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Hearables: Automatic overnight sleep monitoring

with standardised in-ear EEG sensor
Takashi Nakamura, Yousef D. Alqurashi, Mary J. Morrell and Danilo P. Mandic

Abstract—Objective: Advances in sensor miniaturisation and
computational power have served as enabling technologies for
monitoring human physiological conditions in real-world sce-
narios. Sleep disruption may impact neural function, and can
be a symptom of both physical and mental disorders. This
study proposes wearable in-ear electroencephalography (ear-
EEG) for overnight sleep monitoring as a 24/7 continuous
and unobtrusive technology for sleep quality assessment in the
community. Methods: Twenty-two healthy participants took part
in overnight sleep monitoring with simultaneous ear-EEG and
conventional full polysomnography (PSG) recordings. The ear-
EEG data were analysed in the both structural complexity
and spectral domains; the extracted features were used for
automatic sleep stage prediction through supervised machine
learning, whereby the PSG data were manually scored by a
sleep clinician. Results: The agreement between automatic sleep
stage prediction based on ear-EEG from a single in-ear sensor
and the hypnogram based on the full PSG was 74.1 % in the
accuracy over five sleep stage classification; this is supported by
a Substantial Agreement in the kappa metric (0.61). Conclusion:
The in-ear sensor is both feasible for monitoring overnight sleep
outside the sleep laboratory and mitigates technical difficulties
associated with PSG. It therefore represents a 24/7 continuously
wearable alternative to conventional cumbersome and expensive
sleep monitoring. Significance: The ‘standardised’ one-size-fits-all
viscoelastic in-ear sensor is a next generation solution to monitor
sleep – this technology promises to be a viable method for readily
wearable sleep monitoring in the community, a key to affordable
healthcare and future eHealth.

I. INTRODUCTION

Sleep is an essential process for human well-being, and

its quality reflects both a person’s lifestyle as well as var-

ious medical conditions. In our modern 24/7 society, sleep

quality has become a major issue which affects the state

of body and mind, with implications on both general health

and economy. Consequently, quality of sleep is considered

one of the most important current topics in sleep medicine

[1–3], and is typically investigated by recording a person’s

sleep patterns in a sleep clinic. However, current clinical

sleep monitoring is expensive, cumbersome to administer, and

prohibitive to performing recordings continuously over days

and weeks; this also affects the subsequent diagnosis and

treatment. For example, Beebe et al. designed and conducted

sleep monitoring for three weeks in home using a wrist-worn
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actigraphy, and found that the daytime behavioural problems

for adolescents may have been caused by inadequate sleep

[4]. Trotti et al. monitored periodic leg movements (PLMs)

in restless legs syndrome (RLS) patients using actigraphy for

2-3 weeks in home, and found significant variability of PLMs

within a single RLS patient from night to night [5]. Vazir

et al. conducted cardiorespiratory monitoring from patients

with heart failure at patients’ home, and reported shifting

type of sleep-disordered breathing (SDB) over four nights

[6]. These issues and previous findings have spurred the

development of unobtrusive, wearable sensors capable of long-

term monitoring of physiological variables related to sleep [7].

On the other hand, such miniaturisation of sensors inevitably

affects the quality of recorded data; this calls for advanced

signal processing and machine learning tools, throughout the

process, from data conditioning to automatic sleep staging.

The polysomnography (PSG) is a standard clinical method-

ology to diagnose sleep disorders [8]. The so-acquired sleep

profiles of individuals are rigorous and comprehensive, how-

ever, the expensive and cumbersome nature of PSG may

even disturb patients’ normal sleep, thus affecting diagnosis

and treatment. During the analysis, the recorded PSG data

are scored manually by a trained sleep clinician; given the

scale of sleep disorders in our modern society, this imposes

unrealistic demands on their time and incurs significant eco-

nomic costs. Therefore, from a point of view of continuous

widely affordable healthcare in the community and the future

eHealth, conventional sleep monitoring based on the PSG is

not realistic. To address this issue, multiple potential solutions

have been proposed which fall under the two main categories:

1) Employ standard PSG but replace the clinician with an

automatic scoring system [9],

2) Use wearable sensing, possibly with a reduced number

of sensing modalities (e.g. only EEG or actigraphy),

and perform the analysis either by the clinician or

automatically based on machine learning [10].

To address the first issue of time-consuming sleep stage

scoring process performed by clinicians, automatic sleep stag-

ing systems have been proposed based on full PSG recordings

[19, 20] – these include the electroencephalogram (EEG),

electrooculogram (EOG), and chin electromyogram (EMG)

– or more recently based on single channel EEG recordings

[21]. The corresponding automatic sleep stage classification

approaches employ various machine learning algorithms and

have been validated on both publicly available datasets [22]

as well as on proprietary data recorded as part of various

research projects [21]. Most studies have used sleep recordings
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TABLE I
COMPARISON OF EXISTING APPROACHES TO SLEEP RESEARCH USING IN-EAR/AROUND-EAR WEARABLE SENSING TECHNOLOGY

Author # of participants Earpiece Recording Details

[11]
4

In-ear viscoelastic

Daytime Comparison of manually scored hypnograms based on ear-EEG and scalp-EEG
[12] nap Comparison of automatic sleep scoring based on ear-EEG and scalp-EEG
[13]

23
Daytime Comparison of sleep latency based on ear-EEG and scalp-EEG

[14] naps Automatic detection of drowsiness based on ear-EEG

This study 21 In-ear viscoelastic Overnight Automatic overnight sleep staging using ear-EEG

[15] 8 In-ear viscoelastic

Overnight

Automatic sleep scoring based on ear-EEG (accuracy not given)
[16] 1

In-ear hardshell
Comparison of manually scored hypnograms based on ear-EEG and scalp-EEG

[17] 9 Automatic overnight sleep staging using ear-EEG
[18] 1 Around-ear Demonstration of EEG patterns in different sleep stages (activities)

of healthy participants, and the state-of-the-art [23] indicates

the possibility of correctly discriminating five sleep stages –

wake (W), non-Rapid Eye Movements sleep (NREM1-3), and

REM – based on a single EEG (channel).

Regarding the second issue of a wider deployment of

wearable devices, commercial products already exist based

on wrist activity (i.e. actigraphy) [24, 25]. Information from

such wearable devices is proven to be sufficient to distinguish

between wakefulness and sleep, and the agreement between

the actigraphy based wake/sleep stages and those manually

scored based on standard PSG recordings can be as high as

91 % [26]. More recently, data from commercial wrist-worn

devices were found to allow for identifying multiple sleep pa-

rameters, such as ‘sleep efficiency’ and ‘total sleep time’ [27].

The smartphone accelerometers (i.e. off-body sensing) have

also indicated the possibility of monitoring ‘sleep duration’,

although such studies typically do not simultaneously record

standard PSG as a ‘ground-truth’ [7].

Despite relative success, current proof-of-concept achieve-

ments based on ‘wearables’ are not yet capable of faithfully

providing the much more complex information regarding clin-

ically valid sleep analyses, that is, to discriminate between

wakefulness, Non-REM sleep, and REM sleep.

With the development in sensor technology, one of the most

convenient wearable solutions for physiological monitoring

introduced in the research community is based on sensing

from inside or around the ear, the so-called ‘hearables’ [28].

The original in-ear system in [29, 30] was shown to offer

unobtrusive and robust brain monitoring (ear-EEG). The so-

recorded data have been validated and compared to con-

ventional on-scalp EEG (scalp-EEG) in different scenarios,

including evoked potentials, brain-computer interface, and per-

son authentication [31–33]. Multiple strategies have also been

proposed for ear-EEG based sleep research, as summarised in

Table I.

The original study by Looney et al. [11] recorded daytime

naps with simultaneous ear-EEG and scalp-EEG systems,

from four healthy participants. The corresponding manually

scored hypnograms conclusively validated the feasibility of

ear-EEG for sleep monitoring. The same data were also

used for automatic sleep stage classification in [12], which

further demonstrated the possibility of out-of-clinic sleep

monitoring with ear-EEG. After this initial proof-of-concept

stage, Alqurashi et al. [13] conducted comprehensive multiple

daytime nap recordings to establish the degree of matching

of the corresponding sleep latencies based on ear-EEG and

scalp-EEG under two conditions: 1) after normal sleep and 2)

after sleep restriction. The same nap data over twenty three

participants were used by Nakamura et al. [14] to establish

the potential of ear-EEG in automatic detection of drowsiness

(i.e. to distinguish between wakefulness and light sleep).

Nguyen et al. [15] conducted overnight sleep recordings over

eight participants to evaluate their in-ear sensing system; their

sensors were able to record the EEG, EOG, and EMG, key

physiological variables for sleep monitoring. It is important

to highlight that the sleep studies in [11–15], together with

this study, were conducted using one-size-fits-all viscoelastic

in-ear sensors, which are not optimised for a particular user

but are convenient for wide deployment and promise an

affordable out-of-clinic solution. Owing to their flexibility

and favourable stress-strain properties (memory foam) [28],

these viscoelastic earpieces can be squeezed and shaped up

to fit comfortably any ear; such a ‘generic’ in-ear sensor is

readily applicable to a large population, a pre-requisite for the

future eHealth in the community. With custom-made hardshell

earpieces, a technology derived from hearing aids earpieces,

Looney et al. established the ear-EEG concept [29], while

more recently Zibrandtsen et al. [16] monitored overnight

sleep EEG activity from a single participant, and confirmed

the similarities in temporal and spectral features between

ear-EEG and conventional scalp-EEG. Recently, Mikkelsen

et al. [17] validated automatic overnight sleep staging using

hardshell binaural ear-EEG recordings over nine participants.

The recent around-ear EEG device (cEEGrid) [18], which

strictly speaking records scalp-EEG behind the ear, has also

been utilised for overnight sleep recordings. It has been shown

to be capable of monitoring specific sleep patterns, such as the

K-complex, theta activity, and delta activity in NREM 3 stage

sleep.

With our own one-size-fits-all in-ear sensing system [28],

we here further establish and validate the feasibility of sleep

monitoring in the community using ear-EEG in the following

setups:

1) ‘Standardised’ viscoelastic in-ear sensors [34] for off-

the-shelf sleep monitoring of a relatively large popula-

tion of young healthy adults;

2) A ‘real-world’ out-of-clinic overnight sleep scenario,

namely in participants’ homes to reflect their normal

sleep patterns (community based screening);

3) In conjunction with the conventional PSG for hypno-

gram generation, which then serves as the ‘ground-truth’

for further analyses.



3

For rigour and feasibility considerations, in this study, we

employ the exact same shape of ‘standardised’ earpieces (size,

materials) throughout the recordings on multiple participants.

The recordings were undertaken in participants’ homes; such

familiar environments are a key to truly representative sleep

monitoring, as this minimises the stress and inconvenience of

the participants while maximising the likelihood of exhibiting

usual sleep patterns. Our comprehensive setup involves simul-

taneous ear-EEG and PSG recordings; the ear-EEG data were

used for automatic sleep stage classification, whilst the PSG

data were scored manually by Author YDA. To benchmark the

performance of ear-EEG against scalp-EEG, two channels of

scalp-EEG were extracted from PSG and used for automatic

sleep stage classification. Through a rigorous comparative

examination of performance metrics of an automatic sleep

staging method based on ear-EEG and the manually scored

hypnogram (based on the standard PSG), we conclusively con-

firm the feasibility of automatic overnight sleep monitoring in

out-of-clinic scenarios with readily deployable ‘standardised’

one-size-fits-all in-ear sensors, a prerequisite for affordable

eHealth.

II. METHODS

Figure 1 presents the flowchart for this study, whereby after

simultaneous ear-EEG and PSG recording in the first step,

two channels of scalp-EEG were extracted from the PSG

data. The ear-EEG and scalp-EEG data were preprocessed

through down-sampling, bandpass filtering, and removal of

noisy epochs. Then, both structural complexity and frequency

domain features for classification were extracted. The full

PSG recordings were manually scored, and the so-obtained

hypnogram was used as the ‘ground-truth’ of sleep stages for

their automatic classification.

A. Data acquisition

The ear-EEG and PSG data were simultaneously recorded

between October 2017 and June 2018 under the ethics ap-

proval, ICREC 17IC4150, Joint Research Office at Imperial

College London. In total, twenty two healthy participants

(aged 23.8 ± 4.8 years) were recorded, after an informed

consent was obtained. Only two participants had worn our

in-ear sensor prior to this study, whilst none of participants

had ever participated in overnight PSG recordings.

Participants were visited in their own home at night (ap-

proximately two hours before their usual bedtime) to setup the

ear-EEG and PSG sensors; after the sensor setup, the clinician

started the recording and left the participant’s home. Each

participant went to bed as per usual and had their normal

overnight sleep. The next morning, the clinician visited to

detach the sensors; the participants were instructed to detach

the sensors at any point during the night should they feel any

discomfort.

The ear-EEG and PSG were recorded simultaneously from

two data acquisition systems, and these two amplifiers were

manually controlled to start and stop each recording. To ensure

data alignment, the agreements between their time stamps

were checked before every recording. For the ear-EEG, the

Fig. 1. Flowchart for the automatic sleep stage classification in this study.

g.tec g.USBamp amplifier with 24-bit resolution at a sampling

frequency fs = 1200 Hz was used for the recordings. The

‘standardised’ in-ear sensor was in the form of a one-size-

fits-all viscoelastic earplug with two flexible electrodes, the

details can be found in [28, 34]. The size of in-ear sensors

was the same for all participants, approximately 25 mm in

length and 12 mm in diameter. Before insertion, a participant’s

ear canal was cleaned with a cotton bud to remove ear wax;

then conductive gel was applied to the electrode. The in-

ear sensor was inserted into either participant’s left or right

ear, according to their preference, within a monaural setup.

After the insertion, the sensor adapted snugly to the shape

of the ear canal. Standard gold-cup electrodes were used

as a reference (behind the ipsilateral helix) and ground (the

Fig. 2. The in-ear sensor used in our study. Left: Wearable in-ear sensor with
two flexible electrodes. Right: Placement of the in-ear sensor.



4

ipsilateral earlobe). Figure 2 shows the in-ear sensors with two

electrodes (left) and the placement of earpiece (right). Before

the overnight recordings, the quality of ear-EEG responses was

inspected during the participants’ resting state with their eyes

closed, and the electrode impedance was also checked.

The PSGs were recorded by the SOMNO Screen device,

by SOMNO medics. The electro-physiological sensors were

placed onto participants’ scalp (including eight channels of

EEG: F3, F4, C3, C4, O1, O2, M1, and M2, according to the

international 10-20 system), face (including two channels of

EOG), chin (three channels of EMG), chest, abdomen, and legs

(including two channels of electrocardiography (ECG)). The

ground and reference electrodes were attached on the forehead.

Multiple other signals were monitored, such as participants’

movement, body position, pulse rate and the pulse waveform

(pulse oximeter), Naso/Oral flow (thermistor), and snoring

sound. The data were recorded at a sampling frequency of

256 Hz, and transmitted to a laptop wirelessly.

B. Manual scoring

The recorded PSG data, including EEG, EOG, EMG, and

respiration, were analysed by the Domino Plus system, by

SOMNO medics. The obtained PSGs were bandpass filtered

with the passband frequencies from 0.2 − 35Hz, and such

processed PSG data were then manually scored by a clinician

based on the American Academy of Sleep Medicine (AASM)

criteria [35]. The so-labeled sleep stages were Wakefulness

(W), NREM1 (N1), NREM2 (N2), NREM3 (N3), REM, and

Movement. A PSG recording by one participant was not scored

due to high frequency artefacts; therefore, overall, 21 out of

22 participants’ overnight recordings were used for further

analyses.

C. Pre-processing

The recorded signals were first aligned in accordance with

the time stamps from the separate ear-EEG and PSG ampli-

fiers. In total, approximately 165 hours (i.e. approximately

eight hours per participant) of ear-EEG and PSG data were

used for further analyses. For the classification, we used:

1) two ear-EEG channels (upper and lower channel of the

earpiece), and 2) two scalp-EEG channels (C3-M2 and C4-

M1) from the PSG recordings. The ear-EEG and scalp-EEG

signals were downsampled to 120 Hz and 128 Hz, respectively;

the downsampled frequencies of two systems were different

due to the recording sampling rates (1200 Hz for ear-EEG, and

256 Hz for scalp-EEG). After downsampling, the EEG signals

were bandpass filtered using a fourth-order Butterworth filter

with the passband from 0.5−30Hz. Figure 3 illustrates differ-

ent EEG sleep features, including alpha, theta, K-complex, and

delta activities, from an on-scalp and the in-ear EEG channel.

Epochs scored as ‘Movement’ were removed. In this anal-

ysis, we considered the standard epochs (i.e. 30 s segment

of recordings) while epochs which contained amplitudes of

more than ±200µV for ear-EEG, and ±400µV for scalp-

EEG, were deemed to be contaminated by noise. This is

because, for the scalp-EEG, the amplitude of the K-complex,

a signature response of NREM 2 sleep, is normally less than

TABLE II
PROPORTION OF SCORED SLEEP STAGES IN DIFFERENT SYSTEMS

Ear-EEG (N=16)
Wake N1 N2 N3 REM All

# of epochs 2568 183 5332 2048 1479 11610
Ratio (%) 22.1 1.6 45.9 17.6 12.7 100

Scalp-EEG (N=17)
Wake N1 N2 N3 REM All

# of epochs 2385 163 6510 1902 2080 13040
Ratio (%) 18.3 1.2 49.9 14.6 16.0 100

±400µV [36]; we also assumed ±200µV was applicable for

such amplitude thresholding in ear-EEG, since the amplitude

of ear-EEG is smaller than that of scalp-EEG [29], as also

seen in Figure 8. In order to remove noisy epochs from further

analyses, the epochs for classification were selected using the

criteria below:

1) Find all epochs which contain amplitudes larger than the

threshold (i.e. ±200µV for ear-EEG, and ±400µV for

scalp-EEG) in each channel;

2) Remove an epoch if at least one channel of ear-EEG (or

scalp-EEG) has amplitudes above the threshold;

3) Count the number of removed epochs (noisy epochs);

4) Do not consider a trial if the number of noisy epochs

is more than 50 % of the entire recording from a

participant.

We applied this epoch/participant rejection strategy to ear-

EEG and scalp-EEG separately, therefore, the total numbers

of epochs in the ear-EEG and scalp-EEG systems for further

analyses were different, with details of their proportion given

in Table II. The number of participants and epochs for further

analysis of ear-EEG were respectively N = 16 and 11610

(out of 15120 – 76.8 % remaining epochs), while for scalp-

EEG we had N = 17 and 13040 (out of 15970 – 81.7 %

remaining epochs). This, in turn, means that the remaining

participants for ear-EEG and scalp-EEG were not necessarily

the same, since the removed participants were chosen based

on amplitude thresholding, as explained earlier.

D. Feature extraction

After the pre-processing stage, feature extraction was per-

formed using: 1) a complexity science feature, multi-scale

entropy (MSE) [37], and 2) a frequency feature, the spectral

edge frequency (SEF) [38]. These metrics were calculated

for each epoch of both ear-EEG and scalp-EEG data. This

combination of multi-scale permutation entropy (MSPE) and

SEF was proven to be particularly successful in our previous

automatic sleep staging work [23] which considered a publicly

available overnight Sleep-EDF [expanded] dataset [39]. Based

on two channels of scalp-EEGs from 61 participants, the

achieved accuracy was 88.6 % with the corresponding kappa

coefficient [40] of κ = 0.84 (Almost Perfect Agreement) in

the 5-class sleep stage classification. For continuity, the same

feature extraction methodology was applied in this study.

1) Structural complexity feature: The MSE method was

shown to be able to quantify the degree of correlation in a

time series, therefore it can be used to estimate structural

complexity in data. The original MSE was designed to estimate
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Fig. 3. EEG recordings from a single participant in different sleep stages (Red: the on-scalp C3-M2 channel, Blue: in-ear upper channel).

sample entropy of coarse grained time series, while its multi-

variated generalisation (MMSE) has been proposed to assess

structural complexity of noisy multi-channel physiological

data [41, 42]. As a structural complexity entropy based method

for this study, we employed the permutation entropy (PE) [43].

The PE is a metric for detecting dynamical changes and for

estimating the information contained in a time series based on

comparing consecutive values of a time series. Compared to

other entropy metrics, the PE requires less computational time

and is robust to noise in the measurements; hence, the method

is suited to time series with poor stationarity characteristics,

such as physiological signals [44].

The details of MSPE can be found in our earlier related

work [23]; the same parameters (i.e. the scale: τ = 20, the

embedding dimension: d = 5, and the time delay: L = 1) were

used for this study. Figure 4 illustrates the MSPE analysis for

ear-EEG and scalp-EEG channels of overnight data for one

participant. The trends of two MSPEs for ear-EEG and scalp-

EEG were similar, as evidenced by lower complexity in the

N3 sleep stage which is due to the ‘deterministic’ dominant

delta activity (0.5−4Hz), and especially for slow wave activity

(0.5− 2Hz).

2) Spectral feature: As a frequency domain feature, the r %

spectral edge frequency (SEF), denoted by SEFr was used.

The SEFr is defined as the frequency value which contains

r % of the power in a given frequency range, that is

fhigh∑

f=flow

‖magnitude(f)‖2 ×
r

100
=

SEFr∑

f=flow

‖magnitude(f)‖2.

Owing to its robustness and ease of calculation, the SEF

metric is now commonly used in physiological data analyses,

especially in studies of EEG [38]. Relevant to this work,

recently Imtiaz et al. [45] utilised the SEF methods in a sleep

study, and proposed using the difference between SEF95 and

SEF50, called SEFd, to detect the REM stage effectively,

whereby SEFd = SEF95− SEF50.

Fig. 4. Averaged multi-scale permutation entropy (MSPE) for the overnight
sleep of one participant for an in-ear upper channel (ear-EEG, Top panel) and
an on-scalp C3-M2 channel (scalp-EEG, Bottom panel) over different sleep
stages. The error bars represent the standard error.

For our study, the power spectral density (PSD) of each

epoch (30 s) was obtained using Welch’s averaged peri-

odogram method with the window length of 4 s and 50 %

window overlap. Following the analysis in [23], we chose the

same frequency ranges for SEF50, SEF95, and SEFd in the

following bands; δ − β = 0.5− 30Hz, δ − α = 0.5− 16Hz,

θ = 2−8Hz, α = 8−15Hz, αl = 8−11Hz, αh = 11−15Hz,

and β = 16− 30Hz.
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E. Classification

The extracted features were normalised to between [0, 1]
participant-wise before performing classification. The multi-

class support vector machine (SVM) with the radial basis

function (RBF) kernel was employed as a classifier. The

regularisation parameter was set to C = 3, and the hyper-

parameters of the RBF kernel were set to γ = 1. The same

hyper-parameters were used throughout the analysis.

F. Evaluation

The pre-processing and feature extraction analyses were

conducted in Matlab 2016b, and the classification was imple-

mented in Python 2.7.12, Anaconda 4.2.0 (x86_64) operated

on an iMac with 2.8GHz Intel Core i5, and 16GB of RAM.

In order to evaluate the classification performance of the

proposed study, we utilised two metrics: 1) class-specific

performance and 2) overall performance.

The class-specific performance metrics used were the sen-

sitivity, SE = TP/(TP + FN), and precision, PR =
TP/(TP + FP ), where TP (true positive) represents the

number of positive (target) epochs correctly predicted, FN
(false negative) designates the number of positive epochs

incorrectly predicted as negative class, and FP (false positive)

is the number of negative epochs incorrectly predicted as

positive class.

The overall performance was evaluated by the accuracy

(AC) and Kappa coefficient (κ) metrics [40], defined as:

AC =

∑M

i=1
TPi

Nepoch

, κ =
AC − πe

1− πe

,

where πe =

∑M

i=1
{(TPi + FPi)(TPi + FNi)}

Nepoch
2

.

The parameter M denotes the number of classes (e.g. M =
5 class: Wake, N1, N2, N3, REM), and Nepoch is the total

number of epochs.

G. Validation setup

A 10-fold cross-validation (CV) approach was utilised; EEG

recordings from all participants were concatenated into one

large matrix, which was then randomly split into the training

data (90 %) and the test data (10 %). We repeated the validation

10 times with changing the selection of training and test data.

III. RESULTS

The feature matrices based on two ear-EEG channels and

two scalp-EEG channels were classified by a multi-class SVM

with fixed hyper-parameters as explained in Section II-E.

Figure 5 shows the classification results for M = 5 classes

(W, N1, N2, N3, and REM) using the ear-EEG and scalp-

EEG. In the ear-EEG setup, the overall accuracy was 74.1 %

with the corresponding kappa value of κ = 0.61, which

indicates Substantial Agreement, whereas the accuracy and κ
of scalp-EEG were respectively 85.9 % and 0.79 (Substantial

Agreement). The sensitivities to each sleep stage of ear-EEG

Fig. 5. Confusion matrix for the classification results. Upper: Ear-EEG,
Lower: Scalp-EEG. The symbols SE/PR on the bottom right denote respec-
tively sensitivity (above) and precision (below).

were approximately 10 % lower than those of scalp-EEG,

except for the REM condition. The sensitivities to REM of

ear-EEG and scalp-EEG were 45.8 % and 81.8 %, respectively.

Notice that more epochs labeled REM were misclassified as

N2 (679 epochs) than correctly classified as REM (677 epochs)

in the ear-EEG setup.

Figure 6 depicts the participant-wise classification accuracy

(blue bar plot) and the corresponding κ (red dot plot) for both

the ear-EEG and scalp-EEG scenarios. Although not without

variations, overall, data from all participants were amenable

to being automatically classified using the proposed methods.

Figure 7 illustrates the overnight hypnograms of two par-

ticipants for both the ear-EEG and scalp-EEG system; the

graphs show the manually scored hypnograms based on the

full PSG recordings (blue) and the automatically predicted

label based on the proposed algorithm (red). The black crosses

denote the epochs removed from the analyses due to amplitude

thresholding (see Section II-C). In Figure 7A, notice the REM

condition between time stamps 03:30 and 04:30; regarding the

predicted label based on ear-EEG, a large portion of epochs

was misclassified as N2 sleep, whereas the majority of epochs
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Fig. 6. Classification accuracy (blue bars) and kappa values (red dots) for
individual participants, P1-17. Upper: Ear-EEG based results, Lower: Scalp-
EEG based results.

was correctly classified as REM in the prediction based on

scalp-EEG. For further illustration, in a hypnogram of another

participant in Figure 7B, multiple sleep cycles, e.g. three REM

conditions, can be observed.

Table III displays the classification results over different

number of classes (M = 2, 3, 5). The class-wise sensitivity

and precision (in italic), and overall accuracy and κ are

also provided. The notation M = 2 means the 2-stage

classification (Wake vs Sleep), whereas M = 3 denotes 3-

stage classification (Wake vs NREM sleep vs REM sleep).

The accuracy of ear-EEG ranged from 74.1 % to 89.9 % with

the corresponding, κ, from 0.60 to 0.68. The accuracies and

kappa coefficients of scalp-EEG were higher than those of

ear-EEG.

TABLE III
SENSITIVITY AND Precision (in italic) FOR SLEEP CLASSIFICATION IN

DIFFERENT CLASS SCENARIOS, M=2, 3, 5.

Ear-EEG M = 2 M = 3 M = 5

Wake 66.7 84.1 70.4 80.6 74.3 77.2

N1

96.4 91.1
92.0 82.3

4.9 64.3

N2 84.1 71.4

N3 74.7 83.7

REM 42.1 68.1 45.8 66.6

Accuracy 89.9 80.9 74.1
κ 0.68 0.60 0.61

Scalp-EEG M = 2 M = 3 M = 5

Wake 81.6 91.3 82.9 89.3 83.8 88.1

N1

98.3 96.0
94.3 91.7

20.2 58.9

N2 89.5 85.8

N3 86.1 88.2

REM 80.3 83.1 81.8 82.3

Accuracy 95.2 90.0 85.9
κ 0.83 0.80 0.79

IV. DISCUSSION

This study has proposed an overnight sleep monitoring

system using a ‘standardised’ in-ear sensor, and has validated

the feasibility of automatic sleep staging based on ear-EEG.

Compared to the gold standard – manually scored hypnogram

based on a standard PSG recording – the obtained classifi-

cation accuracy using ear-EEG features was 74.1 % with the

corresponding κ value of 0.61, which indicates Substantial

Agreement.

Compared to the classification performance based on ear-

EEG, the results based on scalp-EEG were better, especially

regarding the sensitivity to REM stage. As seen in Figure 5, the

majority of manually labeled REM epochs were misclassified

as N2 in the ear-EEG setup. Figure 8 illustrates the averaged

power spectral density for the ear-EEG (left) and the scalp-

EEG (right) of two participants. For this analysis, the recorded

signals were manually selected in order to compare N2 vs

N3 vs REM; for the top panel (Participant 1), a single

consecutive 90 minutes of sleep data were selected, whereas

two consecutive 60 minutes of sleep data were selected (i.e.

120 minutes in total) for the bottom panel (Participant 2).

The PSDs were obtained using Welch’s averaged periodogram

method, the window length was 4 s with 50 % of window

overlap. The trends in ear-EEG and scalp-EEG analyses were

similar and included: 1) high-alpha (12 − 15Hz) activities

in N2 sleep, 2) prominent delta activities (0.5 − 4Hz), and

especially slow wave activity (0.5 − 2Hz) in N3 sleep, and

3) relatively lower EEG amplitude in REM. However, the

slow wave activities of N2 and REM sleep in the ear-EEG

were similar, as evidenced by an overlap in their spectrum,

whereas clear visual separation was present in the scalp-EEG

setup. This overlap might have caused the lower discrimination

performance for N2 and REM in the ear-EEG scenario. We

would like to highlight that the scalp-EEG montage (C3-M2

and C4-M1) is the gold standard for sleep medicine, and has

been studied and validated over decades. Also, the algorithm

applied in this study was originally tested and developed on

a publicly available dataset of scalp-EEG [23]. In [23], the

classification performance based on two scalp-EEG channels

over 61 participants from a publicly available dataset was

88.6 % in accuracy with the corresponding κ of 0.84 in a

5-class sleep stage classification, which was similar to the

results in this study – the accuracy and κ were respectively

85.9 % and 0.79 in a 5-class sleep staging using two channels

of scalp-EEG over 17 participants. Future work will consider

introducing a fine-tuned classifier, specifically designed for

ear-EEG. Collecting a very large cohort of in-ear sleep EEG

data will allow us to examine more practical validation setups,

such as leave-one-participant-out CV in addition to K-fold CV.

Our study leaves room for improvement; for example,

some noisy epochs were removed by amplitude thresholding,

and some participants were removed from the analyses as

mentioned in Section II-C. According to visual inspection of

the shape of the recorded signal, the noise was categorised

into: 1) abrupt electrode noise and 2) physiological noise from

respiration. The first type of noise might have been caused
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Fig. 7. Manually scored hypnograms of overnight sleep based on the full PSG (blue) and the automatically predicted label by the proposed algorithm with the
ear-EEG and scalp-EEG features (red) from two participants (A and B). The black crosses above the W stage indicate the epochs removed from the analyses
due to the amplitude thresholding.

by participants’ movement. Note that our in-ear sensor has

been extensively validated in a research lab when the partic-

ipants were in the resting state, but only a few studies were

conducted under participants’ movements (e.g. jaw movement

[28]). These issues can be resolved with a future advanced

sensor design. The second type of noise was due to the

placement of the in-ear sensor on the participant’s head. In

certain recordings, the recorded ear-EEG signal was overlaid

by a slow oscillation of large amplitude, which represents

an artefact from respiration. Our study utilised a monaural

setup in order to minimise both the time for technical setup

and participants’ inconvenience, however, this might have

interfered with the quality of recordings. As shown in our

recent work [46], in addition to one more degrees of freedom

in ear-EEG recording, a binaural setup would also allow for

the monitoring of other physiological parameters such as ECG

and respiration [28].

V. CONCLUSION

We have proposed and validated an automatic overnight

sleep monitoring system with readily deployable ‘standard-

ised’ one-size-fits-all viscoelastic in-ear sensors. Full standard

PSG and in-ear EEG have been simultaneously recorded for

twenty-two healthy participants, who participated in overnight

sleep recordings at their own home in order to both minimise

participants’ inconvenience and provide a ‘real-world’ out-

of-clinic scenario. The scalp-EEG and ear-EEG have been

shown to exhibit a high degree of similarity in both the

structural complexity and spectral domains. The agreement

between manually scored hypnograms based on full PSG and

automatic 5-class sleep stage prediction based on ear-EEG

was 74.1 % in the accuracy with the kappa coefficient of

0.61 (Substantial Agreement), whereas the obtained accuracy

and κ based on scalp-EEG were 85.9 % and 0.79 (Substantial

Agreement), respectively. This study has demonstrated that a
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Fig. 8. Averaged periodograms of ear-EEG and scalp-EEG during selected
consecutive epochs of two different participants. The vertical lines denote the
2 and 4 Hz frequencies in order to designate the delta activity (0.5 − 4Hz)
and slow wave activity (0.5− 2Hz).

single in-ear sensor is capable of monitoring overnight sleep

in an unobtrusive and inexpensive way, and that one-size-fits-

all viscoelastic sensor promises to become a viable eHealth

community-based alternative to conventional sleep monitoring

in a clinic.
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