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ABSTRACT

Java is becoming the main software platform for consumer and em-
bedded devices such as mobile phones, PDAs, TV set-top boxes,
and in-vehicle systems. Since many of these systems are memory
constrained, it is extremely important to keep the memory footprint
of Java applications under control.

The goal of this work is to enable the execution of Java appli-
cations using a smaller heap footprint than that possible using cur-
rent embedded JVMs. We propose a set of memory management
strategies to reduce heap footprint of embedded Java applications
that execute under severe memory constraints. Our first contribu-
tion is a new garbage collector, referred to as the Mark-Compact-
Compress (MCC) collector, that allows an application to run with
a heap smaller than its footprint. An important characteristic of
this collector is that it compresses objects when heap compaction
is not sufficient for creating space for the current allocation re-
quest. In addition to employing compression, we also consider a
heap management strategy and associated garbage collector, called
MCL (Mark-Compact-Lazy Allocate), based on lazy allocation of
object portions. This new collector operates like the conventional
Mark-Compact (MC) collector, but takes advantage of the observa-
tion that many Java applications create large objects, of which only
a small portion is actually used. In addition, we also combine MCC
and MCL, and present MCCL (Mark-Compact-Compress-Lazy Al-
locate), which outperforms both MCC and MCL.

We have implemented these collectors using KVM, and performed
extensive experiments using a set of ten embedded Java applica-
tions. We have found our new garbage collection strategies to be
useful in two main aspects. First, they reduce the minimum heap
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size necessary to execute an application without out-of-memory ex-
ception. Second, our strategies reduce the heap occupancy. That is,
at a given time, they reduce the heap memory requirement of the
application being executed. We have also conducted experiments
with a more aggressive object compression strategy and discussed
its main advantages.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storage management

General Terms

Algorithms, Languages

Keywords

Java Virtual Machine, garbage collection, heap, memory compres-
sion

1. INTRODUCTION
The market for mobile devices and phones is continuing to in-

crease at a rapid rate. For example, the handheld mobile device
market in the U.S. is currently increasing at an annual rate of 22% [9].
In contrast to the PC market, several products and companies vie
for this market share. Since the ability to support dynamic soft-
ware content is a major factor in determining the success of mobile
devices, many of the mobile device manufacturers are increasingly
adopting Java technology. A recent report projects that Java will be
the dominant terminal platform in the wireless sector, being sup-
ported by over 450 million handsets in 2007, corresponding to 74%
of all wireless phones that will ship that year [31].

Using the Java technology on personal information devices has
several important benefits [5]. First, Java is cross-platform compat-
ible. As a result, Java code can run smoothly without modification
on a wide range of devices. Such cross-platform compatibility is
especially important for the diverse mobile device market that is
shaped by a variety of devices executing different operating sys-
tems. Second, Java enhances user experience by supporting rich
GUI components and by providing dynamic downloading capabil-
ity. Further, Java security model allows users to run these applica-
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tions on their devices safely. Finally, Java has a very mature de-
veloper community. The developer talent needed for Java devices
already exists and is readily available.

Memory Problem. However, there exist several challenges
in supporting Java applications in mobile devices. For example,
the memory space and energy supply of mobile devices impose an
entirely different set of constraints as compared to high-end Java
based environments. Many mobile devices have stringent mem-
ory requirements as memory has severe implications on the cost,
form factor, and energy consumption of the device. The budget
for the memory has a significant impact on the overall cost of a
device. For example, currently, a Palm m130 PDA with an 8MB
memory costs $199 as compared to $299 cost for a similar config-
uration with a 16MB memory [7]. Similarly, as compared to the
base price of $99 for a Palm Zire PDA with 2MB memory, upgrad-
ing its memory to 8MB adds an additional $59 [1]. In addition to
the cost factor, a larger memory also demands a larger form factor.
In fact, many cell phone companies need to resort to more costly
packaging techniques to incorporate larger memories in a smaller
space. A less expensive solution would be to reduce the memory
demand through application tuning and optimization [32]. Further-
more, the reduction in memory requirements for a single applica-
tion can be exploited in a multiprogrammed environment to support
more concurrent applications. Finally, the larger the memory the
more the energy demand (in both active and idle states) [29]. Due
to these underlying reasons, many low-end mobile devices such
as cell phones (e.g., Casio CdmaOne C452CA [2]) typically sup-
port less than 1MB of memory, of which the Java Virtual Machine
(JVM) may have access to a even smaller portion.

The goal of this work is to enable the execution of Java appli-
cations using a smaller heap than that possible using current em-
bedded JVMs. The memory requirement of a Java application is
mainly shaped by the heap space required for executing the appli-
cation. Existing techniques to reduce the heap space requirement
include reducing the number of classes to be loaded (when classes
are managed in the heap), using memory efficient data structures
[40], early retirement of objects through last use analysis [35], and
tuning the garbage collector (e.g., using Mark-Compact collector
instead of Mark-Sweep collector) [41]. In this work, we explore
the use of compression and lazy allocation combined with object
partitioning as means to reduce the heap space required for execut-
ing a Java application. Reducing heap footprint can minimize the
amount of active memory maintained throughout the execution and
can enable the reuse of this space by another concurrent application
or enable energy savings by powering down the unused memory
portions. Furthermore, heap footprint reduction can also result in
a smaller maximum heap size required to execute the application
successfully. As a consequence, it may be possible to increase the
number of applications that execute without out-of-memory excep-
tion for a given heap size.

Compression has been a potent technique for reducing memory
requirements in different contexts [21, 17, 22, 26, 43]. In this paper,
we present a technique that compresses objects in the heap when
the current execution cannot complete normally within the given
heap size. Specifically, we tune the garbage collector (GC) already
present in the embedded JVM to support compression. Normally,
the GC is invoked to reclaim the space occupied by garbage, i.e.,
the objects that are no longer needed by the application. Mark-
Sweep (MS) and Mark-Compact (MC) are two garbage collection
algorithms incorporated within Sun’s embedded JVM (called KVM
[4]), which we use in this work as a reference point. The MS col-
lector has two phases [24, 42]: mark phase and sweep phase. Dur-
ing the mark phase, the collector traverses the reference tree and

marks all the objects that are reachable from the roots. In the fol-
lowing sweep phase, the collector scans the whole heap and puts
all unmarked objects into a free-table. Since this collector does not
move objects after the collection, live objects and free blocks are
interleaved with each other. After several allocations and collec-
tions, the heap may become so fragmented that each free block is
too small to serve any object allocation request. The total size of
the free blocks, however, can still be larger than the requested size.
This is called the “fragmentation problem” [24, 42], due to which
an application running with the MS collector usually needs larger
heap space than its footprint.1

The MC collector addresses the fragmentation problem by sup-
porting compaction. It also has two phases [24, 42]: mark phase
and compact phase. The mark phase is the same as that of the MS
collector. During the compact phase, the MC collector slides all
the marked objects to one end of the heap (this operation is called
the “compaction”). The free blocks, on the other hand, slide to the
other end of the heap and are combined into one large free area.
Since the MC collector moves objects, it needs to update each ref-
erence to an object that has been moved. The MC collector allows
an application to run properly with the heap space no smaller than
its footprint, which is determined by the behavior of the applica-
tion.

Our Solution. In this paper, we propose a set of memory man-
agement strategies to reduce heap footprint of embedded Java ap-
plications that execute under severe memory constraints. Our first
contribution is a new garbage collector, referred to as the Mark-
Compact-Compress (MCC) collector, that allows an application to
run with a heap smaller than its footprint. The proposed collector
works in two phases: mark phase and compact-compress phase. In
the mark phase, the collector not only marks the live objects, but
also counts their sizes. Based on the total size of the live objects,
it calculates the total size of the free space. If this size is larger
than the object to be allocated, the MCC collector compacts the
heap like a normal MC collector. On the other hand, if the size
of the free space is smaller than that of the object to be allocated,
the collector compresses all the live objects to increase available
heap space. This introduces the overhead of compression and sub-
sequent decompression when accessing a compressed object. How-
ever, since the peak heap demand occurs only during a very short
period of execution, the compression overhead is not incurred fre-
quently. Further, due to the locality of object accesses, the cost of
decompression is amortized over multiple object accesses. Finally,
many objects (or parts of them) are not even accessed after they are
compressed since they have reached their last use (note that such
objects may still be live from the collector’s perspective and cannot
be marked as garbage), and consequently, they are collected before
any decompression.

In addition to employing compression, we also consider a heap
management strategy and associated garbage collector, called MCL
(Mark-Compact-Lazy Allocate), based on “lazy allocation” of “ob-
ject portions”. This new collector operates like the MC collector,
but takes advantage of the observation that many Java applications
create large objects, of which only a small portion is actually used.
For example, a program may allocate a character array as the buffer
when reading the user’s input. Since the length of the input data is
unknown at the programming time, programmers typically allocate
a buffer large enough to hold the longest possible input data that can
be expected from the user. However, in most cases, the actual input
data may be short and the space in the buffer may be wasted. To

1In this paper, we define the “footprint” of an application as the
maximum total size of the live objects that are in the heap simulta-
neously.
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reduce the heap memory requirements for such programs, we break
down each large array object into a set of smaller subobjects. Each
subobject is “lazily allocated” upon its first write access. Therefore,
the subobjects that do not contain any element actually used by the
program are not heap-allocated at all, thereby saving heap space. It
should be noted that, in our implementation, both breaking down
large objects into subobjects and lazy allocation of subobjects are
internal to JVM and transparent to the Java application being exe-
cuted. In addition, we also combine MCC and MCL, and present
MCCL (Mark-Compact-Compress-Lazy Allocate), which outper-
forms both MCC and MCL.

We implemented the proposed heap management strategies em-
ploying compression and lazy allocation using KVM [4], and com-
pared them to two garbage collectors (MS and MC) currently used
in KVM. Our experimental evaluation using a set of ten Java ap-
plications suitable for handheld devices and a zero-removal com-
pression technique [34] shows that one of the proposed collectors
reduces the peak heap demand by 35% on the average (ranging
from 16% to 54%) over the MC collector. The consequent per-
formance degradation due to compression and decompression was
observed to be less than 2% on the average, over the MC collec-
tor using the same heap space. In addition, we show how our re-
sults change when we eliminate handle-based object accesses and
present a garbage collector (called MCCL+) based on this. The
heap management techniques proposed in this paper are very gen-
eral and can be applied to other Java virtual machines and garbage
collectors and can make use of different compression algorithms
where available.

Roadmap. The rest of this paper is organized as follows. Sec-
tion 2 gives details of our implementation. Section 3 introduces
our Java benchmarks and experimental platform. Section 4 gives
detailed experimental results. Section 5 investigates the impact of
aggressive object compression (in comparison to the need based
compression). Section 6 studies the benefits of eliminating object
handles. Section 7 discusses potential research directions on this
topic. Section 8 discusses related work. Finally, Section 9 con-
cludes the paper by summarizing our major findings.

2. IMPLEMENTATION DETAILS
In this section, we present the details of our base implementa-

tion, which includes support for indirect object references, object
compression and decompression, breaking down large objects into
subobjects, and lazy allocation. Later in the paper we also present
our enhanced implementation which eliminates object handles.

2.1 Indirect Object References
To facilitate compression/decompression of objects, in our base

implementation, references to Java objects are implemented using
handles (see Figure 1). Specifically, each object has a handle in
the handle pool. Each handle has two components: a pointer to
instance data and a pointer to class data in the class area. An object
reference is actually a native pointer to a handle in the handle pool.
An advantage of this scheme is that, when an object is moved, it
eliminates the necessity of updating every reference to this object,
which may be scattered in different locations in the runtime data
area. The main drawback is that each access to an object’s instance
data requires dereferencing two pointers.

In our implementation, allocation of a Java object involves two
steps: (1) allocate a handle in the handle pool; (2) allocate the heap
space for the data of the object. When the handle pool is used up,
the GC is invoked. The handles of the objects that have been col-
lected are returned to the handle pool. If the free space in the handle
pool is smaller than a given threshold (T bytes) after the collection,

Handle Pool

Class Area

Heap

Pointer to Instance Data

Pointer to Class Data
Instance Data

Class Data

Object Reference

Figure 1: Referencing an object through a handle. In this im-

plementation, the allocation of an object involves two steps: (1)

allocate a handle in the handle pool; (2) allocate the heap space

for the data of the object. In the MC collector, the handle pool is

a part of the permanent space (which is not garbage collected).
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Figure 2: Expansion of the permanent space. (a) Before

garbage collection. (b) After garbage collection — the live

objects are compacted into one end of the heap, and the free

blocks are slided to the other end and are combined into one

large free area. (c) Expanding the permanent heap space.

the handle pool is expanded by C bytes. The expansion of the
handle pool is to avoid frequent garbage collections due to small
handle pool size. The threshold, on the other hand, is set to prevent
the handle pool from growing too fast. Based on our experience, C
and T are set to 1/64 and 1/32 of the heap size, respectively. Since
each handle has 8 bytes, the total size of the handle pool is bounded
by 8M +T +C, whereM is the maximum number of live objects
in the heap.

Since the handles cannot be moved, the handle pool is consid-
ered as part of the permanent space. The permanent space is the
memory space that contains the data whose lifetimes last until the
application terminates. The permanent space is never garbage col-
lected in this study. This space expands in 2KB chunks (the default
value in KVM) when it is used up. Expansion of the permanent
space involves garbage collection and, if necessary, compacting (or
compressing) live objects to one end of the heap, as shown in Fig-
ure 2. It should be noted that, in the implementation of the MS col-
lector, there exists no separate permanent space since this collector
does not compact the heap. All the permanent data are allocated
in the heap and scanned by the collector, although they are never
collected.

2.2 Compression
MCC collector compresses objects when compaction cannot pro-

vide enough space for the new object. In principle, our approach
can work with any compression/decompression algorithm. How-
ever, for the best results, a compression/decompression algorithm
should satisfy three requirements: (1) the compressor should have a
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Size

0

Type

0: unmarked; 1: marked

0: uncompressed

Contents of the Object

Pointer to the Handle

162431

Type

0: unmarked; 1: marked

1: compressed

Compressed SizeBitmap

Extra Bitmap

Original Size Extra Bitmap

Pointer to the Handle

Non-zero Bytes of the Object

031 24 16

(a) (b)

Figure 3: (a) Format of an uncompressed object. (b) Format of

a compressed object. In both formats, the first 8 bytes (headers)

are used by garbage collector for management purpose. Each

bit in the bitmap in (b) corresponds to a byte of the object’s

data in the uncompressed format.

good compression ratio;2 (2) both compression and decompression
should be fast; and (3) neither the compressor nor the decompres-
sor should use a large working area. In this paper, we used a “zero
removal” compression scheme, which is based on the observation
that a large portion of memory locations manipulated by an applica-
tion contains only zeroes [34]. The uncompressed and compressed
object formats are shown in Figures 3(a) and 3(b), respectively.
In Figure 3(b), the first eight bytes of each object (i.e., the object
header) are not compressed and the compressed object contains a
bitmap and an array of non-zero bytes. Each bit in the bitmap corre-
sponds to a byte of the object’s data in the uncompressed format. A
0-bit indicates that the corresponding byte is all zero and this byte
is not stored in the compressed format. A 1-bit, on the other hand,
indicates a non-zero byte and that this byte is kept in the array of
non-zero bytes in the compressed format. Bits 16 through 23 of the
first word in the header are not used in the uncompressed format. In
the compressed format, however, they contain the first eight bits of
the bitmap. For an object whose size is larger than eight bytes, the
extra bits of the bitmap are stored right after the object’s “original
size” field. Following the bitmap is the array of non-zero bytes of
the object.

When our collector decides to compress objects, it scans the
whole heap and compresses each object that has not been com-
pressed so far. In our current implementation, only the object in-
stances and arrays that are created by the Java application are com-
pressed. The data structures internal to the implementation of JVM
remain uncompressed. In other words, for them, the compression
works in the same way as compaction. Figure 4 illustrates the heap
compression process. We maintain two pointers: source and tar-

get. Source points to the next object to be compressed (or to be
compacted, for the internal data structures), and target points to the
first free location in the heap.

Figure 5 shows the algorithm for compressing an object. An ex-
ample application of this algorithm is illustrated in Figure 6. Step 0
shows the state right before an object is to be compressed. Pointer
target points to the first free location; pointer source points to the
first byte of the object to be compressed. At step 1, pointer t is ini-
tialized to the location where the compressed object will be stored;
pointer s is initialized to the first byte to be compressed; and pointer
p is initialized to the first byte where the non-zero byte array will
be stored. The bitmap size is calculated using the size of the ob-
ject. At step 2, the first bit of the bitmap is set to 1 as the first
byte of the object (which is pointed to by s at step 1) is non-zero.
Since s < p, the byte pointed to by s is temporarily stored in the

2“Compression ratio” is the ratio between the size of the original
data and the size of the compressed data.
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Figure 4: Compressing the heap. source: the next object to

be compressed (or to be compacted, for the internal data struc-

tures). target: the first free location in the heap. (a) Initial state.

(b) After compressing O1. (c) After compressing O1, O2, and

O3. Note that, after compressing each object, both source and

target are updated.

buffer. Since this byte is non-zero, p is increased by 1. At step 3,
s is now pointing to a zero byte. Therefore, at the next step, the
third bit of the bitmap is set to 0 and p is not increased. At step 6,
s catches p, and from this point on, no more bytes are placed into
the buffer. Instead, all the non-zero bytes are copied to the loca-
tion pointed to by p. At the last step, all the bytes in the buffer are
copied to their destination locations. In our implementation, we
used unmarked objects (whose addresses should be above that of
the object being compressed) to hold the buffer. Since the buffer
is accessed sequentially, the space allocated for the buffer does not
need to be contiguous. Several unmarked objects can be chained up
using links in case that the buffer becomes too large to be accom-
modated in a single unmarked object. It should be noted that, for
most of the objects, the distance between the pointers source and
target (Figure 4) is so large that even the initial value of p is smaller
than s. Therefore, the buffer is rarely used during the compression
process. A rare case occurs when the compressed size of the object
is larger than its original uncompressed size. This does not happen
frequently (on average, only 0.3% of the objects in our applications
caused such an expansion) and does not impact the overall memory
consumption significantly. However, it still needs to be addressed
since there may be no space for the object to expand. In our im-
plementation, the compressor checks if the pointer p exceeds the
starting address of the next object whenever p is increased. If this
happens, the compressor stops compression and uses the data in the
buffer and the bitmap to recover the object.
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byte heap[];
void compress(int source, int target)
f

s = source; t = target;
p = t + dlength of the objet=8e;
while(s - source < length of the objet) f

if(h[s]==0) f
set the current bit in heap[t] to 0;

g else f
set the current bit in heap[t] to 1;
if(p�s)

heap[p]=heap[s];
else

append heap[s] to the buffer;
p++;

g
s++;
increase t if necessary

g
copy all the bytes from the buffer
to the locations beginning from t;

g

Figure 5: Zero-removal compression algorithm. This algo-

rithm compresses a single object. To show the core logic of our

algorithm, implementation details are omitted.

2.3 Decompression
If a compressed object needs to be accessed, the decompressor

is invoked. Whenever an object is accessed, the virtual machine
checks if the object has been compressed. For this purpose, we
use the highest order bit of the pointer to the instance data of each
handle as a flag. For an uncompressed object, this bit is zero since
current JVMs for memory constrained devices do not use an ad-
dress space larger than 2GB. When an object is compressed, we set
this bit to 1. To access an object, the virtual machine first loads the
pointer to the instance data from the handle into a register (the cost
for this instruction is captured in our experimental results). After
that, the virtual machine checks if the first bit of the register is zero.
If the bit is zero, the object does not need to be decompressed. Oth-
erwise, the object needs to be decompressed first. This checking
requires two instructions: one comparison and one branch. Note
that the comparison instruction uses the contents of the register and
does not involve any extra main memory access, and that the branch
instruction is highly predictable (since most objects are not com-
pressed). Therefore, one can expect the overhead associated with
checking the compression status of objects to be small.

The decompression process is illustrated in Figure 7 and our de-
compression algorithm is given in Figure 8. The decompressor first
allocates a free block that is large enough to hold the object to be
accessed in uncompressed format. If we fail to allocate a free block
successfully, the GC is invoked. The decompressor, if successful in
allocating a free block, decompresses the object into the block. It
also updates the pointer in the handle. The object in the compressed
format, however, is discarded and is collected in the next invocation
of the GC.

Decompression also happens during the mark phase of garbage
collection. In the mark phase, the collector traverses the reference
tree. When the collector visits a compressed object, it first checks
the object’s class data to see if this object contains any reference
fields. If this is the case, the collector decompresses the object to
retrieve the contents of the reference fields. Note that the decom-
pression in the mark phase is different from the decompression that
happens during the application execution in that the former does
not keep the data of the decompressed object. Specifically, when

s
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Figure 6: Example compression. X: “don’t care” bit. For il-

lustrative purposes, each byte is assumed to have only 2 bits.

Pointer target points to the first free location; pointer source

points to the first byte of the object to be compressed. At step 1,

pointer t is initialized to the location where the compressed ob-

ject will be stored; pointer s is initialized to the first byte to be

compressed; and pointer p is initialized to the first byte where

the non-zero byte array will be stored.

286



������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

Handle

O1

... ...

... ...

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

Handle

... ...

... ...

O1

��

�
�
�
�

Decompressed Object

Compressed Object

Free Space

Garbage

(a) (b)
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byte heap[];
void decompress(int source, int target)
f

b = source; // set b to the first byte of the bitmap
s = source + dlength of the objet=8e;

// set s to the first non-zero byte
t = target; // set t to the first byte of the target location
while(t - target < length of the objet) f

if(current bit is 0)
heap[t++] = 0;

else
heap[t++] = heap[s++];

increase b if necessary
g

g

Figure 8: Decompression algorithm. This algorithm is invoked

at object access time and decompresses a single object. To

show the core logic of our algorithm, implementation details

are omitted.

the collector encounters a compressed object that has at least one
reference field, the collector scans the object and decompresses it
field by field. When each field is decompressed, the collector first
checks to see if this field contains a reference and, if so, marks
the referenced object. The decompressed field is discarded imme-
diately. Therefore, the decompression in the mark phase does not
involve any allocation.

2.4 Breaking Down Large Objects
It is not efficient to decompress a whole object when only a few

fields of the object are accessed. This is particularly true when
the object in question is very large. Decompressing the whole ob-
ject not only increases memory requirements, but also slows down
the application due to longer decompression time. To address this
problem, we propose to break large objects into smaller “subob-
jects”, as shown in Figure 9. Specifically, an object whose size
is larger than a given threshold (1.5KB in this work) is broken
down into a set of smaller subobjects (each with a maximum size
of 1KB). Each subobject is compressed and decompressed inde-
pendently. It should be noted that, since Java object instances are
not likely to be larger than 1KB, in this work, only Java arrays are
considered to be broken down into smaller portions.

In our implementation, upon accessing an element of a Java ar-
ray, the virtual machine first checks if this array has been broken
down. If this is the case, the virtual machine uses the index of the

0

... ...

Main Object

0: unmarked; 1: marked

Type Size

Pointer to the Handle

Array Length

Subobject 1 ptr

Subobject 2 ptr

Subobject n ptr

Subobject 2

Subobject 1

Subobject n

... ...

Subobjects

31 24 16

0 (uncompressed)

Figure 9: Breaking down a large array into subarrays. In this

way, each subarray (subobject) can be allocated independently.

element and the size of the corresponding subobjects to calculate
the index of the subobject that contains the element and the intra-
subobject offset for the element. If the subobject is in compressed
format, JVM also invokes the decompressor to decompress the sub-
object.

2.5 Lazy Allocation
Our observation is that many Java applications do not access dif-

ferent portions of objects uniformly. That is, some fields are ac-
cessed much more frequently than the others. As a result, heap
memory can be saved if different portions of a given object are al-
located in an on-demand basis. In other words, it may be beneficial
if we do not allocate a portion of the object unless that portion is
actually accessed. Shaham et al. [35] studied a similar strategy at
the whole object level; that is, no heap space is allocated unless
the object is used. Our lazy allocation strategy differs from [35] in
two important aspects. First, instead of whole objects, we consider
different portions of objects; that is, our approach is finer granu-
lar. Second, unlike the approach in [35], our approach is entirely
transparent to the application execution. In order not to introduce
too much runtime overhead, we applied lazy allocation only to the
large arrays. In our implementation, when the bytecode “NEWAR-
RAY” is encountered, the allocator checks if the size of this array
is larger than a pre-set threshold. If this is not the case, the array
creation proceeds as usual. Otherwise (i.e., if this array needs to be
broken-down into subarrays), the allocator allocates a main object
for this array (see Figure 9). The subobjects (subarrays), however,
are not allocated at this time. Instead, the pointers to the subobjects
are set to null. When an element of such an array is later accessed,
the virtual machine checks to see if the pointer to the subobject
that contains that array element is null. If the pointer is null and
the current access is write, JVM allocates the heap space for the
subobject, sets each element in this subobject to the uninitialized
value (as defined in JVM specification [30]), and then updates the
value of the element that is being accessed. In other words, each
subobject is lazily created upon its first write access. A null pointer
indicates that the elements in the subobject have not been initial-
ized by the application since the array has been created. Therefore,
for each read access to a null subobject, JVM returns a pre-defined
uninitialized value according to the type of the element.

3. BENCHMARKS AND EXPERIMENTAL

SETUP
In this paper, we experimented with six different garbage col-

lection strategies listed in Table 1. The first two of these strate-
gies (MS and MC) are the default Mark-Sweep and Mark-Compact
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Breaking Down Lazy

Scheme Compaction? Compression? Reference Large Objects? Allocation?

MS
Mark-Sweep

No No Direct No No

MC
Mark-Compact

Yes No Direct No No

MCL
Mark-Compact-Lazy Allocate

Yes No Direct Yes Yes

MCC
Mark-Compact-Compress

Yes Yes Handle No No

MCCL
Mark-Compact-Compress-Lazy Allocate

Yes Yes Handle Yes Yes

MCCL+
Mark-Compact-Compress-Lazy Allocate

Yes Yes Direct Yes Yes

Table 1: The garbage collection strategies evaluated in this paper. The first two of these strategies (MS and MC) are the default

Mark-Sweep and Mark-Compact collectors, whereas the remaining ones are our strategies.

collectors, which are currently employed in Sun’s KVM [4, 6],
whereas the remaining ones are our strategies. These strategies
differ from each other in how they reference an object (direct or
handle based), whether they break down large objects into smaller
subobjects, or whether they employ lazy allocation. In the next sec-
tion (Section 4), we conduct an experimental evaluation of MCC,
MCL, and MCCL. The detailed discussion of MCCL+ will be pre-
sented later in Section 6. The important point to emphasize here is

that all our compression based collectors use compression only in

object allocation and only when it is not possible to continue execu-

tion without performing compression (as explained in Section 1). In

other words, we evaluate a need based object compression strategy.

Later in Section 5 we evaluate a more aggressive object compres-

sion strategy as well.

To evaluate different garbage collection strategies listed in Ta-
ble 1, we used a set of ten Java applications as benchmarks. These
benchmarks represent typical applications running on handheld de-
vices where memory budgets are very limited. Brief descriptions
of our benchmarks are given in Table 2. As can be seen, our bench-
mark suite includes utility applications as well as game programs.

Table 3 presents memory allocation data for these Java bench-
marks. For each benchmark, the second column of this table gives
the total numbers of Java objects allocated by the benchmark through-
out its execution (including both Java objects and arrays), and the
third column gives the average and maximum object sizes. The
fourth column shows the maximum size of the objects that are live
in the heap simultaneously, and the next column shows average
heap occupancy (i.e., the percentage of heap that is occupied by
live objects at a given time), when each benchmark is executed us-
ing the minimum heap size that allows it to run without an out-of-
memory exception. We can see that, even with the minimum heap
size that allows the benchmark to run, on the average (across all
benchmarks), only 65.57% of the heap is occupied at a given time.
Finally, the sixth column gives the overall execution time and the
last column shows the GC execution time (to obtain the numbers
in these last two columns, we executed each benchmark with the
minimum heap size that allows it to run without an out-of-memory
exception).

4. EXPERIMENTAL RESULTS

4.1 Reduction in Heap Space Demand
We expect our new garbage collection strategies to be useful in

two aspects. First, we expect our strategies to reduce the mini-
mum heap size necessary to execute an application without out-of-
memory exception. Second, our strategies reduce the heap occu-

pancy. That is, at a given time, our approach reduces the heap mem-
ory requirements of the application being executed. In this subsec-
tion, we provide experimental data to quantify these two benefits.

Table 4 gives the minimum heap sizes for each benchmark to
run without out-of-memory exception using different garbage col-
lectors. In this section, we mainly focus on MS, MC, MCL, MCC,
and MCCL, and postpone the discussion of MCCL+ to a later sec-
tion. The first part of this table (that is, the columns two through
seven) gives the absolute heap sizes in KBs, whereas the second
part gives the values (heap sizes) “normalized” with respect to that
of the MC collector. Our first observation from the results in Table
4 is that, compared to the MC collector, the MS collector requires
47.9% more heap space on the average (i.e., across all our bench-
marks). This is a direct result of the fragmentation problem. We
also observe that both lazy allocation (in conjunction with break-
ing large objects into smaller subobjects) and object compression
help reduce the applications’ heap memory requirements. More
specifically, on the average, MCL and MCC brought down the heap
memory requirements of our benchmarks by 9.5% and 10.8%, re-
spectively, with respect to MC (the average reduction with respect
to MS is around 40%). Combining them in MCCL results in even
more heap memory space savings (21% on the average). An excep-
tion is Sfmap, where MCC requires more heap memory than MC.
This is because of two main reasons. The first is that the handle
pool requires extra space. The second reason is that Sfmap allo-
cates many more large objects as compared to other benchmarks
in our experimental suite. As discussed earlier, when a Java ob-
ject is being decompressed, JVM has to maintain the object in both
compressed and uncompressed formats until the decompression is
completed. Holding a large object in both formats simultaneously
increases the pressure on the heap memory. Actually, this is one
of the motivations to break down large Java objects into smaller
ones. In fact, breaking down large objects enhances the effec-
tiveness of object compression for this benchmark. Specifically,
one can observe that although compression alone (MCC) does not
seem to be very useful for Sfmap, combining it with object break-
down (MCCL) brings an extra 27KB heap space saving over the
MCL collector. To summarize, our compression and lazy alloca-
tion based strategies reduce the minimum heap size demand of Java
applications; that is, they allow applications to execute with smaller
heap sizes.

We now analyze the second benefit of our strategies, namely,
reducing the heap occupancy during the course of execution. Fig-
ure 10 shows the total size of the live objects in the heap over time.
Only four benchmarks are shown here since the trends for other
benchmarks are similar to those presented here. We can observe
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Benchmark Description URL

Auction Client for online auction An example comes with MIDP 2.0 reference implementation [6]
Calculator Numeric calculator www.spruce.jp/freemidlets/
JBrowser WAP browser www.jataayusoft.com/
JpegView JPEG image renderer www.jshape.com/midp/index.html
ManyBalls Multithreaded game An example comes with MIDP 2.0 reference implementation [6]
MDoom 3D shooting game www.jshape.com/midp/index.html
PhotoAlbum Digital photo album An example comes with MIDP 2.0 reference implementation [6]
Scheduler Personal monthly scheduler holycow.tripod.co.jp/cooldownboy/
Sfmap Interactive digital map www.jshape.com/midp/index.html
Snake Game An example comes with MIDP 2.0 reference implementation [6]

Table 2: Java benchmarks used in our experiments. The second column gives a brief description, and the third column shows where

the benchmark can be found. Note that our benchmark suite includes utility applications as well as game programs.

Total Number Object Size Total Size of Live Execution GC

Benchmark of Allocated Average (Maximum) Objects in the Heap Time Time

Objects Maximum
Average

Maximum
(Seconds) (Seconds)

Auction 5123 39 (8492) 84596B 68.94% 96.08 4.85
Calculator 11250 26 (1036) 39824B 67.80% 65.94 2.19
JBrowser 16160 56 (12012) 229432B 72.37% 338.37 21.85
JpegView 10199 44 (8972) 86524B 88.88% 417.35 50.03
ManyBalls 2090 35 (1036) 35088B 77.19% 461.91 1.28
MDoom 1319 61 (16396) 126408B 40.98% 500.56 1.43
PhotoAlbum 3864 83 (4260) 54388B 55.26% 66.71 4.30
Scheduler 10042 66 (1036) 35464B 76.52% 253.09 5.77
Sfmap 6599 27 (2460) 166224B 57.90% 81.37 3.95
Snake 1776 29 (1036) 40072B 70.59% 68.96 1.53

Average: 6842 47 (5674) 89802B 65.57% 216.03 9.72

Table 3: Heap-related behavior of our benchmarks. The numbers in the second column include both Java object instances and

arrays. The third column gives the average and maximum object sizes. The fourth column shows the maximum size of the objects

that are live in the heap simultaneously, and the next column shows average heap occupancy when each benchmark is run using

the minimum heap size that allows it to run without out-of-memory exception (increasing the heap size reduces the percentage heap

occupancy). Execution times and garbage collection times are measured by running each benchmark with minimum heap size that

allows the benchmark to run without out-of-memory exception.

from this figure that peak of the heap memory demand does not
occur frequently and that each peak lasts for only a short period of
time. One can also see that, at a given time, our collectors reduce
the pressure on the heap space as compared to the MC collector.
Note that this reduction in heap occupancy might be important in
different contexts. For example, in a multiprogrammed environ-
ment, a reduction in heap space can allow other applications to uti-
lize the unused memory. Alternately, the unused memory parts can
be placed into a low power operating mode [14] to reduce memory
energy consumption. Quantifying the impact of heap space reduc-
tion from these two angles is in our future agenda.

4.2 Compression/Decompression Behavior
Analyzing the number of compressions and decompressions is

very important as it has a direct impact on performance (execu-
tion cycles). Table 5 gives the number of compressions and de-
compressions for each benchmark running with MCCL when the
entire execution is considered. Note that if the same object is com-
pressed (decompressed)N times, we counted it asN compressions
(decompressions). In these experiments, each application was run
with the minimum heap size that allowed it to execute without out-
of-memory exception (as shown in the sixth column of Table 4).
Comparing the number of compressions (the second column in Ta-
ble 5) with the total number of created objects (the second column
in Table 3), one can observe that only a small percentage of our
objects were compressed (9.1% on the average). This is a direct re-
sult of our compression policy: we compress objects only when we
really need to compress them; that is, at the peaks of the heap space
demand. And, since such peaks do not occur very frequently and

each peak lasts for only a short period of time, we do not perform
frequent object compressions. We also observe from Table 5 that
only a small percentage (22.36% on the average) of all compressed
objects are decompressed. This is an interesting result and indi-
cates that most compressed objects are not used subsequently by
the application, although they are still live at the moment they are
compressed (from the GC’s perspective). The last three columns of
this table give the number of objects that have been decompressed
only N (N > 0) times. We find that no object has been decom-
pressed more than three times. We can also see from these re-
sults that most of our objects have been decompressed only once or
twice. In fact, among the objects that have ever been decompressed,
an overwhelming majority (82.5%) have been decompressed only
once. That is, after they have been compressed, they have been
decompressed only once, and subsequently (after, possibly, several
accesses), they have become garbage. Thus, the numbers in these
last three columns explain the low percentage values shown in the
column four of Table 5.

It is also important to compare MCC and MCCL from the per-
spective of the number of object compressions and decompres-
sions. Such a comparison is given in Table 6, which shows the same
information as in Table 5, except that the applications are run here
using the minimum heap size that allows the MCC collector to ex-
ecute without an out-of-memory exception (in contrast, the results
in Table 5 were obtained by running applications using the mini-
mum heap size that allows the MCCL collector to execute without
an out-of-memory exception). The results given in Table 6 clearly
indicate the importance of lazy allocation and breaking down large
objects into subobjects. Specifically, using MCCL instead of MCC
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Minimum Heap Size (KB) Normalized against MC (%)

Benchmark MS MC MCL MCC MCCL MCCL+ MS MCL MCC MCCL MCCL+

Auction 128 83 76 72 62 58 154.2 91.6 86.8 74.7 69.9
Calculator 55 40 40 34 34 32 138.5 100.0 85.0 85.0 80.0
JBrowser 260 226 196 195 164 157 115.0 86.7 86.2 72.6 69.5
JpegView 127 85 85 79 77 64 149.4 100.0 92.9 90.6 75.3
ManyBalls 57 35 35 31 31 29 162.9 100.0 88.6 88.6 82.9
MDoom 178 124 71 114 76 57 143.5 57.3 91.9 61.3 46.0
PhotoAlbum 96 55 55 50 50 46 174.5 100.0 90.9 90.9 83.6
Scheduler 56 37 36 32 32 31 151.4 97.3 86.5 86.5 83.8
Sfmap 292 162 118 175 91 78 118.5 72.8 108.0 56.2 48.1
Snake 72 42 42 35 35 33 171.4 100.0 83.3 83.3 78.6

Average: 132 90 75 81 65 59 147.9 90.5 89.2 79.0 65.6

Table 4: Minimum heap sizes to execute benchmarks without an out-of-memory exception. The first part of this table (that is, the

columns two through seven) gives the absolute heap sizes in KBs, whereas the second part gives the values (heap sizes) “normalized”

with respect to that of the MC collector.

Total Decompressions Number of Objects

Benchmark Number Total % of Total DecompressedN times

of Comp. Number Comp. N = 3 N = 2 N = 1

Auction 583 183 31.39% 4 22 127
Calculator 226 46 20.35% 0 5 36
JBrowser 1393 431 30.94% 0 135 161
JpegView 1725 433 25.10% 0 23 387
ManyBalls 264 83 31.44% 0 18 47
MDoom 0 0 N/A 0 0 0
PhotoAlbum 235 54 22.98% 0 0 54
Scheduler 172 36 20.93% 0 0 36
Sfmap 1431 92 6.43% 0 0 92
Snake 234 38 16.24% 0 0 38

Average: 626 140 22.36% 0.4 20.3 97.8

Table 5: The number of compressions and decompressions us-

ing MCCL. Each benchmark was run with the minimum heap

size that allowed it to complete without an out-of-memory ex-

ception (see the sixth column of Table 4). The fourth column

gives the number of decompressions as a percentage of the

number of compressions. The last three columns indicate that

most of the Java objects are decompressed only once or twice.

results in a 59% (64%) reduction in the number of compressions
(decompressions).

Since MCCL is the most effective of all the strategies evaluated
so far in reducing the heap memory demand, we wanted to study
its behavior more carefully. Figures 11 and 12 present the heap
memory usage of our benchmarks under the MCCL collector. Each
benchmark was run using three different heap sizes: (1) the mini-
mum heap size required by MCCL (the sixth column of Table 4),
(2) the minimum heap size required by MC (the third column of
Table 4), and (3) 150% of the size in (2). We use heap size (2)
basically to compare the behavior of MCCL with MC in the course
of execution, and (3) to demonstrate the behavior of MCCL when
there exist plenty heap space. Each graph shown in Figure 11 and
Figure 12 has three curves, labeled as “Overall”, “Live,” and “Com-
pressed.” “Overall” represents the heap usage at a given point dur-
ing execution, i.e., the total size of the live objects (including both
compressed and uncompressed objects) and garbage in the heap. It
should be noticed that each drop in the “Overall” curve indicates
an invocation of the GC. The curve labeled “Live” corresponds to
the total size of live objects, including both compressed and un-
compressed.3 Finally, the curve labeled “Compressed” represents

3One may expect that an increase in Live curve should always be
accompanied with an increase in the Overall curve in Figures 11
and 12. However, this is not true due to the allocation of stack

Total Decompressions Number of Objects

Benchmark Number Total % of Total DecompressedN times

of Comp. Number Comp. N = 2 N = 1

Auction 530 131 24.72% 0 131
Calculator 226 46 20.35% 5 36
JBrowser 939 261 27.80% 0 261
JpegView 1926 867 45.02% 228 411
ManyBalls 264 83 31.44% 18 47
MDoom 365 207 56.71% 14 179
PhotoAlbum 235 54 22.98% 0 54
Scheduler 172 36 20.93% 0 36
Sfmap 1429 90 6.30% 0 90
Snake 234 38 16.24% 0 38

Average: 632 181 28.69% 26 128

(a) MCC

Total Decompressions Number of Objects

Benchmark Number Total % of Total DecompressedN times

of Comp. Number Comp. N = 2 N = 1

Auction 530 131 24.72% 0 131
Calculator 226 46 20.35% 5 36
JBrowser 939 261 27.80% 0 261
JpegView 0 0 N/A 0 0
ManyBalls 264 83 31.44% 18 47
MDoom 0 0 N/A 0 0
PhotoAlbum 235 54 22.98% 0 54
Scheduler 172 36 20.93% 0 36
Sfmap 0 0 N/A 0 0
Snake 234 38 16.24% 0 38

Average: 260 65 24.96% 2 60

(b) MCCL

Table 6: The number of compressions and decompressions for

(a) MCC and (b) MCCL. Each benchmark was run with the

minimum heap size that allowed it to execute without out-of-

memory exception using MCC (see the fifth column of Table

4). One can see that using lazy object allocation and break-

ing down large objects into smaller ones helps reduce the num-

ber of compressions/decompressions significantly over the pure

compression based strategy.

frames. In handheld devices, due to memory constraints, KVM
does not use a separate stack space for each Java thread. Instead, it
allocates stack chunks in the heap. Each stack chunk is 520 bytes
and contains one or more stack frames. A stack chunk may become
garbage when the corresponding method returns. A garbage stack
chunk is detected immediately without invoking the GC. Garbage
stack chunks are put in a free stack chunk table. When the appli-
cation needs a new stack chunk, if the free stack chunk table is not
empty, KVM allocates the chunk from this table. In this case, we
observe an increase in the Live curve trend while the Overall curve
remains unchanged. The free chunk table is emptied after each in-

290



0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

S
iz

e
 o

f 
L

iv
e
 O

b
je

c
ts

 (
K

B
)

Time (Seconds)

Auction

MC
MCL
MCC
MCCL

0 50 100 150 200 250 300
0

50

100

150

200

S
iz

e
 o

f 
L

iv
e
 O

b
je

c
ts

 (
K

B
)

Time (Seconds)

JBrowser

MC
MCL
MCC
MCCL

0 100 200 300 400 500
0

20

40

60

80

100

120

140

S
iz

e
 o

f 
L

iv
e
 O

b
je

c
ts

 (
K

B
)

Time (Seconds)

MDoom

MC
MCL
MCC
MCCL

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

S
iz

e
 o

f 
L

iv
e

 O
b

je
c

ts
 (

K
B

)

Time (Seconds)

Sfmap (162KB)

MC
MCL
MCC
MCCL

Figure 10: The sizes of the live objects for four of our benchmarks. One can observe that, at a given time, our collectors reduce the

pressure on the heap space as compared to the MC collector. Similar behavior is also observed with remaining benchmarks in our

experimental suite.

the total size of all compressed objects. This curve climbs up when
objects are compressed and drops when a compressed object be-
comes garbage or is decompressed. Figures 11 and 12 clearly indi-
cate that compressions are performed only at peaks of heap mem-
ory demands. As discussed earlier, these peaks do not occur very
frequently and each peak, when occurs, does not last very long.

4.3 Performance Impact
While compressing heap objects is beneficial from the memory

usage perspective, it is also important to consider its impact on
performance. Figure 13 gives the runtime overheads incurred by
MCCL. The overheads in this figure are given as percentages of the
execution time of MC assuming an “infinite” heap space (in reality,
to calculate the time with the infinite heap space, we calculated the
time with the finite heap space and deducted the time taken by the
GC). We normalized the performance overhead to the ideal execu-
tion time (i.e., the execution time with infinite heap space) due to
two reasons. The first is that, ideally, given the same application
and the same input, changing the heap size can only change the
time spent within the GC; the time spent for executing the byte-
codes is equal to the ideal execution time regardless of the actually
size of the heap. By normalizing the overheads with respect to the

vocation of the GC since all the garbage stack chunks have been
collected.

ideal execution time, we are able to compare the overheads across
different heap sizes; this enables us to study the impact of the heap
size. Second, the MC collector cannot run with the minimum heap
size that allows MCCL to run. In this case, it is difficult to normal-
ize the overhead with respect to the execution time of MC with the
same heap size.

The overhead in Figure 13 is divided into several components.
“Lazy Access” represents the time overhead due to lazy allocation.
“Indirect Reference” corresponds to the overhead due to using ob-
ject handles. “Compression” is the time spent in compression and
“Decompression” is the time spent in decompression when access-
ing objects. “GC Decompression” is the time spent in decompres-
sion during GC (when traversing the heap). The component de-
noted as “Check” represents the time spent at each object access
to check whether the object is in the compressed format or not. Fi-
nally, “Other GC Time” is the time spent in collecting garbage (note
that the infinite heap configuration does not use garbage collection).
Our first observation from the graph in Figure 13 is that, on the av-
erage, working with MCCL brings a 9.1% performance overhead
as compared to the ideal heap scenario. It should be noted, how-
ever, that only 3.5% overhead is actually due to factors other than
the time spent in performing garbage collection (that is, the “Other
GC Time” component); and, this last component should exist (in
varying magnitudes) with any limited size heap (i.e., it is not due
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Figure 11: Heap memory usage of MCCL. “Overall” represents the heap usage at a given point during execution, i.e., the total size of

live objects (including both compressed and uncompressed objects) and garbage in the heap. The curve labeled “Live” corresponds

to the total size of live objects, including both compressed and uncompressed. The curve labeled “Compressed” represents the total

size of all compressed objects.
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Figure 12: Heap memory usage of MCCL (continued). “Overall” represents the heap usage at a given point during execution, i.e.,

the total size of live objects (including both compressed and uncompressed objects) and garbage in the heap. The curve labeled

“Live” corresponds to the total size of live objects, including both compressed and uncompressed. The curve labeled “Compressed”

represents the total size of all compressed objects.
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Figure 13: Runtime overheads due to MCCL with the mini-

mum heap size (for MCCL). The values are given as percent-

ages of the MC execution time under an ideal (infinite) heap

memory. The numbers next to benchmark names denote the

heap sizes used to run the benchmark.

to our compression and lazy allocation based strategy, and occurs
even when we use MC with a finite heap). Therefore, the extra
overhead introduced by our strategy is very low.

Figures 14 and 15 compare the performance overhead incurred
by MCCL and MC when they are used with the same heap size.
In Figure 14, for each benchmark, we used the minimum heap size
that allows both MC and MCCL to execute without giving an out-
of-memory exception (see the third column Table 4). We can see
that MCCL is about only 1.5% slower than MC on the average.
Note that a performance advantage of MCCL over MC is that it
can reduce the number of GC invocations. Consider, for example,
JpegView in Figure 14. For this benchmark, with a 85KB heap,
MCCL is faster than MC by 4.3%. This is because MCCL reduces
the number of GC invocations since the effective heap size is in-
creased. In the graph titled as “JpegView (85KB Heap)” in Fig-
ure 11, we observe two invocations of the compressor: at 90th
second and at 340th second. These two invocations reduce the
application’s footprint significantly, which in turn leads to fewer
GC invocations. This last observation implies the possibility of us-
ing heap compression to reduce the overall garbage collection time
even when there is enough heap space (Section 5 evaluates such
an aggressive use of object compression). Comparing the graphs
in Figure 15 and Figure 14, we observe that, as the heap size in-
creases, the performance degradations (with respect to the ideal
heap configuration) due to MC and MCCL are both reduced. This
is because, since there is enough space in the heap, the collectors
are invoked less frequently.

5. AGGRESSIVE OBJECT COMPRESSION
In our compression based strategies discussed so far, the com-

pression is invoked only when compaction is not successful to pro-
vide sufficient free space to accommodate the object to be allo-
cated. In other words, if the compaction is successful in providing
sufficient free space, the compression is not activated. Therefore,
our approach is oriented towards reducing the impact of compres-
sion/decompression on performance. In this section, we investigate
the pros and cons of a more aggressive compression strategy. In this
strategy, we aggressively compress objects even if just using com-
paction would allow the application to continue successfully. Our
focus is on the MCCL since it is the one that generated the best
results so far. Our new collector, denoted MCCL(k), operates with
a threshold parameter, k. After the mark phase (of the MCCL), the

Figure 14: Runtime overheads due to MCCL and MC with the

minimum heap size for MC. The values are given as percent-

ages of the MC execution time under an ideal (infinite) heap

memory. For each benchmark, the bar on the left is for MCCL,

and the bar on the right is for MC. The numbers next to bench-

mark names denote the heap sizes used to run the benchmark.

Figure 15: Runtime overheads due to MCCL and MC with

150% of the minimum heap size for MC. The values are given

as percentages of the MC execution time under an ideal (infi-

nite) heap memory. For each benchmark, the bar on the left is

for MCCL, and the bar on the right is for MC. The numbers

next to benchmark names denote the heap sizes used to run the

benchmark.

collector compares the size of the available free space (denoted A)
with the size of the object (denoted S) and kH , where H is the size
of the entire heap. If

A < S or A < kH;

the collector performs compression; otherwise, it compacts the heap
without compression. Note that MCCL(0%) is our baseline MCCL
strategy discussed so far in the paper. It should also be noticed that
the larger the k parameter, the more likely that the compression will
be invoked.

In the following, we analyze the impact of this new strategy
from the performance and heap memory perspectives. Figure 16
presents the performance impact of k with different heap memory
sizes. Each benchmark is run using three different heap sizes. The
increases in execution time of MC are also presented for compar-
ison purpose. Obviously, MC results do not change with varying
k. On the average, MCCL is slower than MC with the same space
by around 2%. We can observe from these results that, when k is
increased, with smaller heap sizes, the overall performance over-
head of MCCL (which includes all the components as discussed
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earlier) is decreased. In contrast, when the heap size is larger, in-
creasing the value of k increases the performance overhead. This
observation can be explained as follows. Let us assume that two
successive garbage collections, GC1 and GC2, are invoked at times
t1 and t2, respectively. Let us also assume that, right after GC1
is invoked at t1, the total size of the objects in the compressed
format is ; the original uncompressed size of these objects is a;
and the total size of the objects that are decompressed during the
interval (t1; t2) is d (d � a). Note that, when an object is decom-
pressed, the compressed version of this object becomes garbage,
which remains in the heap until it is collected by the next invoca-
tion of the GC. Therefore, if a >  + d, the compression invoked
during GC1 postpones the invocation of GC2, i.e., if GC1 had not
compressed the objects, GC2 would have been invoked earlier than
t2. However, if a <  + d, the compression during GC1 actu-
ally causes GC2 to be invoked earlier, i.e., if GC1 had not com-
pressed the objects, GC2 would have been invoked later than t2.
Note that a is determined by the total size of the live objects in the
heap, and that  is determined by both a and the compression ra-
tio. Neither a nor  is affected by the heap size. However, when
the heap size is small, each interval between two successive GC
invocations is short (even with compression), which means that the
number of objects accessed during (t1; t2) is small — which also
means that d is small. Therefore, for small heap sizes, compression
is more likely to reduce the number of GC invocations. Similarly,
for larger heap sizes, the interval (t1; t2) is longer and d tends to
be larger. As a result, compression is more likely to increase the
number of GC invocations. Another factor that also influences the
overall performance overhead is the tradeoff between GC cost and
compression/decompression cost. A large k value usually results in
higher compression/decompression costs. For a small heap size, a
large k value tends to reduce the number of GC invocations. If the
reduction in the GC costs is larger than the increase in the compres-
sion/decompression costs, we are likely to observe a reduction in
the overall cost. On the other hand, for a large heap size, a large k
value is less likely to reduce the number of GC invocations. Conse-
quently, the overall cost is increased as the value of k is increased.

We next study the heap behavior of MCCL(k) and compare it
to MCCL(0%). Figure 17 shows the impact of k on heap behav-
ior with different heap memory sizes. For the minimum heap size
that allows each benchmark to run without an out-of-memory ex-
ception (the graphs on the left side of Figure 17), we observed that
the maximum value of the total size of live objects does not change
as the value of k varies. However, for both heap sizes we exper-
imented, we observed that, during most of the execution time, a
large k value results in a small total size for the live objects. This is
due to the fact that, with a large k value, object compression is per-
formed more frequently, and thus, the heap contains a large number
of compressed objects.

6. ELIMINATING OBJECT HANDLES
Our base implementation explained earlier employed object han-

dles mainly because of the difficulty associated with updating refer-
ence fields (i.e., the fields that contain references to other objects)
of the compressed objects in the compact-compress phase of the
collector. Specifically, updating a reference field in a compressed
object may cause the size of the object to expand. Since it is not
always possible to find the space for the object to expand, our base
implementation solved this problem using handles. It should be
noted, however, that object handles incur two problems. First, a
handle incurs dereferencing overhead whenever the corresponding
object is accessed. Second, handle pool occupies space in the heap
memory. If the size of the handle pool is small, the application

Figure 16: Impact of the threshold parameter k on perfor-

mance. The influence of varying the k parameter depends on

whether a large or a small heap memory is used. The increase

in execution time is normalized with respect to the execution

time of the MC collector with an infinite heap space. The in-

crease in execution time of MC with finite heap sizes are also

presented for comparison purpose (Obviously, MC results do

not change with varying k).
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Figure 17: Impact of the threshold parameter k on heap behavior. It can be observed that, in general, increasing the value of the k

parameter reduces the heap memory requirement at a given time.
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uses up the object handles quickly, which forces frequent GC in-
vocations even if we have available heap space. Consequently, to
make the best use of the heap space, we need to fine-tune the size
of the handle pool according to the behavior of each application.
However, access patterns of different applications may differ from
each other dramatically. Further, even the same application can ex-
hibit different heap behavior depending on the user input provided.
Therefore, it is very difficult to tune the size of the handle pool suc-
cessfully. In this section, we present our enhanced implementation
that eliminates object handles completely. The cost of doing so is
the slight degradation in the compression ratio. However, as will
be discussed shortly, we still achieve heap memory savings. Note
that the implementation discussed in this section does not use ag-
gressive compression explained in the previous section. It uses our
base compression strategy.

Our enhanced implementation divides each object instance into
“reference zone” and “non-reference zone” as shown in Figure 18.
The reference zone contains only the reference fields, whereas the
non-reference zone represents the remaining fields. Our enhanced
implementation compresses only the non-reference zone; the fields
in the reference zone remain uncompressed. We apply the same
technique to arrays as well. The non-reference arrays (that is, the
arrays that do not contain references) are compressed as discussed
earlier. The reference arrays, on the other hand, are compressed dif-
ferently, i.e., each bit in the bitmap now corresponds to an element
of the array. A 0-bit indicates the corresponding element is null;
a 1-bit indicates a reference that is stored in the original format.
Keeping the reference fields of each object instance and non-null
elements of each reference array in the uncompressed form allows
the collector to update the corresponding references whenever an
object is moved during the compact-compress phase (without han-
dles).

The process of object decompression in the absence of handles
is depicted in Figure 19. After object O1 is decompressed, a for-
ward pointer to the decompressed data is set in the header of the
compressed object. When a reference field pointing to the old ob-
ject is used, our implementation first checks whether the reference
needs to be forwarded. If the reference is pointing to an object that
has been decompressed, JVM needs to update the reference field to
point to the location of the newly decompressed object. In the mark
phase of the garbage collection, the collector also checks and up-
dates the reference fields in a similar fashion. It should be noticed
that explicitly checking whether a reference has been forwarded
for each object access may incur an overhead comparable to using
handles. However, we can make use of hardware to forward ref-
erences transparently. KVM uses 32 bits to represent a reference.
To the best of our knowledge, no embedded system today is us-
ing more than 2GB memory, which means that the highest-order
address bit of each reference is always zero. We use this bit as a
flag. If a reference points to a compressed object, this bit is set to 1,
otherwise, it remains 0. The system is configured in such way that
accessing a non-exist memory location triggers a hardware memory
protection exception. We know that the mark-compact garbage col-
lector needs to update each reference in the heap after compaction.
Therefore, we modify this procedure so that the compressor also
sets the flag bit to 1 for each reference pointing to a compressed
object. During the execution of bytecodes, accessing an uncom-
pressed object does not cause any overhead. However, accessing a
compressed or forwarded object triggers a memory protection ex-
ception. The exception handler then checks if this is an access to a
compressed object or to a forwarded object. If it is to a forwarded
object, the handler sets the flag of the reference to 0, and then, the
virtual machine resumes its execution. If it is to a compressed ob-
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Figure 18: Division of a Java object into reference and non-

reference zones. Our enhanced implementation compresses
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main uncompressed. We apply the same technique to arrays as

well.

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

O1

... ...

... ...

������
������
������
������

������
������
������
������

������
������
������
������

... ...

... ...

O1

��

�
�
�
�

Decompressed Object

Compressed Object

Free Space

Forwarded Object

(a) (b)

Figure 19: Decompression of object O1 when no handle is used.

(a) Before decompression, O1 is in the compressed format. (b)
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pressed O1 is set in the location that used be to the header of

O1.

ject and decompression is necessary, the handler decompresses the
object.

In the rest of this paper, we denote the MCCL without object han-
dles as “MCCL+” (see Table 1). We can observe from the results in
Table 4 that MCCL+ outperforms MCCL for all our benchmarks.
This is because of two main reasons. The first is that MCCL+ does
not need the handle pool. The second reason is that MCCL+ allows
the reference fields of a compressed object to be accessed without
decompression. However, for a fair comparison, we need to con-
sider its performance as well. Figure 20 shows the impact of han-
dle elimination on the performance by comparing MCCL+ with
MCCL. We see that, for all benchmarks except ManyBalls and
Snake, MCCL+ outperforms MCCL. For ManyBalls and Snake,
MCCL+ is slower than MCCL, mainly due to frequent accesses
to forwarded and compressed objects. On the average, the perfor-
mance degradations due to MCCL+ and MCCL over the MC with
the infinite heap are 5.7% and 9.1%, respectively.

7. DISCUSSION AND FUTURE WORK
Up to this point, we discussed several strategies for reducing the

heap memory requirements of embedded Java applications. While
our different strategies allow us to explore a large design space,
there are still many alternative designs that can potentially be stud-
ied. In this section, we discuss several such alternatives and point
out the directions for further research.

Selective Compression. In our current implementation, we
compress all the live Java objects in the heap. However a more
sophisticated object compression strategy can minimize the num-
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Figure 20: Runtime overheads due to MCCL+. Each bench-

mark is run with the same heap size as in Figure 13. The over-

heads are as percentages of the overall execution time of MC

with ideal (infinite) heap memory. For each benchmark, the

bar on the left is for MCCL+, and the bar on the right is for

MCCL (its breakdown into components is as show in Figure

13). The numbers beside the names of each benchmark are the

sizes of the heaps used to run the benchmarks.

ber of objects that need to be compressed by considering the size
of current allocation request. Specifically, the compressor can (re-
)calculate heap memory saving after compressing each object. When
the total memory saving from compression plus the size of the free
space calculated in the mark phase is larger than the size current
allocation request, we can stop the compression process. In addi-
tion, it is also possible to rank the objects according to their access
frequencies and utilize this information within the compressor to
compress only the objects that are not likely to be accessed in the
near future.

Independent Compression. In our current implementation,
compression is performed during garbage collection. An advan-
tage of this approach is that it is easy to implement. However, it
may cause longer pause for garbage collection, which is not de-
sirable in real-time or user-interactive applications. An alternative
would be using a dedicated thread to incrementally compress the
objects. More specifically, the virtual machine can invoke a com-
pression thread at regular intervals. When the compression thread
is scheduled, it selectively compresses a set of objects that will not
be used in the near future, and then falls back to sleep. This ap-
proach to compression avoids very long pauses due to compression
by distributing compressions across the lifetime of the application
being executed. The apparent drawbacks include more complicated
implementation and extra synchronization overhead.

Using Compression with Generational Collectors. In our im-
plementation, we used compression with a mark-compact collector.
However, generational collectors [24, 42] may also employ object
compression to reduce the heap memory demands. A generational
collector divides the heap into two generations: the young gener-
ation and the old generation. All new objects are allocated in the
young generation. When the space in the young generation is used
up, a local collector is invoked to collect garbage in the young gen-
eration. After several local collections, the surviving objects in the
young generation are promoted to the old generation. When the
space occupied by the old generation reaches a given threshold,
a global collector is invoked to collect garbage in both the gen-
erations. Compared to the local collector, the global collector is
much more expensive. Our compression scheme may be incorpo-
rated into the global collector. Specifically, when the virtual ma-
chine fails to allocate space for a new object, the global collector
is invoked to compress live objects to make space for the new ob-

ject. It should be noted that, during the peaks of memory demands,
the global collector (with compression) may be very costly. Fortu-
nately, as has been mentioned previously, the peaks do not occur
frequently and, when they occur, they do not last long. Therefore,
in most of the time, the global collector (with compression) may
not need to be invoked very frequently.

Hardware-Based Implementation of Compressor and Decom-

pressor. In this work, we employed a software-based imple-
mentation for the compressor/decompressor. However, in princi-
ple, both the compressor and decompressor may be implemented
in hardware as well. There have been several hardware compres-
sion schemes proposed in the literature (e.g., [25, 18]). Similarly,
the zero removal compression can also be implemented in hard-
ware. Obviously, hardware-based compressor/decompressor is ex-
pected to run much faster than the corresponding software-based
implementation. Another benefit of the hardware-based implemen-
tation is that the compressor and decompressor can work in parallel
with the main processor; this can enable us to hide the overhead
by overlapping compression/decompression with application exe-
cution. For example, when the virtual machine finds that a com-
pressed object is going to be accessed in the near future and that
there exist a large amount of heap memory, it can allocate the space
to hold the decompressed object and then invoke the hardware de-
compressor. In this mode of operation, the virtual machine does
not need to wait for the decompressor to finish its work. Instead,
it can continue with the application execution as long as the ob-
ject in question is not accessed immediately. When the virtual ma-
chine really needs to access the object, it is very likely that the de-
compressed object will be ready to be used. In other words, using
a hardware-based compressor/decompressor, one can implement a
“pre-decompression” scheme that can significantly reduce the over-
head associated with accessing the objects.

8. RELATED WORK
The work presented in this paper is related to the prior studies in

the areas of garbage collection, memory compression, and memory
footprint reduction in object-oriented programs. In this section, we
present a discussion of the prior work in these areas.

Garbage Collection Strategies. Garbage collection has been an
active area of research for the past years [24, 42]. The studies in
this area can be broadly classified into two categories: improving
the performance (or energy consumption, predictability of pause
time, etc.) of the collector itself and using the GC to improve the
performance (or, energy consumption) of the mutator. Since it is
not possible to cover all the prior work here, in the following, we
discuss some representative studies from these two categories.

The examples in the former category mentioned above include
[12, 13, 10]. Blackburn et al. [12] present a framework —Beltway—
that significantly generalizes existing copying collectors. More im-
portantly, the Beltway framework enables design and implementa-
tion of new collectors that are robust to variations in heap size and
improve total execution time. Their observation is that a garbage
collection scheme based on Beltway framework is faster than the
best generational copying collectors by up to 40%, and on the av-
erage by 5% to 10%, for small to moderate heap sizes. [13] uses
pre-tenuring advice to improve the performance of generational and
Old First collectors. The novelty of this work is that their pre-
tenuring advice is neutral to the garbage collector algorithm and
configuration. [10] is an example that focuses on the predictabil-
ity of the garbage collection pause time. The authors present an
algorithm that achieves not only stable pause times at real-time res-
olution, but also highly predictable processor utilization rates for
the mutator.
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The examples in the latter category include [38, 15, 14]. Shuf
et al. [38] present techniques that create and preserve locality of
Java applications at both allocation and garbage collection times.
Their locality-based traversal technique reduces garbage collection
time by up to 20% (10% on the average) and improves perfor-
mance by up to 14% (6% on the average). Combining with their
locality-aware allocation technique, they improve the performance
of the applications by up to 22% (10% on the average). Chilimbi
et al. [15] use generational garbage collector to implement cache-
conscious data placement. Their results indicate that the proposed
technique reduces cache miss rates by 21%–42% and improves pro-
gram performance by 14%–37% over the Cheney’s copying algo-
rithm. Chen et al. [14] use the GC to reduce the energy con-
sumption of embedded Java applications. Their scheme assumes
a banked memory architecture and demonstrates that increasing
the GC frequency helps increase the number of banks that can be
placed into a low power operating mode.

Escape analysis (e.g., [16]) provides another solution that re-
duces the burden of garbage collection. Specifically, an escape
analyzer determines if an object can be allocated in the stack and
if an object is accessed by only a single thread. In this way, the
objects allocated in the heap can be collected automatically when
the corresponding method returns and the synchronizations on the
objects that are accessed by only a single thread can be safely re-
moved. Choi et al. [16] show that, for their benchmarks, up to 70%
of objects can be allocated in the stack and 11% to 92% of lock op-
erations can be safely removed. Putting all together, they observe
performance improvements ranging from 2% to 23%.

Another research area related to garbage collection is characteri-
zation of memory behavior. The results from the studies in this area
may be used to guide the optimization of GCs. Dieckmann et al.
[19] analyze the memory allocation behavior of the six Java bench-
marks from the SPECJVM98 suite. Shuf et al. [39] characterize
the inherent memory (e.g., TLB and cache) behavior of Java work-
loads. Hirzel et al. [23] explore the connectivity of Java objects in
the heap. Their observation is that connectivity correlates strongly
with object life-times and death-times.

Memory Compression. Compression has been employed in
embedded systems to reduce the cost, space or energy consump-
tion of memory. Lekatsas et al. [26, 27] propose instruction code
compression as an efficient method for reducing power consump-
tion on an embedded system. Their experimental results indicate
that their schemes bring energy savings between 22% and 82%.
Chen et al. [22] use hardware memory compression to reduce the
leakage energy consumption of the system memory in an embed-
ded Java environment. In their work, they achieve energy savings
through compression of Java binary code and the pre-loaded Java
class library. Clausen et al. [17] compress Java bytecodes using
factorization of common sequences. Their scheme targets low-end
embedded systems and reduces the memory space occupied by Java
bytecodes to 85% of the original size on the average, with a slight
execution time penalty. Pugh [33] develops a format for compress-
ing Java classes. The Java classes compressed using this format are
typically 1/2 to 1/5 of the size of the corresponding compressed jar
files (and 1/4 to 1/10 the size of the original class files).

Memory compression may also be used in high-performance sys-
tems to increase the effective size of the memory and reduce the
I/O cost due to page swapping. Franaszek et al. [21] develop a
set of algorithms and data structures for compressed-memory ma-
chines. Their algorithms are implemented in IBM Memory Ex-
pansion Technology (MXT). For typical systems, their techniques
yield a factor of 2 expansion in effective memory size. Rizzo [34]
presents a very fast algorithm for RAM compression. The author

suggests that using this compression algorithm can lead to both
memory savings and performance improvements in servicing page
faults.

Footprint Reduction in Object-Oriented Systems. Eckel et al.
[20] observe that current C++ compilers generate a significant num-
ber of fields that are used internally. Such internal fields are consid-
ered as memory overheads of the object layout. They also find that,
by using inlining and bidirectional object optimization techniques,
this overhead can be reduced by nearly 50% on the average. Ba-
con et al. [11] present an implementation of the Java Object Model
that is efficient from both the space and time angles. Their im-
plementation achieves an average memory saving of 7%. Shaham
et al. [35] present a heap-profiling tool for exploring the potential
for space savings in Java applications. The output of the tool is
used to direct the application source code rewriting in a way that
allows more timely garbage collection of objects, thereby saving
space. By manually rewriting the benchmarks’ source code, they
report 18% space savings, on the average, for the applications in
the SPECJVM98 benchmark suite. Shuf et al. [37] distinguish the
types of Java objects according to the number of instantiated ob-
jects of each type. Their approach improves pause times, eliminates
unnecessary write barriers, and reduces garbage collection time by
up to 15% (compared to the corresponding generational collector).
Their scheme also reduces the heap space requirements of applica-
tions by up to 10%. Shaylor [36] implements a Java JIT compiler
for memory constrained low-power devices. His JIT speeds up ex-
ecution by a factor of 5.7 to 10.7, and its implementation requires
only 60KB of the ARM machine code. He also uses a quick and
simple management of the JIT code buffer to minimize the memory
required for storing the compiled code.

In addition to the Sun Microsystem’s J2ME technologies [4, 3],
there exist many other implementations of Java or non-Java vir-
tual machines with small memory footprint in mind. For exam-
ple, McDowell et al. [32] present a Java environment that sup-
ports the complete Java language and all the core Java packages
except AWT using as little as 1MB of RAM, without any addi-
tional ROM (except a small boot ROM) or disk. TinyVM [8] is
an open source Java platform for the Lego Mindstorms RCX mi-
crocontroller. TinyVM’s footprint is about 10 KB in the RCX.
Additionally, program class files are compacted considerably be-
fore they are downloaded to the RCX. A small program can access
around a 16 KB of RAM. An example non-Java small-footprint
virtual machine is Maté [28], a tiny communication-centric virtual
machine designed for sensor networks. The high-level interface of
Maté allows complex programs to be very short (under 100 bytes).
Maté and all of its subcomponents can accommodate in 1KB RAM
(for data) and 16KB ROM (for instructions).

Our Work. The work described in this paper is different from all
these studies. Our approach to reducing the heap footprint of Java
applications is based on object compression. To the best of our
knowledge, none of the previous papers in this area explored this
alternative. However, it should also be noted that our approach can
be used in conjunction with some of prior studies (e.g., [11, 35])
to reduce memory footprint even further. In addition to allowing
an application to execute under severe heap memory constraints,
our approach also reduces the percentage of memory used at any
given point in execution. The memory saved can be used for saving
power, and in fact, our strategy can be used as a part of a larger
framework which also includes [14] and [22].
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9. CONCLUDING REMARKS
Reducing memory demands of Java applications is critical for

embedded systems as these systems operate under memory con-
straints. An effort in this direction, if successful, can increase the
number of Java applications that can execute in systems with low
memory budget. In this paper, we present a set of heap management
strategies for reducing memory footprint. Our major conclusions
can be summarized as follows:

� Our compression-based garbage collection strategy, MCC,
reduces the minimum heap size required to run Java appli-
cations by 10.8%, on the average, over the MC collector.
The corresponding memory saving over the MS collector is
40% across all ten benchmarks. These results are obtained
by using object compression when it is absolutely neces-
sary to continue executing the application without an out-
of-memory exception.

� Our lazy allocation and object break-down technique and the
garbage collection strategy based on them, MCL, also reduce
the required heap sizes significantly (9.5% on the average).
In addition, combining MCC and MCL under the integrated
strategy MCCL increases memory savings further (21% on
the average).

� In addition to reducing the minimum heap sizes to execute
applications, our garbage collectors also reduce the total size
of the live objects that need to be kept in the heap. This
can be exploited, among other things, for reducing energy
consumption of the memory system or increasing the con-
currency in a multiprogrammed environment.

� The performance degradation (with respect to the MC col-
lector that uses an infinite heap memory) caused by MCCL
is affected by the actual heap size that is available to the ap-
plication. Generally, the larger the heap size, the smaller the
degradation. Using the minimum heap size that allows the
application to run without out-of-memory exception, the av-
erage performance degradation of MCCL (over MC with in-
finite heap) was found to be 9.1%. However, most of this
overhead (5.6%) is due to the garbage collection activity it-
self, which should occur with any collector with finite heap.
In fact, our results show that MCCL is less than 2% slower
than MC with the same heap size.

� Our experiments with a more aggressive compression strat-
egy (which compresses objects even if is is not strictly nec-
essary to do so) indicate that such a strategy improves the
performance of our benchmarks over the baseline MCCL by
up to 9.2% (5.5% on the average) with the minimum heap
size.

� Our enhanced implementation that does not use object han-
dles, called MCCL+, improves both memory behavior and
performance degradation of the base MCCL. The main rea-
sons for memory savings are that MCCL+ does not need
handle pool (which occupies a significant amount of heap
space), and that the reference fields can be accessed without
decompressing the corresponding object. The main reasons
for performance improvements are that, in MCCL+, objects
can be accessed directly without incurring dereferencing, and
that MCCL+ eliminates the overheads due to the handle pool
maintenance.

� Our experience with compression, lazy allocation, and object
break-down suggests that these strategies can also be used

in conjunction with different base collectors (e.g., genera-
tional), virtual machines, and compression algorithms.
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