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Abstract

Background: The Internet, and its popularity, continues to grow at an unprecedented pace. Watching videos

online is very popular; it is estimated that 500 h of video are uploaded onto YouTube, a video-sharing service, every

minute and that, by 2019, video formats will comprise more than 80% of Internet traffic. Health-related videos are

very popular on YouTube, but their quality is always a matter of concern. One approach to enhancing the quality of

online videos is to provide additional educational health content, such as websites, to support health consumers.

This study investigates the feasibility of building a content-based recommender system that links health consumers

to reputable health educational websites from MedlinePlus for a given health video from YouTube.

Methods: The dataset for this study includes a collection of health-related videos and their available metadata.

Semantic technologies (such as SNOMED-CT and Bio-ontology) were used to recommend health websites from

MedlinePlus. A total of 26 healths professionals participated in evaluating 253 recommended links for a total of 53

videos about general health, hypertension, or diabetes. The relevance of the recommended health websites from

MedlinePlus to the videos was measured using information retrieval metrics such as the normalized discounted

cumulative gain and precision at K.

Results: The majority of websites recommended by our system for health videos were relevant, based on ratings

by health professionals. The normalized discounted cumulative gain was between 46% and 90% for the different

topics.

Conclusions: Our study demonstrates the feasibility of using a semantic content-based recommender system to

enrich YouTube health videos. Evaluation with end-users, in addition to healthcare professionals, will be required to

identify the acceptance of these recommendations in a nonsimulated information-seeking context.
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Background

Recent studies have shown an increasing trend in the use

of the Internet as a search tool for health-related informa-

tion [1–3]. Web 2.0 [4] allows contributions from any user

in a network, which has given rise to a wealth of health-

related information with a wide range of co-existing trust-

worthy sources [5, 6]. For this reason, screening tools can

assist users in selecting relevant information.

Recommender systems are among the many solutions

used to obtain valid information. When searching for an

item, users obtain a list of recommended results that may

match their preferences. Various filtering methods make it

possible to refine and tailor these recommendations [7, 8].

Recommender systems can be divided into three basic

groups: collaborative, context-based, and hybrid systems.

Collaborative systems build on experience gathered from

previous user experiences, i.e., items previously chosen by

other users shape future results [9]. Context-based sys-

tems focus on the characteristics of an item, i.e., when

searching for a camera, the recommendation output is

based on its resolution, price, and color. Hybrid
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recommender systems combine features of context-based

and collaborative systems [10]. Recommender systems can

be also used to give additional item recommendations for

a given item, such as the related videos that are shown by

YouTube next to the user’s current video. These recom-

mendations often relay user ratings, but can also be based

on knowledge-based systems.

Recommender systems have been used in several ap-

plications for finding accurate information. They were

introduced as a computer-based intelligent technique

that assists people with the problem of information over-

load. These systems provide personalized solutions in

various specific domains [11–13]. Recommender systems

reflect the user’s interest and make proper personalized

recommendation through several methods. Most current

systems have adopted recently developed algorithms that

use machine-learning [14–16], naive Bayes [16, 17],

social-trust-based [18–21], constraint-based [22], case-

based [23, 24], and matrix factorization [25, 26] ap-

proaches. Recommender systems are also found in clin-

ical settings, mainly to assist health professionals,

though some systems assist family members, patients, or

caregivers [27–29].

Recent advancements in online recommender sys-

tems are enhanced by the “Semantic Web” [30],

which allows for the extraction of vast amounts of in-

formation through metadata mining and artificial

intelligence techniques [31]. Using these techniques, it

is possible to rank and classify items based on terms

that encompass several properties grouped into ontol-

ogies [32]. In the life sciences, ontologies play an

important role in filtering relevant item and creating

knowledge-based systems. Knowledge-based, cased-

based, and social-trust-based approaches utilize user

metadata, such as age and gender, to define recom-

mendation rules. Machine-learning and naïve Bayes

methods create models to learn users’ interests from their

historical behavior. Matrix factorization learns a user’s lat-

est interests by collaboratively factoring the rating matrix

over historically recorded user-item preferences.

Health terms are also grouped into ontologies,

creating an important potential resource for many

applications, including recommender systems. Health

ontologies usually have an application-programming

interface (API) to precisely define their operation. One

example of an API1 is Bio-ontology,2 which contains

more than 600 health-related ontologies. Using Bio-

ontology, Rivero-Rodriguez et al. recommended rele-

vant links for a subset of health-related YouTube videos

[33] by extracting corresponding clinical terms from

the Medline Plus API for the International Health

Terminology Standards Development Organization,

which maintains SNOMED-CT, a multilingual clinical

healthcare ontology.3

Our previous work

This study is based on our previous work. Fernandez-

Luque et al. reused algorithms from [33], but added the

Bio-ontology API to improve the results for obtaining

links from Medline Plus. In this study, we also rely on

diabetes videos [34] for which we have already explored

the use of semantic technologies to provide additional

content recommendations [35]. Based on [33, 34], the

proposed method gathers recommendations for Medline

Plus links (see Fig. 1) from video subtitles to increase

the number of associated terms using health ontologies.

An additional movie file shows this in more detail [see

Additional file 1]. An important limitation, both in the

current and previous recommender systems, stems from

the difficulty of mapping suitable terms to the ontology,

especially when extracting representative terms from

video content. One interesting approach to this problem

uses natural language processing (NLP) [36–38] tech-

niques, which can combine syntactic, semantic, and con-

textual analyses. NLP has previously been used in

healthcare [39, 40], especially for mining electronic

health records [41].

Objectives

In online browsing, it is common to search for content

related to online material currently being viewed. For

example, after watching a video on YouTube, the

watcher might look for additional content as part of an

information seeking strategy. This search strategy has

led to the creation of recommender systems that pro-

vide recommendations for related content. In this

study, we explore the feasibility of recommending links

to health educational content as a supplement to online

health videos, focusing on recommendation methods

that use semantic-based technologies to enhance online

health content recommender systems. Further, this

study investigates website recommendations that will

enhance health videos, because video formats have

shown the fastest growth on the Internet and it is

estimated that, by 2019, video will constitute more than

80% of Internet traffic. 4

Methods
In this study, we introduce HealthRecSys, a recom-

mender system with Bio-ontology terms that generates

Medline Plus links from text extracted from the

metadata of selected YouTube videos (see Fig. 1).

Our recommender system involves several steps: A)

collecting filtered words from the title of a video, B)

collecting any one SNOMED-CT term from the title, C)

collecting a group of SNOMED-CT terms from the title,

and D) determining the union of the results of steps B

and C. Step A uses a “stop word” filtering system (i.e.,

that avoids preposition, adverbs, and similar terms), and
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steps B and C are combined with SNOMED-CT to

extract web links from MedlinePlus.

Algorithm design

We selected keywords (or terms) from video metadata

(i.e., the video title, description, and subtitles). These

keywords are used to identify semantic terms from

Medline Plus. Fig. 1 shows the Term Extraction process

for diabetes videos from YouTube. The algorithm

contains two steps:

� Source term collection: the video title, description,

and subtitle are collected as possible terms.

� NLP: In this case, NLP is applied to the title

description and video subtitles using the cTAKES

framework.5 This is a health-specific NLP

implementation that extracts SNOMED-CT health

terms from text. See Fig. 2 for an example of

extracted metada of a video.

We conducted a text analysis using the Unified Med-

ical Language System (UMLS)6 with SNOMED-CT an-

notations to match the cTAKES framework. To achieve

this, we inject the original video metadata files (with

title, description, and subtitle) procedures from the

UMLS library, resulting in an XML file that contains a

morphological, syntactic, and semantic analysis.

From this file, we filtered the UmlConcept labels that

contain collected terms from the SNOMED-CT ontol-

ogy properties. For instance, Fig. 2 shows example XML

for the terms Blood, Entire Cell, and Cells. The cTAKES

Fig. 2 cTakes XML Example with Video Metadata. Example of XML source code from the cTakes result for a video related to blood cells

Fig. 1 HealthRecSys Extraction of Medical Terms for Videos. Structure and logic of the extraction of medical terms and Medline Plus links for diabetes videos
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configuration uses the standard pipeline AggregatePlain-

textFastUMLSProcessor to extract the SNOMED-CT

terms.

To work with the UMLS library, we used a profile

license.7 Appendix 1 shows the configuration used to

run the cTAKES execution.

Once the SNOMED-CT terms are extracted, we cross-

match them with the terms from the Bio-ontology API

to find synonymous MedlinePlus terms. These outputs

allow us to obtain a web link from the MP_HEALTH_-

TOPIC_URL MedlinePlus property, which is obtained

via a Representational state transfer (REST) endpoint

from the associated extracted term, which allows us to

provide trusted recommendations to end users. For in-

stance, the example terms Blood and Stem Cell both

have corresponding Medline Plus links,8 .9

Given that the number of SNOMED-CT vocabulary

terms is larger than those on MedlinePlus, we antici-

pated that many results would not have matching terms.

Although Bio-ontology offers an Annotator Web service

that annotates user-provided text (e.g., journal abstracts)

with relevant ontology concepts, this feature was not

used for this work.

For practical reasons, we ignored isolated terms from

SNOMED-CT that did not have a Medline Plus match.

Although it is possible to select other ontologies to find

a corresponding Medline Plus term, in this paper, we

focus on results obtained only with these two ontologies.

Datasets of videos and raters

We assigned 26 health professionals (raters) to the three

set of videos divided by topic (general medicine,

Fig. 3 Web Form for Raters. Example screenshot of the video and rating system presented to raters. (Video source: https://www.youtube.com/watch?v=diG519dFVNs)
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diabetes, or hypertension). We recruited these healthcare

professionals directly either by email or other means,

based on their familiarity with health topics and online

health. After explaining to them the goals of the project

and acquiring informed consent, the raters were asked

to determine if the recommended links for a given video

were relevant for the video topic. The exercise of rating

the recommendations was not based on any personal in-

formation from the participants, but rather their expert

opinion of a web tool (see Figs. 3 and 4). As such, this

research does not involve human subjects (the study

does not obtain information about living individuals).

Our dataset contained 53 videos, some of which had

been utilized in our previous research [33]: a) 10 general

medical videos (i.e., general health-related videos ex-

tracted from hospital YouTube channels), b) 22 videos

about diabetes, and c) 21 videos about hypertension.

To rate the relevance of the videos and recommended

links, we used Cohen’s kappa to determine the level of

agreement between two given raters. Kappa is defined as

follows [42]:

k ¼
Pr að Þ−Pr eð Þ

1−Pr eð Þ
; ð1Þ

where Pr(a) is the relative observed agreement and

Pr(e) is the hypothetical chance of agreement. Therefore,

this formula calculates the ratio of observed agreement

to hypothetical agreement by chance. If the raters are in

complete agreement, then k = 1. A k coefficient greater

than 0.80. indicates good agreement for a given

recommendation.

Cohen's kappa was calculated using the irr package of

the R application (version 3.3.1 on linux-gnu). The

method in question is kappa2(ratings, “unweighted”).

This function includes the vector of the rater values.

For each category of videos (general medical, diabetes,

and hypertension), we selected a pair of reviewers with a

high level of inter-rater agreement, based on Cohen’s

kappa, to have consistent rater agreement. The pair of

raters had a Cohen’s kappa inter-rater agreement of

0.626 for the general medical videos (z = 4.35, p-value =

1.33 × 10−05), 0.582 for diabetes (z = 6.47, p-value = 9.9 ×

10−11), and 0.717 for hypertension (z = 7.7, p-value =

1.31 × 10−14).

In the next step, we selected videos and links with an

acceptable level of inter-rater agreement based on the

Cohen’s kappa values. Using the algorithm described in

the previous section, we generated 510 recommended

MedlinePlus links, but evaluated only the first five

recommendations for each video, as our recommender

system limits the number of recommendations. The final

dataset contained 10 general medical videos with 48

recommended links, 22 diabetes videos with 102 recom-

mended links, and 21 hypertension videos with 103

recommended links.

Fig. 4 Juvenile Diabetes Research Foundation Video. Example diabetes video from the Diabetes Research Foundation and links extracted from

MedlinePlus. (Video source: https://www.youtube.com/watch?v=i7ft-6vR-Ic)
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This approach allowed us to focus the evaluation on

videos and links for which there was a homogenous

agreement level among professionals. The rationale of

this approach is relayed in our previous research, which

highlighted the lack of consensus between professionals

on certain types of health videos [43].

Evaluation metrics of the recommendations

We used two metrics to evaluate the relevance of the

recommended links for a given video. These metrics,

precision at k [44] and normalized discounted cumula-

tive gain [45], are widely used to evaluate search algo-

rithms in information retrieval and indicate the

relevance of the “top” retrieved results. The importance

of focusing on the top retrieved results is based on the

web browsing behavior of users, as they tend to focus

only on the top few item suggestions.

Precision at k

Precision (also called positive predictive value) is the

fraction of retrieved instances that are relevant, in our

case, this is the relevance of the links recommended for

a given video. Precision is calculated as

Precision ¼
Trusted Recommendations ∩j jRecovered Recommendationsj j

Recovered Recommendationsj j
:

ð2Þ

The precision at k (P@k) [46, 47] accounts for the

order of the returned recommendations and is calculated

as the fraction of the first k accepted links to all k links.

Normalized Discounted Cumulative Gain

The normalized discounted cumulative gain (nDCG) is

another common information retrieval metric [45]. It is

a measure of ranking quality, where DCGk are highly

relevant documents appearing lower in a search result

and the ideal discounted cumulative gain (iDCGk) is the

DCG of the vector with all links with an accepted value:

nDCGk ¼
DCGk

iDCGk
: ð3Þ

Results

To evaluate each recommendation, we considered two

scenarios: a) robust and b) moderate. In the robust sce-

nario, we consider as relevant only those link recom-

mendations that are supported by both raters. In the

moderate scenario, we consider a link to be relevant if at

least one rater agreed with the recommendation. The

moderate case is most appropriate when the risk of mis-

information is low, while the robust scenario is the most

appropriate when there is greater potential to spread

misinformation.

In these scenarios, P@k and nDCGk were calculated

as follows. The relevance of the k first link recommen-

dations is calculated as follows for each recommended

link j (1 ≤ j ≤ k):

(a) If both raters approve link j, it is accepted (its value

is 1, or relevant).

(b) If both raters do not approve link j, it is rejected

(its value is 0, or irrelevant).

(c) In the case in which one rater approves link j and

the other rejects it, in the robust scenario, link j is

considered irrelevant (value 0), whereas in the moderate

scenario, it is considered relevant (value 1).

The P@k results are shown in Table 1 and nDCG re-

sults are showed in Table 2. Overall, the performance of

the recommender system was higher when giving rec-

ommendations for the general medicine and diabetes

videos.

Discussion
The results show that it is feasible to recommend rele-

vant links for health videos using a semantic-based rec-

ommender system. However, there are several concerns

that deserve special attention. Although positive overall,

recommendation performance varied across the different

topics used in this study, which could be due several fac-

tors. For example, there might be fewer links related to

diabetes than other topics (e.g., hypertension), thus lim-

iting the potential items that can be recommended. Fur-

ther, our semantic-based approach might also suffer

from the semantic-gap between the layperson’s language

and a medical thesaurus. Although work has been done

to develop a Consumer Health Vocabulary, this has not

been implemented in our approach; additionally, the

semantic gap may differ across health topics [48].

In contrast, our approach of using semantics to iden-

tify relevant links allows the algorithms to find links that

are related to synonyms and disambiguation. Still, this

poses some additional challenges. For example, in a

video titled Juvenile Diabetes Research Foundation −

Cure Video – Dalas,10 our algorithm extracted the term

“shots,” which resulted in a recommendation for a link

regarding the importance of vaccination (a topic of

Table 1 Mean precision @ K recommended links

Mean Precision@k
(robust case)

Mean Precision@k
(moderate case)

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

General Medicine 0.77 0.65 0.5 0.87 0.80 0.70

Diabetes 0.71 0.71 0.68 0.89 0.85 0.81

HTN 0.48 0.45 0.39 0.62 0.57 0.53

The evaluation based on nDCG (see Table 2) shows similar patterns, and lower

performance when recommending links for hypertension videos. As expected,

the relevance of the links decreased with an increase in the number of

recommended links for a given video (k = 5)

Sanchez Bocanegra et al. BMC Medical Informatics and Decision Making  (2017) 17:63 Page 6 of 10



relative importance in diabetes). One advantage of rely-

ing on medical terms is that our algorithm has an en-

hanced capability to reduce the number of links that

have no relation to the video content, which is an im-

portant limitation of previous studies, where such terms

could not be avoided [33, 34].

Recommender systems can play a major role, not only

in education, but also in supporting behavioral changes

for a wide range of health conditions [49–51], including

smoking cessation [51]. In such cases, the recommenda-

tions are not only chosen with regard to content, but

also with respect to timing, and consider different

psychological health factors (aka user context) [52]. Our

work does not address context-awareness regarding the

time and place of the recommendations. However, by

providing trustworthy recommendations for websites

when a user is watching a video, we can support com-

plex health information seeking [53, 54].

The applications of recommender systems in the

health domain are still emerging. Therefore, we lack

common evaluation methods that can allow us to com-

pare work across separate studies in this topic [29, 55].

There are examples in the literature of recommender

systems in the health domain that, for example, provide

recommendations based on a personal health record

[56]. In our case, we deal with a very different type of

content-based recommendation, as we are not recom-

mending content for a given user but rather for a given

health educational item.

Our work is aligned with previous studies in which

health information is enriched with additional content

[56]. There is still quite a substantial knowledge gap on

how people search for online health information, and,

even more importantly, on how that affects the health

behaviors of the information seeker [57]. Our recom-

mender system approach does not aim to provide rec-

ommendations personalized for a user, but rather to

provide further reliable information for users watching a

health video. This content-based recommendation

approach is crucial for supporting the current patterns

of health consumers looking for multiple sources when

searching for health information online [58].

Most previous studies of health recommender systems

do not address their impact on health outcomes; in

contrast, we do so using information retrieval accuracy

metrics. This approach has the potential to create risks

for health consumers, which is one of our motivations

for using health professionals in this evaluation.

Ekstrand et al. recently reviewed potential ways in which

health recommender systems can do harm and the ways

to minimize potential harm [59]. Giving wrong or poten-

tially misleading health information can be a cause for

serious concern; for example, recently, the FDA forced

the company 23andMe to remove and edit personalized

health information regarding genetic health risks [60].

Further, health information can be used for unhealthy

purposes (e.g., the abuse of diuretics for weight loss is

common in people with eating disorders).

Limitations

Our study relies on the ratings of hundreds of recom-

mended links for given videos. However, these ratings

were given by healthcare professionals and not health

consumers. As explained in our previous work, profes-

sionals and consumers often disagree on the relevance

of health content [43]. Experiments with health con-

sumers will be required to further evaluate recommen-

dation quality.

Note that our study only investigates the feasibility of

this approach. Consequently, extrapolating the results

to larger studies is necessary. Ideally, further studies

will consider more users (and not necessarily healthcare

professionals). In addition, our rating approach was ra-

ther simplistic, considering the multiple quality dimen-

sions of health videos [35]. Further, the ideal evaluation

should take place in a real information seeking scenario

and not a simulated one because many factors affect in-

formation seeking by health consumers, including

stress or literacy levels [53]. The patient perspective

was not explored in this study because we consider it

to be more ethically appropriate to first study the

feasibility of an approach with health experts. Patients’

perspectives and acceptance can also vary substantially

across age, health literacy levels, and other factors.

Future research will need to explore the application of

our method in a patient portal with additional content

and users.

Another limitation of our study is that our video data-

set is not generalizable. We selected several topics of

high importance (diabetes and hypertension), but we

cannot extrapolate that our approach will work with

other health topics. A major challenge to generalizing

semantic-based approaches such as ours is the gap

between medical and consumer health vocabularies [61].

Because we use content generated by health organiza-

tions (not individuals) and a medical ontology, we might

expect more difficulties when recommending links to

consumer-generated content.

Table 2 Mean nDCG for K recommended links

Mean nDCGk

(robust case)
Mean nDCGk

(moderate case)

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5

General Medicine 0.78 0.7 0.5 0.88 0.83 0.75

Diabetes 0.73 0.74 0.72 0.90 0.87 0.85

HTN 0.51 0.49 0.46 0.65 0.61 0.58
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Conclusions
This study demonstrated that a semantic-based recom-

mender algorithm can provide relevant education health

websites as further reading for a given health video. The

relevance of websites recommended by our system de-

creased as we provided more recommendations, but Heal-

thRecSys still performed well with up to five recommended

links per video. Because user browsing behavior is often

limited to a few items, this does not pose a serious limita-

tion. Conversely, our approach can reduce the burden of

health consumers when searching for reliable additional

health educational content. Further, the speed of navigation

to a reliable source, as identified by Strauss, is an important

factor in information seeking [62].

Future improvements to recommender systems will in-

corporate more semantic analytics and perhaps be able

to determine the patient’s context (i.e., mood) to make

better recommendations. It will be possible to use this

algorithm to recommend content and videos to counter-

balance misinformation, find information on controver-

sial topics, and filter out videos with little scientific

acceptance. For instance, a video that promotes steroid

consumption could recommend information alerting the

individual to their potential negative effects.

Endnotes
1Bio-ontology API endpoint documentation http://data.-

bioontology.org/documentation
2Bio-ontology website http://www.bioontology.org/
3SNOMED-CT website http://www.ihtsdo.org/snomed-ct
4http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/complete-

white-paper-c11-481360.html
5cTAKES website http://ctakes.apache.org/
6UMLS website https://www.nlm.nih.gov/research/umls/
7UMLS web license profile https://uts.nlm.nih.giv//

uts.htmlprofile
8Blood: https://www.nlm.nih.gov/medlineplus/blood.html
9Cell: https://www.nlm.nih.gov/medlineplus/stemcells.html
10Juvenile Diabetes Research Foundation https://www.

youtube.com/watch?v=i7ft-6vR-Ic

Additional file

Additional file 1: HealthRecSys Study Overview. Video describing the

HealthRecSys algorithm and the results of the study.
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