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Abstract: Obesity is a modern public health problem. Social media images can capture eating
behavior and the potential implications to health, but research for identifying the healthiness level of
the food image is relatively under-explored. This study presents a deep learning architecture that
transfers features from a 152 residual layer network (ResNet) for predicting the level of healthiness of
food images that were built using images from the Google images search engine gathered in 2020.
Features learned from the ResNet 152 were transferred to a second network to train on the dataset.
The trained SoftMax layer was stacked on top of the layers transferred from ResNet 152 to build
our deep learning model. We then evaluate the performance of the model using Twitter images in
order to better understand the generalizability of the methods. The results show that the model
is able to predict the images into their respective classes, including Definitively Healthy, Healthy,
Unhealthy and Definitively Unhealthy at an F1-score of 78.8%. This finding shows promising results
for classifying social media images by healthiness, which could contribute to maintaining a balanced
diet at the individual level and also understanding general food consumption trends of the public.

Keywords: obesity; image classification; social media; twitter; food image

1. Introduction
1.1. Background

Obesity has more than doubled globally in the past three decades [1] and 1.9 billion
adults worldwide are reported to be either overweight or obese [2]. Today, obesity is
responsible for 5% of the total death count [1]. Should the current pace of obesity continue
at this rate of increment, studies show that the life expectancy of obese people will be
reduced by eight years [2]. Moreover, the global economic impact of obesity was estimated
to be more than USD 2.0 trillion in 2016 [2].

Sixty-five percent of American adults and 90% of young American adults now use
social networking sites like Instagram and Twitter [3] to discuss everyday issues, socialize
and share activities, such as dining on food. Food porn, the practice of sharing pictures of
delicious, enticing foods has grown in popularity in recent years [4] (Figure 1).
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Figure 1. Example image of food from Twitter [5].

In their study, Park et al. suggested that the general public’s everyday habits and be-
liefs concerning health can be observed using social media data [6]. In fact, food marketing
on social media has been suggested to influence the intake of high-energy and low-nutrient
foods such as fried foods and candy [7]. As several chronic illnesses and diseases such as
cardiovascular disease, obesity, and cancer are associated with increased consumption of
high caloric foods, this sort of influence can be critical when it comes to health outcomes [2].
Higher rates of chronic illnesses also lead to individual and country-level economic losses
which majorly include the health care costs associated with obesity [2].

As of 2017, some 500 million tweets were posted daily on Twitter [8]. With the
pervasive adoption of social media worldwide, this number can only be expected to grow.
Because an increasing number of people’s lives and social interactions are publicly shared
online, the breadth of social media data suggests that it can be a crucial tool in investigating
lifestyle disorders [9].

As previously mentioned, food porn is a common practice on social media in which
pictures of food are shared between users [8]. Simeone et al. demonstrated the power of
social media to impact consumer behavior. They found that social networks homogenize
food consumption choices by promoting particular foods [10]. Moreover, eating habits can
be changed based on what users view on social media as well. This was demonstrated by
Hawkins et al. in their laboratory study where they found that significant social media
exposure to low energy dense food could nudge consumers to prefer low energy dense
foods to high energy dense foods and vice versa [11].

Based on these findings, we could not only learn more about health-related behaviors
from social media, but this information can be used to promote positive health outcomes.
One method of studying group level food behaviors is by classifying healthy and unhealthy
foods on social media. However, it should be noted that the captions of food pictures are
not often descriptive of the food item. It is because of this, that food image classification is
often used to classify the types of food shared on social media.

1.2. Literature Review
1.2.1. Image Classification of Foods

Food image classification can prove to be a fairly difficult task, primarily due to the
sheer variety of foods available nationwide. There are many characteristics of foods that
may be appropriate features for classifying one group of foods, yet those same features
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may be ineffective when classifying another group of foods. As such, the process of feature
engineering in this domain is closely linked with the success of the model.

Previously, feature extraction for image classification was conducted by hand. As
can be imagined, this process was tedious and inevitably limited in the number of food
classes recognized [12]. Researchers during this time commonly used Speed-Up-Robust
Features (SURF) and textural features, such as local binary patterns (LBP) to assist in
classification [12]. One study utilized a bag of features model that included Scale Invariant
Feature Transform and HSV colors as features [13]. An SVM using these features achieved
78% classification accuracy [13].

As the popularity and accessibility of the framework increased, Deep Convolutional
Neural Networks (DCNNs) began to be adopted as a means of extracting features to
be ultimately used for classification. AlexNet, VGG-16 and GoogleNets are well known
CNN architectures that can be used for deep feature extraction [12]. The process of image
classification is many-fold. First, it must be determined whether or not a food item is
present within the image. Singla et al. fine-tuned a GoogleNet pre-trained model with the
Food-5K database for this task [14]. They managed to achieve a 99.2% accuracy score when
distinguishing between food and non-food items.

Other than detecting the presence of food in an image, food item recognition is
another common task that often utilizes CNNs. Farooq et al. used AlexNet features to
recognize food items. The researchers fed features from convolutional layers to an SVM
for classification [15,16]. They achieved 70.13% accuracy for 61 food groups. The accuracy
score was raised to 94.01% for seven food groups [15]. An important note, though, is that
the dataset used was the Pittsburg Fast-Food Image Dataset (PFID). Because this dataset
was created in a controlled laboratory setting, the high accuracy rates should be taken as a
grain of salt.

In a different study, researchers used the Instagram API to download a total of 808,964
Instagram posts using food related hashtags. For feature extraction, they used GIST as well
as features from a pre-trained CNN. The CNN in this study was implemented using the
MatConvNet toolbox and the 16-layer model was chosen. The researchers used ImageNet,
a database built on the nouns found in WordNet, for their model. The output of their
16-layer CNN was a 4096-dimensional vector that the researchers believed would be ideal
for generalizability. For classification, they used an SVM. Ultimately, by utilizing images
and related discussions, the authors recognized food images at 70.00% accuracy [16].

In a Twitter related study, researchers developed a food detection approach that ap-
plied a CNN to recognize 10 food items. The researchers used local response normalization
(LRN) as a hyperparameter for normalization after the pooling layers. For experimental
purposes, they compared the CNN results to handcrafted feature generation methods.
These included spatial pyramid matching (SPM), GIST and a SIFT-BoW-based method.
A SVM was used as the classifier in each experiment [17]. Ultimately, they found that
color features were dominant in food image recognition. For their final experiment, they
aggregated a dataset collected from social media that contained a reasonable amount of
noise (non-food item pictures). This model performed with an accuracy of 93.80% which is
better than the baseline traditional SVM methods for which the accuracy was 89.70% [17].

1.2.2. Utilizing Social Media to Understand Health Outcomes

Many previous studies have recognized the importance of social media images of food
and its correlation to obesity. For example, in their study, [18] used FourSquare, a social
media site that allows users to share their location within their social network, to map
locations to Instagram photos of food. They then used the 2013 County Health Ratings
(CHR), which contains county level obesity ratings, to demonstrate that unhealthy food
hashtags are associated with the areas with high obesity rates [18].

In one Twitter-related study, the authors analyzed 210,000 tweets from US users to
link their profiles to their tweeted dining experiences. They were then able to explore
user interests, social connections and backgrounds based on the food that the users ate.
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For validation purposes, they associated the caloric intake of the foods tweeted with the
user’s respective statewide obesity rate. The researchers obtained a Pearson correlation
coefficient of 0.77 [19]. Once convinced that their approach had validity, the authors used
this information to later build a model to predict county-wide obesity.

Twitter has been identified as a reliable source of information for the analysis of
dietary patterns of individuals. It has demonstrated its ability to quantify the healthiness
of food related tweets and related sentiments [20]. Regarding Twitter as a medium, the
authors in [21] highlight the relevance of food on social media and the types of discussions
surrounding food. Their study used food-related tweets to predict latent demographic
factors, including obesity and diabetes rates, political learning, and author geography. This
shows that the language of food alone is compelling [21].

One major limitation of these above-mentioned classification studies is the fact that
manually labeling food images is time consuming and expensive. However, when man-
ual labeling is not involved, experiments have performed poorly. Additionally, CNNs
commonly face the issue of vanishing gradient descent. In this situation, weights are not
changed a substantial amount, and as such, information is lost.

One way to remediate the latter issue is to use a ResNet. ResNets have grown in
popularity due to their ability to both reduce the issue of vanishing gradient descent and
reduce overall training time [12]. ResNet-152 is a deep residual CNN that has been pre-
trained on ImageNet. It has a depth of up to 152 layers, which promotes higher accuracy
scores [12]. ResNet-152 is constructed with residual connections that allow a gradient to
pass through layers, bypassing an activation function. This is what decreases the effects of
information loss [12].

More than 1.1 million obesity-related tweeted images were processed by a very deep
Visual Geometry Group (VGG16) model, and it did not perform well. These results suggest
the need for a fine-tuned image classification tool for social media images [6]. This is why
we opted to adopt the ResNet-152 for training.

In their study, Vydiswaran et al. developed a four-point scale classifying a dataset of
food keywords as Definitively Unhealthy, Unhealthy, Healthy and Definitively Healthy [20].
They achieved this by having a nutritionist use her expertise to rate a vocabulary of foods
based on their healthiness level. They then organized the foods into the aforementioned
groups based on these ratings [20]. We recognized the potential of this scale to be used
in classification of food images as healthy or unhealthy. As such our aims of this study
were three-fold. We wanted to demonstrate a process by which image datasets can be
quickly constructed using the Google images search engine. Second, we wanted to build
a transfer-learning based multi-class classifier to predict the healthiness of food based on
Vydiswaran’s study. Lastly, we wanted to validate our classifier by applying it to social
media food images from Twitter.

2. Materials and Methods
2.1. Overview

The explosion of image data on the Internet requires more sophisticated and robust
models as well as algorithms to process images and related multimedia data [22]. Our
work focuses on applying an image classifier to classify social media food images, specifi-
cally from Twitter, according to their healthiness. We fine tune the image classifier model,
ResNet [23], for classifying social media images into healthiness level. We implement
this model by transferring the features from the pre-trained ResNet model, which was
initially trained on ImageNet dataset to the image classifier and training the classifier on
images collected from the Google search engine. This research contributes as follows. First,
we demonstrate the ability to build an image dataset without the labor-intensive process
of manually labeling our images. Second, we build a transfer-learning based classifier
to predict the healthiness of food. Third, we demonstrate the classifiers generalizabil-
ity by applying it to food images from Twitter. We restricted our analysis to publicly
available data.
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2.2. Data Collection

To develop a healthiness food image dataset, we use a published list of sample food
that is representative of definitively healthy (n = 5741), healthy (n = 5732), unhealthy
(n = 5657), and definitively unhealthy (n = 6021) food images [20]. We then use the Google
images search engine and crawl the search results. We manually verify the images and
label each food item according to their respective categories: healthy, definitively healthy,
unhealthy, and definitively unhealthy. These images were trained with the ResNet classifier
by transferring the features from the ImageNet dataset. Each category contains ten types
of food, and a total of more than 23,000 images were collected. We have also gathered
the social media images from twitter using twitter API to examine external validity of
our classifier.

2.3. Image Classifier

We used deep transfer learning implemented in ResNet-152 [4] to extract salient
features of food images. ResNet152, a 152-layer residual net, is a deep network with a
lower complexity than VGG nets [23], another popular image processing model based on
ImageNet. The major steps of image processing are shown in Figure 2.

Figure 2. Overview of image processing step.

To classify food images as healthy, definitively healthy, unhealthy, and definitively
unhealthy, we first center cropped each image to 224 × 224 following ImageNet standards
to feed it to the deep neural network [24]. We experimented with different batch sizes
and then decided on 128 bytes, which results in approximately 290 steps for each epoch.
Then, features learned from ResNet-152 are transferred to a second network to train on the
dataset [25]. The optimizer used for this classifier is Stochastic Gradient Descent (SGD) [26]
due to its performance in our experiments. The trained SoftMax layer is stacked on top of
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the layers transferred from ResNet-152 to build our deep learning model, which is used
to classify the test dataset [27]. The loss function used to find the loss for this model is
categorical-cross entropy. We chose categorical cross entropy because it is well suited for
multi-class classification.

These functions are directly imported from PyTorch packages, torch.nn, a module
to help us in creating and training the neural network [28], and torch.optim, a package
implementing various optimization algorithms [28]. Finally, we save the transferred layer’s
parameters and train the ResNet model to classify each sample into its category. The
experiment was carried out in an environment of Pytorch with CUDA 10.1 (Nvidia, Santa
Clara, CA, USA) architecture on UBUNTU (Canonical, London, UK).

Lastly, we tested our classifier using an external dataset, Twitter image dataset. We
processed 40 rounds of 10 food related twitter images, a total of 400, then manually evalu-
ated the result. Overall accuracies are calculated by taking the average of the forty rounds
of prediction.

3. Results
3.1. Training and Testing the Image Classifier

We split the dataset 80–20 for train and validation. The validation accuracy is found
to be 80.61%. We first trained the model on a different number of epochs up to 20 and
decided the final number of epochs for training to be 15, to avoid overfitting of the training
dataset. The trained model is tested on the validation images for all the categories of food.
Figure 3 shows the prediction of food images in their respective classes. The bottom right
contains the images of burgers, chocolate, and cake which are in the definitively unhealthy
category. The bottom left image consists of the coffee, rice, turkey, and roasting which are
in the healthy category. The top left image consists of the pumpkins, fruits, salad, and fish
which are in the definitively healthy category. The top right has images of fries, taco, sauce,
pizza, and grill which are in the unhealthy category according to previous literature [20].

Figure 3. Example images that were predicted in each of the four classes.
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3.2. External Validity: Testing on Twitter Dataset

The model is further tested on twitter images that were collected using the twitter API.
We then manually selected images that contained food items from previous literature [20].
Examples of prediction are shown in Figure 4. The bottom right contains images of
chocolate, cake and burger which are in the definitively unhealthy category. The bottom
left consists of pumpkin, fruits and salad which are in the definitively healthy category. The
top right has the images of turkey, chili and coffee which are in the healthy food category.
The top left shows pizza, fries and roasting images which are unhealthy food items.

Figure 4. Example Twitter images that were predicted in the different classes.

We also assess the performance of our classifier at the individual category (Table 1).
TP, TN, FP and FN stand for true positive, true negative, false positive and false negative,
respectively. TP refers to the number of predictions in which the classifier correctly predicts
as positive. TN refers to the number of times the classifier correctly predicts as negative.
The number of predictions in which the classifier incorrectly predicts the negative class
as positive is referred to as FP. The number of predictions in which the classifier wrongly
predicts the positive class as negative is referred to as FN.

Table 1. Performance of the image classifier on Twitter datasets.

Class TP FN TN FP Precision Recall Accuracy F1 Score

Healthy 44 6 33 17 72.13 88.00 77.00 79.27
Unhealthy 39 11 32 18 68.42 78.00 71.00 72.90

Definitively Healthy 44 6 38 12 78.57 88.00 82.00 83.01
Definitively Unhealthy 42 8 37 13 76.36 84.00 79.00 79.99

Overall 169 31 140 60 73.79 84.50 77.25 78.78
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The percentage of positive identifications which were actually correct (i.e., precision)
was 72.13 in case of healthy, 68.42 in case of unhealthy, 78.57 in case of definitively healthy
and 76.36 in case of definitively unhealthy. The proportion of correctly identified positives
(i.e., recall) was 88.00 in case of healthy, 78.00 in case of unhealthy, 88.00 in case of defini-
tively healthy and 84.00 in case of definitively unhealthy. The percentage of all the correctly
identified cases (i.e., accuracy) is 77.00 in case of Healthy class, 71.00 in case of unhealthy,
82.00 in case of definitively healthy and 79.00 in case of definitively unhealthy. F1 Score for
healthy class is 79.27%, unhealthy class is 72.90%, definitively healthy class is 83.01% and
definitively unhealthy class is 79.99%. The overall F1 score was determined to be 78.78%.

3.3. Error Analysis

We further analyzed errors from each of the classes. Table 2 shows how errors for each
classification class were classified. The most frequent inaccurate prediction came from the
degree of healthiness. For example, as our classifier incorrectly predicted the healthy with
definitively healthy as well as unhealthy with definitively unhealthy classes. The result of
FN for Healthy 4 images out of 6 images were predicted as definitively healthy. Similarly, for
FN of unhealthy class, out of 11 images, 7 images were inaccurately classified as definitively
unhealthy. For definitively unhealthy, out of 8 FN, 4 of them were incorrectly predicted
as unhealthy. In the case of definitively healthy class, 4 out of 6 FN were inaccurately
classified as healthy. With FP, out of 17 times where the prediction was incorrectly classified
as healthy, there were definitively healthy 9 images. Out of 18 times where the prediction
was incorrectly predicted as unhealthy, there were 8 definitively unhealthy images. Out of
12 times where the prediction was inaccurately classified as definitively healthy, there were
6 healthy. Out of 13 times where the prediction was inaccurately classified as Definitively
Unhealthy, there were 7 unhealthy images.

Table 2. Error analysis using Twitter datasets.

Class
Predicted
Healthy

Predicted
Unhealthy

Predicted Definitively
Unhealthy

Predicted Definitively
Healthy

FN FP FN FP FN FP FN FP

Healthy – – – 4 2 4 4 9
Unhealthy 3 4 – – 7 8 1 6

Definitely Healthy 4 6 1 3 1 3 – –
Definitely Unhealthy 2 3 4 7 – – 1 3

After manual investigation, we also believe that the classifier is mixing up baking
(i.e., healthy) with cake (i.e., definitively unhealthy) and detects definitively unhealthy as
healthy. The combined number of Twitter test images for cake and baking were 25, out of
which 5 baking images were predicted as definitively unhealthy, and 6 cake images were
classified as healthy. Table 3 shows the number of images and the number of false positives
and false negatives for the cake and baking food items. This is partially due to how the
training dataset was collected.

Table 3. False positives and false negatives for the cake and baking.

Food Items Predicted as Definitively
Unhealthy

Predicted as
Healthy

Cake (Definitely unhealthy) 7 6
Baking (Healthy) 5 7

In our training dataset, we found 254 cake images, as a part of cake recipe, in 996
baking images.
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4. Discussion
4.1. Principle Findings

The main contributions of our research are the following: (1) demonstrating a process
to quickly construct an image dataset using the Google images search engine to reduce a
labor-intensive process of image labeling, (2) building transfer learning based multi-class
classifier to predict healthiness of food and (3) applying the classifier on social media
images from twitter to understand classifier’s real-world application.

Supervised learning needs labeled datasets for the classification. Studies typically
use pre-existing food image datasets available on public repositories [29,30] or build new
datasets with manual labeling which is an expensive and time-consuming task [31,32]. For
training the residual network, we have crawled images from Google images search results.
We were able to construct a labeled dataset in a relatively short period of time. However,
we manually went through all of the images to verify and ensure the quality of the dataset
and classifier.

To test the performance with real world social media data, we built a testing dataset
containing real-world food images from twitter. To test against human judgement, we
manually evaluated 400 Twitter images. The model was able to classify the images into the
healthiness classes at an F1 score of 78.78%. The most frequent inaccurate prediction came
from identifying the degree of healthiness of food images as the classifier inaccurately clas-
sified as healthy for definitively healthy or as unhealthy for definitively unhealthy food im-
ages. The performance of our image classifier is better than the F1 scores reported by other
deep CNN approaches that are applied in public health informatics research [6,16,29,33].
We were able to improve the performance by transfer features from a neural network with a
greater number of layers, ResNet 152. A few other approaches achieved better than 80.00%
F1 scores; however, their objectives were relatively a simple task of binary identification of
food image [14,34].

4.2. Public Health Implications

Twitter has been demonstrated as a good data source for tracking public health issues
like influenza [35,36] seasonal allergies [36], cholera outbreaks [37], mental health [37–39]
and behaviors like excessive and unhealthy food consumption [6]. However, these studies
mainly used text as the only data source. Although a growing number of Twitter users
are sending out images, image analysis has not been the main focus of most previous
public health studies using Twitter, in part due to the difficulty of accurately processing
images [6,19,35]. Although images are often accompanied by captions, oftentimes these
captions are not descriptive of the images themselves [16]. As such, there is a missed
opportunity for collecting more descriptive social media data. Our study focused on
processing food image data specifically. There are many potential benefits of fully utilizing
social media data’s multimodal nature. Processing images and classifying them as healthy
or unhealthy provides additional data points for not only public health researchers and
practitioners, but individuals themselves. This technology could be used as a method of
food logging. Food logging is a common technique used by dieticians and nutritionists in
which individuals keep track of the foods that they consume for later review and reflection.
In this case, users could passively keep track of the foods that they consume for later
inspection.

Likewise, information gathered from our study could be used to improve healthy
literacy in certain populations. Health literacy has been defined as the overall ability for
one to take control of their health [40]. Health literacy is a well-documented public health
problem, particularly among lower socioeconomic backgrounds [41], who are at an in-
creased risk of being overweight or obese [1]. Furthermore, some public health information
may be too difficult for the general public [42]. Thus, by automatically processing to inform
users of the food’s healthiness level and maintaining an easily manageable communication
channel could improve health literacy regarding food consumption. On a broader scale,
our research could help those who work in the public health domain to understand public
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consumption of foods and food behaviors. Due to social media’s transient nature, these
researchers and clinicians could also get a better understanding of how dietary patterns
change over time. This could provide some insight into potential triggers for unhealthy
food consumption, identifying food deserts and even understanding marketing materials
that might inspire unhealthy food behaviors.

The ability to correct negative dietary influences could potentially lead to better health
outcomes as a nation. This would be crucial as obesity has grown in the United States
two-fold for the last three decades. Findings of this research can enhance consumer-
generated text processing as well. Processing consumer-generated text, especially a short
Twitter text, is complex, due to issues like acronyms, abbreviations, slang, and topic
drift [43,44]. Image processing research with textual description could bridge textual and
visual information [9,40] and further improve the performance of processing consumer-
generated text.

4.3. Limitations and Future Direction

A shortcoming of our classifier is that the model may be slightly overfitting, which
could explain the lower performance when using the real-world Twitter images. Social
media images could also have background noise and occlusion. We did not segregate
images to remove irrelevant items in the training dataset, which could improve the results
when applying to social media images. Additionally, our classifier only accounts for one
individual food item, not different foods grouped together into a meal. For example, it is
unable to label a meal of a burger and salad as either healthy or unhealthy. Future studies
could perform image segmentation first in order to identify different types of food and
then classify those food items based on their overall healthiness.

We can further improve the real-world application of our classifier by adding more
food items to the dataset in their respective categories to cover a wider variety of food
images. In addition, our training dataset could contain inaccurately categorized images, as
shown in baking and cake images, even though the images were manually verified. The
next step for this study is to further refine the dataset and test for different social media
images on networks like Instagram as they can also contain the food images shared by
the users.

Specific to obesity research, future study can further analyze the healthiness of social
media food images in correlation with obesity rate of specific regions. This will further
extend our knowledge on how social media is impacting food consumption in comparison
to other known factors related to obesity pandemic, such as environment.

5. Conclusions

This research examines a relatively simple approach to build a healthiness image
classifier by leveraging transfer learning and image dataset collected using the Google
images search engine. To assess the reliability and efficacy of our approach, we perform
experiments using an external social media dataset. Results show that transfer learning for
food image classification performed at an accuracy of 80.61% on the training dataset and
achieved an F1 score of 78.78% when processing Twitter images. While there are a few im-
provements that can be made to this model, it already shows potential in improving health
outcomes concerning obesity and the consumption of unhealthy foods. Our algorithm
could potentially be used to improve healthy literacy and assist public health researchers
and practitioners in understanding behaviors contributing to unhealthy food consumption.
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