has a negative impact on
sperm chromatin structure [6]. The many consequences of what is now a commonplace
activity have come to the awareness of seat designers, sparking interest in the research of
sitting with the aim of remotely monitoring sitting patterns in real-time [7–9]. This would
have obvious potential benefits for healthcare, such as wheelchair users with an impaired
sensation of pain and/or impaired ability to adjust their own posture. Although this
example illustrates a limited aspect of sensor use, it is possible to realise from it the breadth
and depth of both the information and role (from solely commercial use to inclusion in
the home/car in health and healthcare) that the inclusion of simple, low-cost sensors in
otherwise ordinary daily objects can have.

Consequently, various prototypes and commercial products have been designed and
developed by research facilities and industrial companies. The market momentum is
expected to reach nearly $140 billion by 2026 [10]. The most significant merit of healthcare
monitoring is to provide real-time feedback information about health status, either to the
individuals or to healthcare workers or professional personnel at a medical centre to take
action before the happening of possible imminent health threats. Healthcare monitoring
devices constitute a new means of tackling the issues of predicting and preventing the
occurrence of chronic diseases (e.g., diabetes mellitus and heart attacks) and facilitating the
patient’s own monitoring: i.e., taking ownership of their disease (diabetes mellitus, heart
conditions, sleep conditions). Other areas being explored include looking after elderly
people at home (e.g., monitoring life activity change in early dementia) and assisting
patients to perform training and rehabilitation tasks (e.g., fitness recordings and sitting
posture recognition). Of course, they also have a major role in helping people lead healthier
lifestyles if they wish (e.g., heart monitoring and sleep monitoring).

As sensor technology advances, we have seen decreased expense, reduced size, and
improved integration. Such advances have allowed the development of devices to monitor
the health of the elderly at home with the help of the internet which significantly reduces
the number of clinical visits yet retains delivery of high-quality healthcare [11]. Such
devices allow the patient to monitor their own disease and other health-related data at
home, facilitating patient-centred care. As the data are transmitted to the healthcare team,
they can remotely monitor and offer more personalised advice. Ethically, this system has
fewer issues with privacy than camera-based systems, as it is anonymised and without any
unnecessary visual data that can breach privacy.

Although a great deal of literature summarising the progress of healthcare monitor-
ing has been published in recent years, to the authors’ knowledge, none discusses the
achievement based on the usage of low-cost sensors nor compares sensor cost as part of
their discussion. In this review, we used two features to define the low cost: (1) clear
declaration of using low-cost sensors and (2) the whole cost of the sensing component is
less than 20 USD (we do not consider the price of the data processing unit, such as the
high-performance remote server, in this calculation, as the data processing unit can be
shared by multiple applications. Consequently, the cost for each individual node would
be very low). If any of the above criteria are met, the application is categorised as using
low-cost sensors.

Applying low-cost sensors to monitor human health is of particular importance to
maintaining personal well-being and increasing the independence of people who lose



Sensors 2023, 23, 2139 3 of 25

control or sensation of body organs caused by disease/injury damage [11–13]. As a result,
reliable low-cost healthcare monitoring can effectively reduce the economic burdens of
families and release the workload of caregivers. In addition, low-cost healthcare monitoring
can improve the living standards of daily life by assisting patients to live independently.

An essential part of a typical healthcare monitoring system encompasses various
types of highly integrated sensors that are capable of measuring a plethora of health
metrics [13,14], including electrocardiogram [15], blood pressure [1,3], temperature and
humidity [4,5,8,9], oxygen saturation, glucose level, pulse rate [14,16], and body move-
ments [13,17]. A continuous monitoring system working in the daily environment is
capable of providing real-time and non-invasive biometric signal measurement and further
sets off potential disease warnings in advance, offering effective illness prevention and
treatment advice or evaluating health conditions, thus reducing healthcare spending and
frequent hospital visits [16].

To our best knowledge, this is the first review of studies that use low-cost sensors
for healthcare monitoring over the past two decades. We have classified the various algo-
rithms used to process sensor data into three groups from the perspective of data processing
hierarchy. In addition, the performance and practical issues of wireless communication tech-
niques have been compared to cable connections. Finally, we have summarised the future
direction of healthcare monitoring using low-cost sensors with the help of word clouds.

This paper is organised as follows: Section 1 demonstrates the critical role that health-
care monitoring has played and is playing in public healthcare, emphasising the significance
of using low-cost sensors when considering the monitoring of health status. Section 2 illus-
trates the structure of the literature search, including the inclusion/exclusion criteria used.
Section 3 compares the different algorithms and data communication techniques utilised
by healthcare monitoring systems. Section 4 identifies the challenges and future research
directions. Finally, Section 5 concludes our findings.

2. Materials and Methods

A systematic search of the literature was conducted on four internet databases: medical
(PubMed); technical (IEEE Xplore and EI Village); and all science (Web of Science, WOS).
Each database was searched in English only, dating from January 2002 to December 2021.
To avoid studies being not included by the online retrieval search engines, we manually
reviewed the references of all selected articles. The inclusion and exclusion criteria for the
review were designed prior to the literature search. To be included in the literature review,
the articles needed to:

1. Be published in peer-reviewed journals from January 2002 to December 2021;
2. Be written in the English language;
3. Be measured by non-invasive, low-cost sensors;
4. Be either cohort studies, cross-sectional studies, case series, or case reports with

experiments on human participants (not manikins);

Three groups of terminologies were used in the literature search, and one from each
group was selected to search within titles, keywords, and abstracts as follows. Group I:
“healthcare”, “skin damage”, “human movement”, or “disabled”, Group II: “measur*”
or “detect*” “body area network” or “monitor/monitoring”, in which the wild character
“*” represents words with same alphabet. For example, “measur*” includes measure,
measuring and measurement, while “detect*” involves detector, detection, and detecting
as well as detect, and Group III: “optical”, “acoustic”, “electronic”, “magnetic”, “sensor”,
“transducer”, “device”, “hardware”, “equipment”, or “system”.

As the electronic database system could only provide rough search results, we scruti-
nised all papers found using titles, keywords, and abstract information to exclude those
that did not meet the inclusion criteria. Articles were excluded, for instance, if the studies
were performed using expensive, commercially available medical devices (e.g., X-ray, CT,
and MRI), sophisticated motion capturing systems (e.g., Vicon (Vicon Motion Systems Ltd.,
Oxford, UK) or Optotrak (Northern Digital Inc., Waterloo, ON, Canada), Kinect (Microsoft



Sensors 2023, 23, 2139 4 of 25

Corporation, Washington, DC, USA), or thermal cameras), pressure imaging systems (e.g.,
Xsensor Co. Calgary, AB, Canada), or implanted sensors. However, studies using cheap
webcams or custom-made pressure sensors were included. If the titles and keywords did
not provide sufficient information to enable a clear exclusion or inclusion decision, the
abstracts or main texts would be examined as required. In addition, repeated search results
(same papers listed by a different internet database) were also removed using excel-based
tool kit.

Regarding the “low cost sensor” requirement, we first used the PDF reader’s embed-
ded search function to automatically go through the whole paper; if the words “low cost
sensor” or “low-cost sensor” were found, the related article would be labelled and put into
the corresponding folder for further inspection. When there were no such specific words
(“low cost”), we checked the price of sensors utilised by the researchers. If the whole cost
of the sensing component was found to be less than 20 USD (using Taobao.com to check
the price, a Chinese online purchase platform similar to eBay), this article was also labelled
as meeting the criteria.

A peer-review process was applied during the final selection stages in which five
reviewers participated. An agreement was reached by consistent consent among the
reviewers in the few cases of disagreement. Relevant references cited by the selected papers
were checked meticulously by screening titles and abstracts (Figure 1).
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3. Results

The combination of low-cost hardware and advanced algorithms has made once
hospital-only healthcare monitoring devices pervasively available at home and provided
accessible living assistance to patients [18].

3.1. Health Information Measurement Using Low-Cost Sensors

In accordance with the results of the literature search (Table 1), various physiological
signals (e.g., heart rate, blood oxygen, and body temperature) can be acquired using low-
cost sensors made of different materials, such as capacitive, resistance, fibre optic, and
electromagnetic substances.
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Table 1. Overview of studies on health information measurement using different low-cost sensors.

Reference Participant Sensors Measurement Evaluation

[19] A male subject
Accelerometer, cardiac activity electrodes,
and inductive plethysmographic sensor
mounted on the T-shirt

Respiration rate, heart rate, and movement of
the body

Absolute mean percent differences
are heart rates < 2% and respiration
rates < 5%.

[20] N = 14 Temperature sensor embedded in KN95 mask

Respiration rate detection is based on the
measurement of temperature variations
through the vent holes of the mask and results
can be applied to COVID-19 prevention

MAE = 0.449 BPM

[21]

N = 10 (M = 7, F = 3)
Age = 23.8 ± 0.84 years
Height = 173.1 ± 6.9 cm
Body mass = 66.2 ± 6.9 kg

IMU and pressure sensor attached to insole
and on legs Motion gait recognition Accuracy = 99.96%

[22] N = 16 (M = 10, F = 6)
Age = 20–54 years

Temperature sensor, pulse oximetry sensor,
accelerometer, and GSR sensor attached to
the upper arm

Perspiration measurement, activity recognition,
skin temperature, blood oxygen saturation,
heart rate

Accuracy = 87.5%
(activity recognition)

[23] N = 16 PPG and GSR sensors attached to fingertip
and wrist Stress index Accuracy = 85.3%

[24]

N = 10 (M = 7, F = 3)
Age = 26 ± 3 years
Height = 165 ± 8 cm
Body mass = 60 ± 10 kg

Accelerometer and angular velocity sensors
attached to low back and leg Postural detection

Statistical results show IMU sensors
are suitable for detection and
evaluation of anticipatory
postural adjustments

[25]

N = 12 (M = 7, F = 5)
Age = 24.91 ± 2.74 years
Height = 166.91 ± 6.76 cm
BMI = 61.41 ± 8.69

Textile capacitive proximity sensor placed
under the feet Gait measurement

Error rate of stride <1%
Correlation coefficient between the
reference sensor and the textile
sensor is 0.865

[26] N = 5 ECG sensor, pulse oximeter, temperature
sensor attached to fingertip and body

Heart rate, respiratory rate, blood oxygen
saturation, and body temperature Accuracy = 99.26%

[27] N = 25 (M = 10, F = 15)
Averaged age = 56.25 years IMU sensors attached to wrist or elbow Shoulder joint mobility

Correlation coefficients between
IMU and the traditional method are
0.997, 0.978, 0.897, and 0.984 for
flexion, abduction, external rotation,
and internal rotation, respectively
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[28] N = 12
Age = 18–57 years

Six 3-axis accelerometers and 12 gyroscopes
placed on neck, left wrist, right wrist, waist,
left leg, and right leg

Posture recognition (sitting, standing, walking,
and lying) Accuracy = 99.72%

[29]

N = 100 (M = 50, F = 50)
Age = 33 ± 6 years (M)
Age = 32 ± 9 years (F)
BMI = 23.1 ± 2.7 (M)
BMI = 20.5 ± 2.1 (F)

10 plantar pressure sensors underneath
the insole

Foot pressure values during walking
and standing

Statistical results show no
significant difference between men
and women in centre of pressure,
while women exhibit higher peak
pressure on the hallux, toes, forefoot,
and medial aspect of the foot

[30] N = 5 Wearable inertial sensors attached to upper
arm and forearm

Therapeutic movement measurement guided
by therapists aiming to recover after the
motion impairment

Specificity = 100%
Sensitivity = 100%

[31]

N = 3 (M = 3, F = 0)
Age = 24.7 ± 2.4 years
Height = 174.3 ±4.2 cm
Body mass = 65.3 ± 7.0 kg

A triaxis accelerometer and three single-axis
gyro sensors attached to left/right thigh and
left/right shank

Angular velocity and acceleration

Hip joint angle (flexion–extension)
RMSE = 8.72, ADE = 6.57, CC = 0.88,
PVU = 20.05%
Hip joint angle
(abduction–adduction)
RMSE = 4.96, ADE = 3.30, CC = 0.72,
PVU = 39.29%
Knee joint angle (flexion–extension)
RMSE = 6.79, ADE = 4.65, CC = 0.92,
PVU = 14.60%

[32]
N = 116
Age = 69 ± 18 years
BMI = 27 ± 6

A piezoelectric sensor under the mattress Respiratory rate, heart rate, and motion level Specificity = 93%.
Sensitivity = 85%

[33]

N = 30 (M = 21, F = 10, where
11 paraplegic and
19 tetraplegic subjects)
Age = 46.43 ± 16.91 years

3D accelerometer and 3D gyroscope attached
on each wrist and the right wheel of
the wheelchair

Acceleration and peak velocity Accuracy = 90%
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[34]

PD patients
N = 48 (M = 25, F = 23)
Age = 70.61 ± 9.51 years
Healthy people
N = 40 (M = 22, F = 18);
Age = 69.36 ± 7.42 years

Accelerometer attached to left/right knee Gait characteristics of PD patients and
healthy people

Specificity = 90.91%.
Sensitivity = 92.86%
Accuracy = 88.46%

[35]

N = 28 (M = 22, F = 6)
Age = 41 ± 12 years
Height = 70 ± 4 inch
Body mass = 175 ± 43 lb

Eight force sensors placed on
wheelchair cushions

Peak pressure index, weight shift frequency,
pressure relief frequency, in-seat
activity frequency

Statistical results show force sensors
can effectively monitor wheelchair
users’ movements

[36]

N = 27 (M = 12, F = 15)
Age = 50.24 ± 12.99 years (M)
Age = 40.93 ± 10.27 years (F)
Height = 174.88 ± 10.25 cm (M)
Height = 160.53 ± 4.31 cm (F)
Body mass = 79.03 ± 11.99 kg (M)
Body mass = 58.23 ± 7.83 kg (F)

IMU sensor clipped to the back of marathon
runners’ shorts

Step frequency, change in forward velocity,
vertical oscillation, side-to-side movement of
the pelvis, side-to-side drop of the pelvis,
ground contact time

Statistical analysis shows
IMU-based biomechanical indices
can be used to detect fatigue in
marathon runners

[37] N = 7 Eight hetero-core fibre optic pressure sensors
placed on bed cushion Respiration rate Sensitivity = 0.05–0.2 dB

[38] N = 7 Pulse oximeter and heart rate sensor,
thermometer, and ECG sensor

Oxygen saturation (SpO2), heart rate, body
temperature, ECG

Accuracy = 1.02% (blood oxygen
saturation detection)
Accuracy = 0.51% (body
temperature measurement)

[39] N = 8 IMU attached to the arm Measure shoulder and elbow joint angles to
continuously monitor human movement

Average correlation coefficient is
>0.95 between the inertial tracker
and the optical reference system.
RMSE < 8 º (averaged value of eight
subjects for all tasks)
Peak-to-peak error < 12 º
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[40]

N = 72 (M = 39, F = 33)
BMI = 28.74 ± 4.99 (HFR)
BMI = 28.7 ± 4.81 (LFR)
Age = 71.87 ± 6.45 years (HFR)
Age = 63.47 ± 8.74 years (LFR)

Four inertial sensors attached above and
below each knee

Completion times for each test subactivity, joint
range of motion, and flexion/extension
velocities and accelerations

Accuracy = 90%
Sensitivity = 94%
Specificity = 59%

[41] N = 5 (M = 1, F = 4)
Age = 24.8 ± 3.5 years

Conductive textile sensors
For lateral bending measurement, sensors are
placed on both sides under the angle of the
mandible and in correspondence with the
trapezius scapula insertion;
For axial rotation motion, sensors are placed
on both sides on the anterior part of angle of
the mandible and in correspondence with the
trapezius muscle;
For flexion–extension movement, one sensor
is placed between the hyoid bone and the
sternum (extension), the other between C2
and C7 vertebrae (flexion)

Measure the angle (in degrees) of lateral
bending, rotation, and flexion–extension of
cervical spine movement

RMSE values of lateral bending,
axial rotation, and flexion/extension
of neck were 6.04 ± 0.67,
10.16 ± 2.11, and
12.31 ± 3.22, respectively

[42]

N = 13 (M = 13, F = 0)
Age = 26.1 ± 2.9 years
Height = 178.7 ± 5.5 cm
Body mass = 78.4 ± 5.9 kg

Two identical, custom-built,
six-degrees-of-freedom IMUs (accelerometer
and gyroscope) attached to the right thing
and shank via a knee sleeve

Knee joint forces

Accuracy
Vertical force: RMSE = 19.1% ±
4.0%, anterior–posterior: RMSE =
21.8% ± 2.6%, medial–lateral:
RMSE = 38.0% ± 6.1%

[43]

Young subjects:
N = 21
Aged = 28.3 ± 6.8 years
Body mass = 67.2 ± 9.6 kg
Height = 1.70 ± 0.04 m
Fallers:
N = 16
Aged = 67.2 ± 6.7 years
Body mass = 64.3 ± 12.0 kg
Height = 1.58 ± 0.07 m

Four load cells fixed to the chair Force between sitting and standing swap Error < 10%
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[44] N = 6 (five aged 22 to 23 and
one aged 60)

Two dual-axis accelerometers orthogonally
mounted on the waist Daily activity detection

Accuracy = 90.8% (12 tasks)
Accuracy = 94.1% (postural
recognition)
Accuracy = 83.3% (walking
recognition)
Accuracy = 95.6% (falling detection)

[45]

N = 2 (M = 1, F = 1)
Female: 1.58 m in height, 53 kg
in body mass, 25 years;
Male: 1.77 m in height, 75 kg
in body mass, 24 years

Three wireless transceiver modules fixed to
the arm/leg with an elastic band Arm and leg movements

Matching rate using two features:
70% and 80% for females and
males, respectively.
Matching rate using five features:
90% and 100% for females and
males, respectively.

[46] N = 8
Age = 20–35 years

48 fibre-optic pressure sensors placed below
the mattress

Breathing rate, torso movement, sleep
monitoring

Sensitivity = 71%
Specificity = 87%

[47]

N = 9 (M = 3, F = 6)
Age = 23.3 ± 2.5 years, Body
mass = 55.4 ± 8.5 kg,
Height = 1.60 ± 0.08 m

One triaxial accelerometer and three uniaxial
gyroscopes were secured onto the back of
the subjects

Angular measurements during trunk
movement; trunk postural change

Correlation coefficients between the
Vicon video capture system and
sensors: >0.994 for dynamic tilting
measurements and >0.776 for trunk
postural measurements

[48] N = 8 (four healthy subjects
and four stroke survivors)

Triaxial accelerometers and triaxial
gyroscopes worn on waist Arm movement

Healthy people:
Accuracy = 86% (accelerometer) and
72% (gyroscope)
Stroke patients:
Accuracy = 67% (accelerometer) and
60% (gyroscope)

[49]
N = 8 (M = 2, F = 6)
Age = 30 ± 5 years
Body mass = 70 ± 15 kg

IMU sensors placed on a glove worn by the
driver

Stress indicators: emergency braking and rapid
turning Accuracy = 94.78%

[50] N = 17 (M = 8, F = 9)
Age = 21.9 ± 3.7 years

IMU sensors attached the right leg to Velcro
strap Knee flexion/extension angles RMSE = 5.0º ± 1.0º

MAE = 3.9º ± 0.8º
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[51] N = 70
Age = 18–86 years

IMU, temperature, pressure and GSR sensor
attached to thigh with Velcro strap

Acceleration, angular velocity, skin
temperature, muscle pressure, and sweat rate

The concordance correlation
coefficient is 0.96 in comparison
with the video motion analysis
system.
The highest estimation error for
stride length was 4.81 cm (3.3%),
and the mean error (N = 10) was
2.48 cm (1.7%).
For gait speed, the estimation error
< 3.8% (5.10 cm/s) and the mean
error was 2.1%.

[52] N = 8 (M = 5, F = 3)
Age = 21–24 years Piezoelectric sensor fixed to arms by bandage Hand and wrist movements Accuracy = 96.1% (LDA)

Accuracy = 94.8% (ANN)

[53]

N = 10
Age = 21–36 years
Height = 1.48–1.89 m
Body mass = 46.7–91.0 kg

Five FSR sensors attach to the foot surface Ground reaction forces

The correlations between FSR-based
system and the gold standard force
plate are 0.74–0.84.
For hopping, the maximum GRF
difference between FSR-based
system and the gold standard force
plate ranged from −6% to +14%.

[54]

N = 5 (M = 5, F = 0)
Age = 31 ± 5 years
Height = 170 ± 4.6 cm
Body mass = 71.2 ± 4.2 kg

7 × 5 conductive textile sensors attached
to leg

Knee angle during
flexion–extension movements

MAE = 17.54 º
RMSE = 18.82 º

[55] N = 7 (M = 4, F = 3)
Age = 21–60 years

64 × 128 pressure-sensitive e-textile sensors
placed on bed Respiration rate, leg movement Precision = 70.3%

Recall = 71.1%

[56]
N = 8
Age = 25 ± 3 years
Body mass = 61 ± 19 kg

Triaxial accelerometer worn on the body Falling detection Sensitivity = 100%
Specificity= 100%
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Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[57]

N = 8 (M = 4, F = 4)
Age = 23.6 ± 1.3 years
Height = 1.69 ± 0.08 m
Body mass = 56.2 ± 10.3 kg

Temperature sensor arrays fixed on the seat Body–seat interface temperature measurement

Temperature field at the contact
surface was not uniformly
distributed.
Heating rates = 1.7 ± 0.4 ◦C/min
(fabric cover + foam)
Heating rates = 1.6 ± 0.2 ◦C/min
(wood)
Heating rates = 1.7 ± 0.2 ◦C/min
(leatherette cover + foam)

[58]

N = 78 (M = 39, F = 39)
Participants equally divided
into three groups (n = 26)
Group 1
Age = 21.9 ± 1.8 years
BMI = 21.6 ± 2.8 kg/m2

Group 2
Age = 22.5 ± 2.4 years
BMI = 22.2 ± 3.8 kg/m2

Group 3
Age = 22.2 ± 3.8 years
BMI = 21.7 ± 2.1 kg/m2

Four digital humidity and temperature
sensors placed under the ischial tuberosities
and thighs bilaterally

Skin temperature and relative humidity

Temperature difference after
two hours: 3.9 ± 1.4 ◦C (ischial
tuberosities) and 5.6 ± 1.3 ◦C
(thighs), 2.8 ± 1.7 ◦C (ischial
tuberosities) and 4.7 ± 1.4 ◦C
(thighs), 3.9 ± 1.3 ◦C (ischial
tuberosities) and 6.3 ± 1.1 ◦C
(thighs) for air-filled rubber,
foam–fluid hybrid and medium
density foam, respectively. No
significant difference in relative
humidity between
different cushions

[59]

N = 5 (F = 3, M = 2)
Age = 33 ± 8 years
Height = 180 ± 10 cm
Body mass = 70 ± 21 kg

Flexible screen-printed piezoresistive sensors Four sitting posture recognition Accuracy = 80%.

[60]
N = 12 (M = 7, F = 5)
Age = 22–36 years
BMI = 16–34 kg/m2

FSR sensors (seven on seat pan and 5
on backrest) Five sitting posture recognition Accuracy = 96.85%

[61]

N = 41 (M = 25, F = 16)
Age = 24–64 years
Height = 160–200 cm
Body mass = 53–126 kg

FSR sensors (10 on seat pan 4 on backrest, 2
on armrest) Seven sitting posture recognition Accuracy = 98%



Sensors 2023, 23, 2139 13 of 25

Table 1. Cont.

Reference Participant Sensors Measurement Evaluation

[62]

N = 9
Age = 59.7 ± 24.2 years
Height = 1.76 ± 0.10 m
Body mass = 38.78 ± 4.94 kg

Customised piezoresistive sensors (eight
sensors on seat pan and eight on backrest) 12 sitting posture recognition

Repeatability and replicability of the
system are evaluated. The total cost
of the system is <150 USD in
comparison to commercial products
with a price of ~7000 USD.

[63] N = 25 (M = 15, F = 10) Customised fibre-based yarn coated with
piezoelectric polymer placed on seat Seven sitting posture recognition Accuracy = 85.9%

[64] N = 9 (M = 6, F = 3) Customised textile pressure sensors placed
on seat 16 sitting posture recognition Accuracy = 82%

[65]

N = 36 (M = 21, F = 15)
Age = 26.7 ± 2.0 years (M)
Age = 25.0 ± 2.3 years (F)
Height = 175.9 ± 6.4 cm (M)
Height = 162.8 ± 4.6 cm (F)
Body mass = 77.1 ± 15.0 kg (M)
Body mass = 51.4 ± 4.3 kg (F)

Six FSR sensors embedded in the seat cushion
and six IRD sensors placed in the seatback 11 sitting posture classification Accuracy = 92%

[66] N = 8 (M = 8, F = 0)
Age = 24–40 years

Two IMU sensors placed on the lower and
upper arms (near the wrist
and elbow joints), respectively

Movement of upper limbs Angle error < 3º
Position error < 9 mm

[67]

N = 10
Age = 19–28 years
Height = 155–187 cm
Body mass = 46–70 kg

Three RF sensors placed on the back of the
subjects (thoracic, thoracolumbar, and lumbar
regions) at the distance of 10 cm each

Sitting posture recognition Accuracy = 98.83%

[68] N = 19 (M = 14, F = 5)
Age = 22–58 years

Two FSR sheets placed on seat pan (9 × 9)
and backrest (10 × 9) 15 sitting postures Accuracy = 88.52%
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In some applications, sensors are closely placed on the skin (e.g., PPG and GSR) [22,23];
however, prolonged and continuous contact may trigger skin irritation or even skin diseases
in the worst situation [57,58]. In addition, airborne infectious diseases can be transmitted
through face-to-face contact (e.g., talking, coughing, or sneezing). A noncontact detection
system with protection (e.g., wearable temperature measurement integrated into face
masks) may effectively limit the spread of respiratory viruses, such as COVID-19 or seasonal
influenza [20].

Among the applications of low-cost sensors used for healthcare monitoring (n = 50),
IMU sensors account for 40% thanks to the advancement of MEMS followed by pressure
detection using piezoelectric, textile capacitive, or fibre optic sensors (33%) and then vital
sign measurements, such as body temperature, pulse rate, ECG, and respiration (21%).

3.2. Algorithms Used to Process Sensor Data

Although the physiological signals collected by sensors are different in relation to the
various applications, the data processing component tends to have similarities. Generally,
the first stage is referred to as data cleaning in which the raw data from the sensors
undergo preliminary processing, including noise suppression, missing data interpolation,
and outlier removal [12]. Environmental disturbance (e.g., body movement or breathing)
usually contaminates the data and can mask or make it difficult to resolve important
information (e.g., changing the original pattern/trend). In terms of noise suppression,
time-domain and frequency-domain filters are two typically used methodologies, including
the usage of a median filter, moving average filter, and bandpass/bandstop filter. By way
of illustration, the Butterworth filter has been used to remove low frequency noise (cut-off
frequency is 0.25 Hz) when using IMU sensors to acquire wrist movement activities of
people suffering from spinal cord injury [33].

The second stage of sensor data processing is called feature selection. In this procedure,
various methodologies are employed to derive unique characteristics from the preprocessed
data. Statistical features (e.g., mean, median, skewness, and correlation [35,38,69]) can
be easily derived (e.g., arithmetic mean, variance, and interquartile range minimum and
maximum were used to represent upper arm and forearm movements in the therapeutic
treatment [30]), while more reliable features can be extracted using more advanced time-
frequency analysis techniques, such as wavelet decomposition and Fourier transforms.
Compared to classic FFT, wavelet decomposition has higher computation complexity. As
examples of such usage, FFT was applied to extract maximum frequency components from
PPG data [22] and WT was used in the process of depicting the gait characteristics of PD
patients [34]. However, features extracted using the wavelet decomposition contain both
temporal and frequency information, which is more robust and accurate [34]. The selected
features serve as an optimal representation of the original data by removing redundant
information [70].

Once the feature selection process is complete, the final stage is to correctly classify
different information into corresponding categories or predict the trend of physiological
parameters. Machine learning techniques, including supervised and unsupervised learn-
ing approaches, are widely used for classification or prediction. Among the supervised
algorithms, the threshold classifier is the simplest and the most efficient to discriminate
binary states, such as falling detection. In comparison, SVM and DT algorithms are more
complex but outperform the threshold classifier in terms of distinguishing multiple and
sophisticated states. However, poor interpretation can be the weak point of advanced
algorithms (e.g., SVM and DT) [70]. Regarding the unsupervised learning algorithms,
input data are automatically grouped into different clusters by exploring the similarities or
hidden patterns in characteristic datasets. Typical unsupervised algorithms include KNN,
HMM, and hierarchical means.

Among the algorithms used in healthcare monitoring (Figure 2), SA accounts for
nearly one-third (31%) followed by SVM (18%) and KNN (13%). It is interesting to note
that multiple methods were employed and compared corresponding to some specific appli-
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cations, such as sitting posture recognitions [64–68]. With the advancement of computer
technology, deep learning, which originated from the ANN, has emerged to become another
better solution to address classification/prediction problems. A CNN is applicable to high-
dimensional data while LSTM is used for one dimension in the time domain. Compared
with machine learning algorithms, deep learning techniques require a much larger amount
of data for training the network. In addition, labelling data in the training stage can be
very tedious and time-costing, not to mention the training period being consumed by the
multilayer network [9,71,72].
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Figure 2. Summary of typical algorithms used for processing data acquired by low-cost sensors
including LR [20], DT [21], FFT [22], SVM [22], NB [23], SA [29], WT [34], LDA [40], ANN [42],
HMM [56] and KNN [65].

3.3. Techniques Used for Data Transmission and Storage

To achieve the data processing tasks mentioned in Section 3.2, sensor signals must
be transmitted to high-performance computers either by cables or wirelessly. In some
applications, SD memory cards are also utilised for data storage, and later offline processing
is carried out after the completion of data acquisition.

Due to the inconvenience triggered by cable connections, wireless communications
have become the popular option for healthcare monitoring applications (Zigbee, Bluetooth,
Wi-Fi, and RF together account for 77% in comparison to 13% of cable connections and 10%
of SD card usage).

Due to the merits of low power consumption and low cost, Bluetooth (based on
IEEE 802.15.1 standards) and Zigbee (based on IEEE 802.15.4 standards) were the top two
short-range wireless communication solutions found followed by RF and Wi-Fi-based
applications (Figure 3).

Zigbee provides the possibility of connecting up to 65,536 nodes with the help of a
mesh networking topology [15]. Ad hoc and star connections are alternative topological
structures used by Zigbee, while Bluetooth only supports point-to-point and point-to-
multipoint expansions. In comparison, Wi-Fi has more topological structures, such as ad
hoc, bridge, and repeater [73].
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Figure 3. Comparison of different techniques used for sensor data transmission and storage.

The working range of Zigbee is from 10 to 100 m, which is the same as Bluetooth
communication. Although the maximum working range of Wi-Fi is within 10 m, the data
transfer rate is up to 6.75 Gbps, which is much faster than Bluetooth (≤2.1 Mbps) and
Zigbee (≤250 Kbps).

RF tags have been developed to replace wrist-banded bar codes for locating patients
and storing medical information [67,73]. To fully explore the capabilities of wireless
communication techniques, different modules are combined to implement a specific task
in some situations. For example, Zigbee and Wi-Fi are utilised to transmit physiological
signals to physicians [15] and monitor the ambulatory activities of older people in fall
prevention [67].

3.4. Research Trend of Low-Cost Sensor-Based Healthcare Monitoring

The number of publications related to healthcare monitoring has increased significantly
over the past two decades (Figure 4). Particularly, there has been a rapid increase in the past
ten years (between 2012 and 2021) with publications quadrupling (40/50) in comparison
with 2002–2011 (10/50). Although similar research activities were conducted between
2002 and 2011, most of the experiments employed commercially available products with a
price > 4000 USD [38,39].
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Figure 4. Number of publications between 2002 and 2021 using low-cost sensors for healthcare monitoring.
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The frequency of vocabulary appearing in keywords or titles was counted except for
several online publications that did not provide keywords [24,26,27,34,61,62]. Among the
top ten most frequently appearing words, wearable, monitor, posture, movement, and
pressure appear in both article titles and keywords (Figure 5).
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Figure 5. Word cloud of keywords and titles: (a) keywords and (b) title. The larger the font is, the
more frequently the word appears. (a) Word clouds of the keywords from the selected publications
and (b) word clouds of the article titles from the selected publications.

4. Discussion

Compared with previous publications, this review focuses on the applications of
using low-cost sensors to monitor health status. Below, we discuss the issues impacting
sensor usage in healthcare monitoring, as this will help readers appreciate the synthesis
presented above.

4.1. Challenges Faced by Low-Cost Sensor-Based Healthcare Monitoring

(1) Concerns about a data privacy breach. With the introduction of cloud computing
and data sharing among Internet servers, third-party service providers may unintentionally
disclose personal health information (e.g., attacks by malicious ransomware and password
hacking). After that, “digital thieves” could deduce an individual’s daily activities and
lifestyles and consequently put the privacy and security of the users and their property
at stake; more usually, this type of data access could be used for advertising or market-
ing purposes [74–76]. Thus, a solution to the issue of information privacy and security
appears crucial.

However, embedding sophisticated security schemes into a low-cost healthcare device
is also full of challenges. Furthermore, studies show that a large amount of healthcare
devices do not follow well-established design guidelines or meet the legal regulations
imposed by administration agencies, such as the General Data Protection Regulation
of the EU and the Health Insurance Portability and Accountability Act of the US, thus
endangering the privacy of millions of customers [76–79]. A review of 24,405 health-related
apps, for instance, concluded 95.63% of the iOS- and Android-based applications were at
risk of information leakage and privacy infringement, whereas 11.67% of them would be
susceptible to the highest potential damage [79].

(2) Lack of standardised testing protocols. In the process of evaluating low-cost
sensor-based healthcare monitoring devices, a predominant difference is the shortage of
adequate clinical trials comparing low-cost sensor systems to currently used, commercially
available products. Although participants were recruited in some studies, the numbers
were not sufficient to reach a confident conclusion [7,80,81].
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Longer test periods are also needed to investigate the potential side effects on users.
For example, some healthcare monitoring devices are to be worn by users for such a
long time that some form of comfort index should be included in the evaluation process,
especially for products targeting patients and those potential users in the senior age group.
However, the comfort investigation heavily relies on the user’s perception and can easily
be influenced by other factors, such as ambient environment, mood, and aesthetics [57,58].

(3) Shortage of sustainable energy supply. Large amounts of wearable medical
devices rely on internal power sources (e.g., batteries), which obviously will require regular
recharging/replacement to ensure an appropriate constant power supply [10].

Although supercapacitors enable a large amount of energy storage, self-discharge in
an idle state or leakage due to environmental changes (e.g., wetness or high temperature)
can cause the loss of stored energy. In addition, efficiently managing power consumption
(e.g., screen off in an idle state) is another aspect to be helpful in extending the period
of battery usage. If battery management software is to be incorporated, this may impact
power consumption.

4.2. Future Work

Although reducing the cost of healthcare monitoring is a major concern, there is a
range of additional challenges which have been confronted, thus helping to illuminate the
issues future research needs to overcome.

(1) Individual’s health information is deemed so sensitive by nature that sufficient
protection is of substantial importance both legally and technically [76]. Thus, advanced
encryption/decryption algorithms and authentication mechanisms would be required to
ensure sensitive data (e.g., patient symptoms, activity profile) is transferred and communi-
cated safely and reliably [14].

Apart from random number-based cryptographic algorithms (e.g., symmetrical and
asymmetrical cryptography), biometric authentication has become an emerging research
topic in the field of security and privacy protection, which include two types of biometrics:
behavioural biometric traits, including signature, voice, gait, ECG, and keystrokes, and
physical biometric traits, including fingerprint, palm print, face, retina/iris, hand geometry,
ear shape, body odour, skin surface venous patterns, and DNA [18]. In order to overcome
the lower accuracy of single biometric authentication, feature fusion techniques have
been adopted by integrating multiple biometric characteristics to improve accuracy in
different scenarios [18]. Some researchers captured gait biometrics (e.g., walking patterns)
to generate random numbers with the help of smart phone-based inertial sensors [82,83].
Despite the uniqueness and distinctiveness of biometric features, the performance may
degrade due to change/damage resulting from senescence in the individual or physical
injuries [18,84,85]. In addition, the cost of hardware and software still impose a heavy
financial burden on acquiring biometric traits: for instance, the face and retina require
high-quality cameras/scanners and when using finger or palm prints as authenticating
characteristics accuracy is low for wet hands [18]. As a further consideration, future systems
would benefit from having some self-repairing capability (e.g., post viral attack) to facilitate
the resumption of operation with minimal need for human intervention [18,86,87].

Another research aspect could be to develop an agreed framework for assessing
the security strength of healthcare monitoring systems [88,89]. The framework should
consider both the diverse facets of the security and privacy policies as well as easy access
by authorised entities (e.g., clinic doctors and devices) and users. It would be inconvenient,
for instance, to ask permission from the user every time when a data access request is made;
although, there could be an ethical prerequisite to do so. Therefore, algorithms should be
intelligent enough to automatically decide which data can be shared without permissions
and which third parties can be granted access rights [18]. From the technical perspective,
fully developed security systems should be evaluated using standardised protocols, such
as the seven attack surfaces and eight security analysis criteria [76].
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(2) Regarding the standards to evaluate the healthcare systems, the Declaration of
Helsinki provides a road map on experiments involving humans, with publication requir-
ing freely given informed consent in an experiment with approval from an appropriate
internal review board or ethics committee [90,91]. In addition to the ethical probity of the
experimental protocol, statistical validity needs to be considered, with the known minimum
participation number and recognition of the target population being important factors that
should be considered when recruiting volunteers. Recognition of the appropriate compari-
son methodology for clinical studies is important, so the production of more randomised
clinical trials would benefit sensor developments, attracting the attention of clinicians to
the work. Among the searched literature, only four articles investigated daily activities
using low-cost sensors worn by both healthy participants and PD patients [32–34,48]. Addi-
tionally, another publication studied the biomechanical characteristics of marathon athletes
using wearable IMU sensors [36].

As medical devices are intended for use without affecting the patient’s daily activities,
discomfort may not only affect the user but may also cause unintended harm to users (e.g.,
pressure ulcers caused by uncomfortable seat cushions or bed mattresses). To effectively
study the perception of comfort, some standardised protocols [7,80] should be developed
to minimise the impact of the surrounding environment on the subjects. In studies of
sitting comfort, for example, researchers may replace the subjective questionnaire-based
feedback with objective parameters, such as interface pressure, temperature, and relative
humidity, and indicators of discomfort, such as fidgeting, which may help reduce the
required number of participants and be less time-consuming, more objective, and obviously
cost-saving [69].

Since some health conditions require continuous monitoring, sensor output constancy
should be considered, especially for ICU patients [92–94]. For instance, drift in calibration to
prolonged use, such as the accumulation of individually minuscule errors in accelerometers,
may lead to less reliable output data. In addition, improper operations of healthcare
monitoring devices can cause unexpected hazards [95]. The current manufacturers’ data
sheets do not necessarily give stable data in the environment of intended use. It is therefore
important for researchers to consider publishing data from repetitive recalibration using a
calibrated chamber certificated as traceable to an international standard. To overcome these
difficulties, self-checking and automatic recalibration algorithms should be investigated to
compensate for any drift phenomena [12].

(3) To overcome the need for frequent recharging or regular replacement of batteries,
energy scavenging or harvesting is a promising research direction to extend lifespan or
enhance battery performance. Energy harvesting is the technique of transforming ambient
(e.g., light source or electromagnetic field) or biochemical (e.g., body thermal or mechanical
energy) energies into applicable electrical power. Among them, photovoltaic cells, which
absorb solar or indoor illumination to generate electricity, are becoming widely utilised
in products.

In addition to advances in power density, extensibility, and sensitivity [10,96,97],
flexible materials have been used to produce solar-powered cells, which can be integrated
into clothing ideal for wearable applications [98]. Biomechanical (e.g., muscular movement)
and biochemical (e.g., glucose) energies from human bodies offer other solutions for
independently powering healthcare devices. For instance, walking is an efficient means of
collecting human biomechanical energy: By inserting a piezoelectric ceramic transducer in
the shoes, studies have shown that nearly 70 W of electric power can be generated from an
adult walking at normal speed [99]. Scavenging electromagnetic waves, including Wi-Fi,
radio, and television broadcasting, may also be considered as another potential option for
electricity generation.

However, energy harvesting faces some technical bottlenecks, including (1) main-
taining optimal orientation, incidence angle, and location of photovoltaic cells for solar
energy [100], (2) the low energy conversion rate for piezoelectric/turboelectric genera-
tors [101,102], and (3) the relative inflexibility and size of effective electromagnetic har-
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vesters [10,100]. To overcome these difficulties, energy prediction has been growing in
importance, targeting more efficient usage of the limited battery power available. The
current energy prediction methodologies can be divided into several categories: statistical
(e.g., exponentially weighted moving average model) [103,104], stochastic (e.g., Markov
model) [10,105], and machine learning algorithms (e.g., supervised and unsupervised
learning) as well as the deep learning approaches [10].

4.3. Limitations

As the preparation of this paper started in the middle of 2022, our literature survey
targeted the achievements of the past two decades (January 2002 to December 2021). How-
ever, we considered it important to include a synopsis of the academic articles published
in 2022. To avoid duplications between different search engines and improve efficiency,
we concentrated on the progress in the engineering field by using the EI database as the
source of the literature search. The findings show that the integration of multiple MEMS
sensors and IoT-based advanced algorithms still serves as the major tool to monitor health
status [106–108]. Regarding noncontact measurement, Wi-Fi has been increasingly used
as part of systems designed to monitor daily activities and detect accidental falls, with
an average accuracy of 96.9% and 93.3%, respectively [109]. Although our search on the
2022 publication is not presented as a full literature review, the results depict the trends
and challenges of using low-cost sensor-based healthcare monitoring. Essentially, similar
conclusions can be drawn between 2022 publications and those from the past two decades
(January 2002 to December 2021).

Although we did not include the Scopus database in our search, we searched pub-
lication reference lists in an attempt to capture those articles not immediately picked up
by our search strings. It still remains possible that we missed some relevant articles (as
with any review) and that they were included in Scopus; therefore, we consider this a
potential limitation with apologies to those we did not include. This aside, we did find a
large number of duplications across the databases (please see Figure 1), so results from the
current four databases (PubMed, IEEE, EI and WOS) illustrate the progress of development
and incorporation of low-cost sensors in healthcare research and the intended direction of
future incorporation into healthcare products.

5. Conclusions

This review investigates both the development and application of low-cost sensors in
health status monitoring to facilitate independent living and thus increase the quality of
life in the elderly and those with a chronic debilitating disease.

Among the included research (n = 50), 40% of articles studied systems designed to
recognise particular abnormal activities that are helpful in preventing (or recognising) acci-
dental falls and causes, such as muscle fatigue. Another interesting application is to replace
questionnaires (subjective sensation) with low-cost sensors creating an objective evaluation
for sitting/sleeping comfort evaluation and removing the subjects/patients’ subconscious
need to please the researcher (who they perceive as wanting to help them). The objective
measurement not only avoids subjective bias but also provides physiological parameters
useful in preventing skin illness (e.g., pressure ulcers) in those without sensory feedback.
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