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Abstract—Stress, anxiety and depression in the workplace are
detrimental to human health and productivity with significant
financial implications. Recent research in this area has focused
on the use of sensor technologies, including smartphones and
wearables embedded with physiological and movement sensors.
In this work, we explore the possibility of using such devices for
mood recognition, focusing on work environments. We propose
a novel mood recognition framework that is able to identify five
intensity levels for eight different types of moods every two hours.
We further present a smartphone app (‘HealthyOffice’), designed
to facilitate self-reporting in a structured manner and provide
our model with the ground truth. We evaluate our system in a
small-scale user study where wearable sensing data is collected in
an office environment. Our experiments exhibit promising results
allowing us to reliably recognize various classes of perceived
moods.

I. INTRODUCTION

It is estimated that life expectancy of people in a stressful

environment can be reduced by up to 3 years [1]. Related to

this, health and wellbeing of employees in a work environment

is known to have a direct impact on the overall productivity

of a company. The cost of work-related stress, anxiety and

depression in Europe is estimated by the European Commis-

sion to be e617 billion per year [2]. Similarly, according to

conservative estimations, stress in the United States has an

annual cost of US$200 billion [2].

There is a growing need for understanding and uplifting

the overall mood of employees, to help improve occupational

health, safety, wellbeing, and subsequently productivity. For

example, the Workplace Wellbeing Charter1, which is an ini-

tiative for better workplace conditions in the UK, encourages

employers to commit to the health of the people who work for

them by signing up to any of the Public Health Responsibility
Deal pledges concerning Health at Work.
Radical growth in smartphone technology has enabled large-

scale sociology and psychological studies; e.g. in the ‘UBhave’

project personal mobile phone sensor data is unobtrusively

collected and analyzed to help support digital behaviour

change interventions [3]. Moving a step forward, advances in

wrist-worn technology have also found applications in inter-

disciplinary domains. For instance, a smartwatch application

has recently been proposed to automatically detect eating

1http://www.wellbeingcharter.org.uk
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Fig. 1: Toshiba SilmeeTM Bar Type (left) and Toshiba SilmeeTM

W20/W21 wristbands (Right).

episodes and assist in monitoring an individual’s diet [4].

Wrist-worn technology has further been used to detect self-

harming activities [5], motion-based authentication [6] and

recognizing social gestures [7]. Commercial smart wrist-bands

are equipped with an increasing number of sensors including

heart-rate monitors, skin temperature sensor and accelerom-

eter; underpinning the motivation of this work to develop a

mood recognition system on this basis.

In the current work we use the Toshiba SilmeeTM Bar Type,

a prototype wearable sensor [8], to collect physiological data

in order to predict mood in the work environment. Toshiba

SilmeeTM Bar Type (shown in Figure 1) is a chest sensor that

is able to measure heart rate from electrocardiogram (ECG)

sensor, Pulse rate from photoplethysmogram (PPG) sensor,

skin temperature and 3-axial acceleration [8]. The sensor is

mounted to the chest using a special gel pad. Our framework

will be extended with the use of the new SilmeeTM W20/W212,

which is a wristband sensor (Figure 1). Our main contributions

in this paper are as follows:

• We introduce the HealthyOffice framework for learning

mood recognition models and aggregating results in a

privacy-preserving manner;

• We introduce the HealthyOffice smartphone application

and a ground truth collection protocol used to furnish the

physiological data collected from the SilmeeTM wearables

during our trials;

2http://www.toshiba.co.jp/healthcare/silmee w20/
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Fig. 2: Mood Recognition Framework.

• We develop separate mood models for personalized and

generalized mood recognition and discuss their perfor-

mance in a small-scale user study.

• We achieve an average classification accuracy of 70.6%
over 8 moods and 5 mood categories, in 2 hour time

intervals, and we make interpretations on the efficacy of

our framework and a research direction.

II. RELATED WORK

Mood is a lasting affective state of mind which has been

largely researched in psychology [9]. In our work, we focus on

the mood rather than on emotion [9]: the mood of a person may
last longer than emotion, persisting for hours or days rather

than minutes or seconds. It can be described as a reaction to

cumulative sequences of events while emotion is spontaneous.

It is also more internal to a person while emotion is visible to

others. Various studies have been conducted in recent times for

understanding and tracking moods and emotions. For instance,

EmotionSense [10] is a mobile sensing platform for sensing

individual emotions using mobile phones. In particular, they

analyzed participants’ voices and classified them in one of the

following categories: Happy, Sad, Fear, Anger, and Neutral.

Moodscope [11] also infers mood based on how the mobile

phone is used. In particular, six pieces of usage information

was collected, namely, text messages, emails, phone calls,

applications usage, web browsing, and location. The mood

recognition system in [11] was able to predict the mood

intensity (at five levels of granularity) of two dimensions

(pleasure and activeness) on a Circumplex model, which can

be further mapped into mood classes. For example, a high

level of pleasure combined with a high level of activeness

corresponds to happiness while a low level of pleasure but a

high level of activeness corresponds to stress.

Other researchers have focused only on one specific mood

state; stress. Particularly, in [12] stress was assessed by means

of a wrist-worn sensor of electrodermal activity (EDA) and

acceleration (ACC), and mobile phone usage data such as

messages, calls, location and screen activity (on/off). Sim-

ilarly, stress recognition was the main focus in [13]–[16].

Researchers have also shown that stress could be assessed by

skin temperature [17] and Heart Rate variability [18].

In this paper we are using existing wearable technology and

methods to enable the unobtrusive collection of physiological

data, focusing only on the work environment. We propose

an advanced multi-classification model of 8 distinct moods

and 5 levels of intensity, operating on 2-hour time windows.

This is based on the 2-dimensional circumplex model of [11]

expanded in to 8 separate dimensions of individual moods.

The overall objective is to design and validate a system

capable of capturing detailed user mood information using

low-cost, pervasive sensor devices. This can be part of a

solution addressing various industrial use cases such as the

‘HealthyOffice’ application presented in section IV.

III. MOOD RECOGNITION FRAMEWORK

Our proposed framework for mood recognition in a work

environment is illustrated in Figure 2 and includes four main

components:



• A wearable device like SilmeeTM (Fig. 1). This is used

to collect physiological data from employees, including

heart rate, skin temperature and acceleration.

• A smartphone application, like HealthyOffice. This app

is used to collect the ground truth for mood.

• A mood recognition system (MRS) that makes mood

predictions given the bespoke sensor data and provide

feedback to employees (via the HealthyOffice app).

• An aggregation component which produces anonymized

aggregated results and statistics for the employer.

In our framework, employees (users) may wear smart

wristbands and carry out their normal daily routines. These

wristbands unobtrusively collect physiological data from the

users. Users should ideally train the system by providing

their mood via the HealthOffice app for a certain period of

time. Otherwise, a generalized model may be applied, further

detailed in Section V-D.

In order to prepare the raw sensor data for analysis, a pre-

processing step involves a) filtering noisy data, b) remov-

ing outliers, and c) smoothing the physiological signals as

necessary. Further, data collected for a period of time are

segmented to reflect the intervals of the available ground

truth. Then the feature extraction process is called to make

meaningful representations of the processed signals. Finally,

the system analyzes the data representations (using machine

learning techniques) and it provides feedback to the users

to promote awareness. An anonymized aggregation of mood

predictions and statistics can be reported to the employer in

order to take actions to improve office wellbeing.

The system uses machine learning techniques in two ways.

First, to develop a ‘personalized model’ where each individual

gets prediction about their mood based on their past physiolog-

ical data, which model is learned from the personalized ground

truth data points. The alternative way is to get predictions

about one’s mood based on a ‘generalized model’, which is

learned from physiological data and ground truth collected

from multiple users.

IV. HEALTHYOFFICE APPLICATION

The ground truth for our study was collected with the use

of a smartphone mood self-reporting app, called HealthyOf-

fice [19], which was originally created for the collaborative

EU project IES Cities [20] and subsequently extended to

accommodate the present work. HealthyOffice records mood

information using a slider for each mood, which takes values

between 0 and 100; the larger the number, the higher the

intensity of a particular mood. We divide this interval in 5 cat-
egories: 0–19 / 20–39 / 40–59 / 60–79 / 80–100, corresponding

to: Not at all / Not much / Slightly / Fairly / Extremely and we
instruct the users accordingly. During initial trials, the users

would pick a value for all of the 8 moods at least 5 times a

day, every two hours. The in-built reminder functionality of

the app was set to timely notify the users to provide their next

mood annotation input.

The HealthyOffice app input is uploaded to a remote

database using the REST API of IES Cities citizen-centric

Fig. 3: Screenshot of the HealthyOffice application.

open data platform [21]. HealthyOffice further links to a secure

database where wearable sensor data are stored and processed

with the proposed MRS. The results of MRS, are also stored in

the secure database, and may be retrieved by the HealthyOffice

app and presented to the user in various forms, such as charts,

graphics or even short textual messages. The most appropriate

and engaging way to present mood information to the users is

a research topic in its own right in the area of User eXperience

(UX) and is still ongoing work for HealthyOffice.

V. METHODOLOGY

We provide implementation details of our MRS approach

and we evaluate it by means of a small-scale user study in an

office environment.

A. Data Collection Protocol

In this study, we collected biophysical user data using

Toshiba SilmeeTM wearable device in conjunction with the

HealthyOffice app, introduced in Section IV. We recruited 4
users (researchers) to take part in this study which was con-

ducted in an office environment. Researchers were provided

with the sensors to wear during office hours and instructions

were provided for recording ground truth mood data every

two hours. The work of each researcher was not affected by

this experiment. Participants were instructed to choose how

they felt for each one of the 8 moods. Specifically, we were

interested in Excitement, Happiness, Calmness, Tiredness,

Boredom, Sadness, Stress and Anger. The question that was

posed for each one of the moods was the following: How have
you been feeling for the last 2 hours? The study ran from

Monday to Friday during working hours (9:00–17:00) with a



total duration of 11 working days, resulting in 44 segments per
user. In total, we collected 352 hours of physiological data.

B. Data Pre-processing and Feature Extraction

Annotations every two hours were not problem-free. For

example, some participants missed some annotations and

others had delayed recordings. For this reason, we allowed a

tolerance window of an hour so that any annotation recorded

with at most one hour delay from a pre-defined annotation

point, would be matched to that point. We consider that this

adjustment does not compromise the ground truth. Users are

assumed to only reflect their mood in the predetermined time

intervals regardless of the tolerated delay; any potential mood

change during the delay period should be accounted by users

for the subsequent time interval. More advanced techniques

such as [22] for automatic annotation correction can also be

deployed at this stage.

Feature extraction for the heart-rate variability was per-

formed using the HRVAS toolbox [23] and acceleration fea-

tures were calculated based on the standard Human Activity

Recognition (HAR) features detailed in [24] and [25]. Pulse

Wave Transit Time (PWTT) is defined for each beat as the

difference in time between a cardiac wave peak and the next

pulse wave valley. PWTT is essentially a byproduct of the

ECG and PPG signals, which has been correlated with the

pulse amplitude and, subsequently, with stress [8].

Since no other study has verified which features are best to

predict mood, we start with an over-complete set of features.

Starting with the heart rate, this was represented by inter-beat

intervals (IBI) which are the intervals between two successive

heart beats. IBI was obtained immediately from the SilmeeTM

sensor. We analyzed the IBI signals in the time domain, the

frequency domain and in the time-frequency domain.

In particular, for IBI’s time domain features we calculated

both statistical and geometrical features as recommended from

the Guidelines of standards of measurement, physiological

interpretation, and clinical use [26]. Statistical features include

mean inter-beat interval, standard deviation of inter-beat inter-

val (SDNN), root mean square of successive differences of

the inter-beat intervals (RMSSD), and the percentage of total

intervals that successively differ by more than 50 milliseconds

(pNN50). Geometric features include the heart rate variability

index (HRVi) which is the number of inter-beat intervals

divided by the height of the histogram of all IBIs. Also, we

perform triangular interpolation on the IBI’s histogram and

calculate the difference in milliseconds between the two angles

of the base of the triangle (TINN).

With regards to frequency analysis, we quantify fluctuations

of the IBI times series by calculating the power spectral

density (PSD), i.e., the distribution of variance as a function

of frequency. To do so we used three approaches, namely,

Welch, Lomb-Scargle periodogram and Autoregression, which

are commonly used for frequency analysis for heart rate

variability [23]. Then PSD is divided in to 3 bands: very low

frequency (VLF), 0.0033–0.04 Hz; low frequency (LF), 0.04–

0.15 Hz; and high frequency (HF), 0.15–0.4 Hz. In this work

TABLE I: Number of Features Extracted from 5 Modalities and
Related Sampling Rates.

Modality No. of Features Sampling Rate (Hz)

Heart Rate 120 125Hz (ECG)
Pulse Rate 9 62.5Hz (PPG)
PWTT 5 N/A
Accelerometer 137 15.625Hz
Skin Temperature 10 0.1Hz

we used frequency domain features based on the normalized

values of LF, normalized values of HF and LF/HF ratio.

Frequency domain features are dealing with signal power

distributed only in the frequency domain. The signal however

can be also be examined in the time-frequency domain. Sim-

ilarly to frequency-domain analysis, time-frequency analysis

quantifies VLF, LF, and HF related measures. However, to

achieve this analysis we use windowed versions of Lomb-

Scargle periodogram, Autoregression and wavelet transforms

which are explained in [27].

We note that heart rate signal may contain non-linear

components. So, we further perform non-linear analysis to

extract such features. Concretely, we capture sample entropy

(sampen) which quantifies the signal’s complexity. Also, we

perform Detrended Fluctuation Analysis (DFA) based on

the concept that a system or a shape can be decomposed

into smaller pieces where each piece resembles one another

but on different scales. So, DFA analysis finds self-similar

properties in non-stationary time series. Another non-linear

component comprises the coefficients of Poincare plot (SD1,

SD2, SD1/SD2). Poincare plot is a plot of IBIs versus the

previous IBIs which captures the self-similarities in the signal.

It assumes that the current IBI is affected by the previous one.

An ellipse is fitted with its centre at the mean of the data. SD1

is the standard deviation over the minor axis of the ellipse and

SD2 the standard deviation over the major axis.

C. Classification Mechanisms

In this paper, we use 3 standard classifiers to automatically

recognize 8 recorded moods namely, i) k-Nearest Neighbour
(k-NN), ii) Decision Tree (DT) and iii) Ensemble approach

(in particular Bagged Ensembles of Decision Trees (BE-DT))

[28]. As detailed in Section IV, all of these 8 moods are

discretized into 5 categories in equal proportions. Categorical

mood data is used as ground truth for evaluating the mood

recognition framework. We benchmark these classifiers against

two baselines, namely, personalized baseline (P-BL) and gen-

eralized baseline (G-BL). The P-BL is calculated by taking

the most frequent class or intensity of each mood for each

individual and dividing the number of occurrences of that class

with the total number of each individual’s data-points. The G-

BL is calculated by taking the most frequent class among all

the users, count the occurrences of that class and divide with

the total number of all data-points.

D. Experimental Results

We evaluate the MRS using two approaches.



TABLE II: Classification Results in Accuracy for 8 Individual Moods Using Personalized and Generalized approaches. BLD is the
Difference Between Baselines (P-BL or G-BL) and the Best Algorithm (in Bold).

Mood Personalised Generalized

kNN DT BE-DT P-BL BLD (rank) kNN DT BE-DT G-BL BLD (rank)

Excited 0.6420 0.5625 0.6648 0.4986 0.1662 (3) 0.4886 0.5284 0.5114 0.4414 0.0870 (7)
Happy 0.6818 0.6477 0.7500 0.5795 0.1705 (2) 0.5795 0.5511 0.6477 0.5856 0.0621 (8)
Calm 0.5455 0.6080 0.6023 0.5493 0.0587 (7) 0.5341 0.5057 0.5398 0.4414 0.0984 (6)
Tired 0.6080 0.5511 0.6875 0.5095 0.1780 (1) 0.5000 0.5057 0.4886 0.3694 0.1363 (3)
Bored 0.6023 0.6420 0.6534 0.5014 0.1520 (4) 0.5909 0.5682 0.5909 0.4054 0.1855 (2)
Sad 0.7670 0.6818 0.7727 0.6551 0.1176 (6) 0.6705 0.7159 0.7670 0.5676 0.1994 (1)
Stressed 0.6705 0.6193 0.6989 0.5583 0.1406 (5) 0.5852 0.5625 0.6307 0.4955 0.1352 (4)
Angry 0.7727 0.7727 0.8182 0.7925 0.0257 (8) 0.7273 0.6648 0.7955 0.6757 0.1198 (5)

Average 0.6612 0.6356 0.7060 0.5805 0.1255 0.5845 0.5753 0.6214 0.4977 0.1237

a) Personalised Models: 8 mood models are separately

trained for all 4 users individually resulting in a total of

32 models. These models are then evaluated using a leave-

one-out cross-validation protocol. Table II shows the average

classification accuracy using various algorithms.

b) Generalized Models: 8 mood models are trained

for all users combined. All of these models are separately

evaluated using a leave-one-participant-out cross-validation

approach. Since we are testing for generalization, a random

k-fold cross-validation approach is therefore not appropriate

in this setting as some folds might contain samples from the

same user in both train and test sets. Table II shows the average

accuracy for all moods using various classification algorithms.

Our results in Table II show that all models perform better

than the baseline which indicates the potential of our models

to predict the mood of different users. However, personalized

models work better than generalized ones on average. Also, the

Bagged Ensembles of Decision Trees classifier has a higher

accuracy compared with the rest of the algorithms in both

the personalized and generalized models. The most predictable

mood, in terms of classification accuracy of the personalized

model, is Anger followed by Sadness, Happiness, Stress,

Tiredness, Boredom and the least is Calmness. However,

the most predictable in terms of accuracy difference from

the baseline is Tiredness followed by Happiness, Excitement,

Boredom, Stress, Sadness, Calmness and the least is Anger.

Concerning the generalized model, Anger is the most pre-

dictable as well followed by Sadness, Happiness, Stress, Bore-

dom, Calmness, Excitement and Tiredness. However, the most

predictable in terms of accuracy difference from the baseline

is Sadness, Boredom, Tiredness, Stress, Anger, Calmness,

Excitement and Happiness. These results suggest that different

people perceive their moods in a relatively different manner.

For example, Happiness is very predictable in the individual

models but not so much in the generalized case. The opposite

happens with sadness where the generalized models perform

better compared with the personalized models.

Even though our accuracies are always higher than the

baseline a larger study is required to confirm the significance

of our results. Since we are dealing with the perceived intensity

of each mood, each individual had their own internal model

of annotating the ground truth which is evident in the overall

Fig. 4: Summarized mood results in a box plot for the employer.

predictability of the Generalized models.

Figure 4 shows the average self-reported moods for all

participants over the course of the study. However, in practice,

instead of using the ground truth to create this plot we would

use the predictions over a given interval. The employer can use

this information to understand the general feeling of the work-

environment at any given time without explicitly asking any

employees. Based on this information, the employer can take

decisions to increase positive (e.g. happiness) and reduce the

negative moods of the employees (e.g. stress and tiredness).

VI. CONCLUSION AND FUTURE WORK

In this paper we presented our vision for a fully automated

mood recognition system that is applicable in the work en-

vironment to benefit employees’ health and productivity. We

made use of the SilmeeTM device to capture physiological and

accelerometer data to recognize 8 different types of perceived
moods every 2 hours, at 5 intensity levels.

Our initial results are promising as our classifiers perform

better than the baseline of always choosing the majority class.

This motivates us to continue our research work with a large-

scale user trial to verify and improve our results. A larger

dataset will effectively provide more representative mood data

at all intensities thereby mitigating problems associated with

classification overfitting. Also, we will experiment with more



advanced machine learning algorithms, including regression,

and focus on feature engineering, feature extraction and feature

selection to improve the system’s overall performance. Finally,

we will focus on the feedback to the employees and the

employer ensuring that individuals’ privacy is maintained.

In this study we did not consider sensor data from users’

smartphone which can also be used for mood prediction.

Furthermore, we plan to investigate whether environmental

factors play any role in employees mood.

For a model building perspective, collecting ground truth

at 2 hour intervals may be challenging. To address this, we

are also interested in experimenting with hybrid models i.e.,

use a generalized model to make predictions until enough

data points are collected for each individual followed by

personalizing individual models. Additionally, we want to

embed high level activities such as taking breaks, making

coffee and working in our system in order to enhance its

predictive capabilities; as such employ contextual information

to improve these models [29]. These can also be analyzed in a

sequential manner by building rule hierarchies and establishing

personalized hierarchical mood models [30]. A potential future

avenue would be to investigate the commuting patterns of

individuals and how they affect their mood in the working

environment. It would also be interesting to discover which

features predict (or possibly correlate with) which mood and

provide personalized feedback based on them. For example, if

features from accelerometer are selected for happiness, whilst

also utilizing some high level activity recognition output, we

can infer whether specific activities or the lack of activities

result in a specific mental state.

The applicability of the introduced mood prediction frame-

work in different work environments, using either smartphones

or wearable devices (or both), and the relations between

different moods are further interesting research questions.
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