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Abstract. Accurate R peak detection in the electrocardiogram (ECG) is a well-

known and highly explored problem in biomedical signal processing. Although a lot

of progress has been made in this area, current methods are still insufficient in the

presence of extreme noise and/or artifacts such as loose electrodes. Often however

not only the ECG is recorded, but multiple signals are simultaneously acquired from

the patient. Several of these signals such as blood pressure, can help to improve

the heart beat detection. These signals of interest can be detected automatically by

analyzing their power spectral density or by using the available signal type identifiers.

Individual peaks from the signals of interest are combined using majority voting, heart

beat location estimation and Hjorth’s mobility of the resulting RR intervals. Both

multimodal algorithms showed significant increases in performance of up to 8.65%

for noisy multimodal datasets compared to when only the ECG signal is used. A

maximal performance of 90.02% was obtained on the hidden test set of the 2014

Physionet/Computing in Cardiology challenge.

Keywords: multimodal, R peak detection, ECG, blood pressure
Submitted to: Physiol. Meas.

1. Introduction

Continuous extraction of the heart rate and heart rate variability is crucial in multiple

monitoring applications. Typically only the available ECG signal is used for its

computation. It can however occur that this signal becomes too noisy or the

electrodes can even become disconnected, possibly leading to false or missing heart

rate information, which could have crucial effects on the monitoring efficiency.

In several monitoring applications other biomedical signals are also acquired

simultaneously. Pulsatile signals such as blood pressure (BP) or signals with strong
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Figure 1. Example of a multimodal data segment. In this example the BP signal and

the EOG signal with R peak interference can improve the performance of the heart

beat detection in case the ECG signal would have been noisy.

R peak interference could be used for improved heart beat detection (see figure 1).

The goal is to combine the heart beat information from all these signals in order to

make a single decision about the R peak locations. This was also the subject of the

2014 Physionet/Computing in Cardiology challenge (from now on referred to as the

’challenge’) to which the proposed methods were submitted (Moody et al. 2015).

Signal type identifiers (ECG, BP, etc.) were available in the used datasets (see

section 2), but this paper proposes a method that is able to automatically detect these

signals that can improve the heart beat detection. In this way the algorithm is able

to detect signals with R peak interference (e.g. EEG, EOG) and deal with missing or

erroneous signal type identifiers (IDs). This procedure and the methods for multimodal

heart beat detection are described in section 3. Finally, the results are given and

discussed in sections 4 and 5. A precursor of this paper has been published in De

Cooman, Goovaerts et al. (2014).

2. Datasets and challenge information

An overview of the detailed challenge information, restrictions and data can be found in

(Moody et al. 2015). In this paper the mentioned training set contains the 200 recordings

that were available after the challenge, and the test set contains the 200 other remaining

hidden recordings. It should however be noted that the discussed methods were initially

developed with the use of only the initial challenge training set.

Because the initial available training set did not contain sufficient challenging

examples (typical performance > 99.85%), an extra dataset of 100 recordings was

extracted from the MGH/MF Waveform database (Welch et al. 1991). These were

extracted as the recordings between the 20th and 30th minute of recordings 001 to 107.

Recordings 041, 043, 045, 047-049 and 083 were left out due to errors during reading of

the original data/annotations. The time intervals were chosen to guarantee that correct
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Figure 2. Overview of the algorithms proposed in this paper. In theMMNI algorithm

(a), only the signal type of the first signal is certainly known (ECG). In the MMWI

algorithm (b), all available signal IDs are used. Crosses indicate after which steps

signals can be removed from further processing.

reference annotations were available. These recordings typically contained additional

ECG, pulmonary arterial pressure (PAP), arterial BP (ART) and central venous pressure

(CVP) signals and can thus optimally profit from the methods discussed in this paper.

3. Methodology

Two algorithms for multimodal heart beat detection are elaborated in this paper (see

figure 2). At first, a multimodal algorithm MMNI that does not require the availability

of signal type IDs (except for the known reference ECG signal) is discussed in sections

3.1 to 3.3. Section 3.4 describes an additional algorithm MMWI that does use these

signal IDs.

3.1. Automatic relevant signal detection using power spectral density similarity

At first, the potential signals of interest are selected automatically. These signals

typically have the same periodic behavior as the ECG, which will be exploited in this

procedure. With this procedure, there is no need for using the given (possibly false

or missing) signal IDs, making the algorithm more robust when applying it on other

databases. Pulsatile signals are examples of signals that need to be detected, but also

other signals which contain R peak interference can improve the heart beat detection.

First, a noise-free segment of the ECG is selected based on a method described in

Varon et al. (2012) as follows. The ECG is divided into k segments Ci, 1 ≤ i ≤ k, of
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5 seconds and each segment is filtered using a bandpass Butterworth filter with cut-

off frequencies at 1 Hz and 40 Hz. Next, the autocorrelation function (ACF) of each

segment is computed. A similarity matrix S is then constructed with entries defined as

Si,j =
AT

i Aj

‖Ai‖‖Aj‖
, i, j = 1, 2, ..., k (1)

with Ai the ACF of segment Ci. Now let

Mi =
k

∑

j=1

Si,j, i = 1, 2, ..., k (2)

so that Mi gives an indication about the similarity between segment Ci compared to all

other segments in the signal. We assume that the signal contains more noise-free than

noisy segments, so a high similarity in a segment would indicate a noise-free segment.

A period of l subsequent segments is then selected with maximal Mi values:

a = argmax
i

l−1
∑

n=0

Mi−n, (3)

with l chosen as the number of segments corresponding to 10% of the signal length

(typically 1 minute). The resulting block of segments Ca−l+1,a−l+2,...,a then forms the

noise-free ECG period used in further processing.

The R peak detection algorithm from Yeh & Wang (2008) is then applied to this

ECG segment and the average heart rate HRav of this segment is obtained. Next, the

normalized power spectral density (PSD) is computed for all signals in this time segment.

Signals with the same periodic behavior as the ECG should contain a peak in their PSD

around the average heart rate frequency HRav (see figure 3). In order to get a more

distinctive peak around HRav in the ECG PSD, flattened ECG signals are used as input

for the PSD computation. These flattened signals were found by subtracting the upper

and lower secant envelopes from each other (Varon et al. In press 2015). The similarity

(computed similarly as in (1)) between the PSD values in the interval [HRav-0.3Hz,

HRav+0.3Hz] of the ECG signal and the other signals must exceed the threshold of 0.75

in order to be detected as a signal of interest. The value of this threshold is optimized

heuristically using the available training set. Only these signals will be processed from

now on. The procedure for detection of the noise-free ECG period was necessary in

order to get a reliable estimate of the HRav value.

3.2. Individual peak detection

In the next phase, heart beat locations are found for each signal of interest for the

entire record length. For the first signal, a different QRS detection algorithm (gqrs

from the WFDB toolbox) is used here compared to the one discussed in section 3.1

(Silva & Moody 2014). Although the latter resulted in a better performance, it was
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Figure 3. Illustration of the automatic signal detection procedure. The left figure

shows four signals during a 6 seconds epoch of the selected noise-free ECG period. The

PSD values of all signals are shown in the right figure. The dotted line in the right

figure indicates the average heart rate frequency HRav in the selected noise-free period

in the ECG signal. The frequency segment that is used for computing the correlation

coefficient is marked by the solid vertical lines. In this example only the BP and stroke

volume (SV) signal are selected as signals of interest.

computationally too expensive to run on the entire signal length. Therefore it was only

executed on the noise-free ECG period to get a more reliable estimate of HRav.

For the other signals, a basic general peak detection algorithm is used. First, an

exponentially decreasing envelope esig is computed from each signal sig

esig(n) = max
i

sig(n− w + i)exp(−if−1
s ), i = 1, 2, ..., w (4)

with fs the sampling frequency of the signal and w the used window size, set here to

⌈fs/2⌉. Heart beat locations are then detected if their corresponding envelope value is

the highest value in a neighborhood of 300ms around its location. Despite its simplicity,

the algorithm performed well on noise-free BP, stroke volume (SV) and ECG signals

with positive peaks at a low computational load. By detecting the peaks of the signal

envelopes, this method is more robust when finding peaks in additional ECG signals as

the T peaks are less likely to be detected this way.

Because the peaks in the different types of signals do not occur at the same time

as the ECG R peaks, the acquired peak positions need to be aligned with respect to the

R peak locations before combining them in the next phase. The average delay between

the peaks of the ECG and the other signals in the noise-free ECG period are computed

and used for aligning each record separately. Derivation of the average delay is done

by taking the most occurring delay between each signal and the reference ECG signal

by computing the histogram of these delays. In this way, the algorithm can adapt to

different kinds of signals of interest in a general way. If however the standard deviation

of these delay values is too high (> 150ms), the corresponding signal is removed from

further analysis. This may occur if a signal was falsely selected or if the corresponding

peak locations are too inaccurate to increase the heart beat detection performance.
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Figure 4. Illustration of the majority voting procedure for combining heart beats

from different signals. Signals vote1 and vote2 indicate temporary versions of vote

for each signal separately. The peaks from the BP signal are indicated by diamond

symbols, the arrows indicate the peaks for this signal after alignment. Signal vote is

defined as the sum of vote1 and vote2. The real R peak annotations are marked by an

asterisk.

3.3. Combination of individual peak locations

Finally, the different individual peak locations from all signals need to be combined into

a single list of R peak locations. This procedure runs in two phases. In a first phase,

an initial list of R peak locations is found by using majority voting on the individual

peak locations. This procedure is implemented here by defining a signal vote, which

has the same length as the signals and all values are initialized at zero. For each peak

location loc in each signal of interest, the values vote(loc−window : loc+window) are

increased with 1. For R peak locations coming from the known reference ECG signal,

window equals 10ms, for other signals it is set to 50ms. This is due to the fact that the

pulsatile signals tend to contain less accurate peak locations and could thus vary more

compared to the corresponding R peaks in the ECG signal. This procedure is illustrated

in figure 4. An initial set of peak locations peaks is then found by selecting peak values

in vote which are greater than or equal to ⌊#signals/2⌋+1, with #signals the number

of signals of interest.

In the second phase, this initial set of heart beat locations peaks is reinspected in

a chronological fashion in order to see if heart beats have been missed. Define RR(n)

as the interval between peaks(n) and peaks(n + 1). An estimation of the number of

missing R peaks est(n) in RR(n) is defined as

est(n) =



















0 : val(n) ≤ 1.5

1 : 1.5 < val(n) < 2.6

2 : 2.6 ≤ val(n) < 3.5

round(val(n))− 1 : else
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Figure 5. Illustration of the combination of peak locations of different signals. The

red circles indicate the initial set of R peak locations peaks. In this case, peak locations

from ECG (narrow peaks) and BP (wide peaks) are combined. The chained lines show

the estimated R peak locations estlocn
2
, which lay near the ECG peaks. The ECG

peak locations are thus added to peaks in this example.

with

val(n) =
RR(n)

median(RR(n− 3 : n− 1))

If est(n) > 0, further analysis of RR(n) is required and peak locations in this

interval need to be added. In this case, only peak locations originating from one signal

can be added to peaks. The question remains from which signal to choose these peak

locations in RR(n). Let locni be the individual peak locations in RR(n) from signal

i. If at least one list of peak locations locni contains exactly est(n) heart beats, one

searches for one locni that follows this constraint and has a minimal Euclidean distance

to the estimated missing beat locations estlocnest(n). estlocnj is defined here as a list of

peak locations in RR(n) containing j peaks, with peaks located so that they result in

equally large RR-intervals in RR(n) (see figure 5). When none of the peak location

lists locni contains exactly est(n) peaks, this procedure is repeated for est(n) ± 1 and

estlocnest(n)±1. If again no such list of beat locations is available or if est(n) > 5, the

peak locations locni with the lowest variance in RR-intervals is chosen. Estimating the

number of missing heart beats becomes too inaccurate if est(n) > 5 and is therefore

avoided in this procedure. In these cases, locni are extended with peaks(n−3 : n−1) and

peaks(n) in order to check if these RR intervals fit in the surrounding RR values. When

peaks is fully analyzed, it contains the final list of heart beat locations. An overview of

the combining procedure is shown in algorithm 1.

3.4. Heart beat detection using signal type identifiers

A second version of the algorithm (called MMWI) was also submitted for the challenge.

In this version, the available signal type identifiers are used in order to define the

potential signals of interest to be used for heart beat detection optimization. It is

thus not able to detect signals which contain R peak interference, but is less likely to
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Algorithm 1 Combining peak locations from different signals of interest
1: Input: loci with 1 ≤ i ≤ #signals and #signals the number of signals of interest

2: Output: peaks containing R peak locations

3: Construct vote based on individual peak locations loci (see figure 4)

4: Find peak locations peaks so that vote(peaks) ≥ ⌊#signals/2⌋+ 1

5: for n=1:length(peaks) do

6: RR(n) = [peaks(n), peaks(n+ 1)]

7: Estimate number of missing peaks est(n) in RR(n)

8: Define locni as the individual peak locations from signal i in RR(n)

9: if est(n) < 6 and ∃c ∈ [1,#signals] : length(locnc ) = est(n)

10: b = argminc ‖estloc
n
est(n) − locnc ‖

2

11: else if est(n) < 6 and ∃c ∈ [1,#signals] : length(locnc ) = est(n)± 1

12: b = argminc ‖estloc
n
est(n)±1 − locnc ‖

2

13: else

14: b = argminivar(diff(loc
n
i )), i ∈ [1,#signals]

15: end if

16: add locnb to peaks

17: end for

miss detection of signals with pulsatile signal IDs. The flow chart of this algorithm is

shown in figure 2(b) and follows these steps:

(i) First the signals of interest are detected by searching for signal IDs containing the

string ’ECG’, ’BP’, ’PLETH’, ’PAP’, ’ART’, ’PPG’ or ’pressure’. These signals were

chosen as they typically yield robust information about the heart beat locations and

the general peak detector performed well on these signals. SV and CVP signals were

left out as they too often had too much variance in their peak locations, most often

leading to a decrease in performance.

(ii) R peaks in signals with ECG IDs were computed by means of the gqrs algorithm

because of its limited computational load. Heart beats in the other signals were

detected by the general peak detector described in section 3.2.

(iii) It can occur that the first signal is not trustworthy as a reference signal for peak

alignment. This is typically the case if the first signal is too noisy over a big part of

the length. Therefore it is possible to change the reference signal in this method. It

is chosen as the signal that has the lowest Hjorth’s mobility in its heart rate values

(Hjorth 1970). This parameter gives a good indication about the smoothness of the

resulting tachogram. Non-ECG reference signals are aligned towards the R peak

locations by using standard delay values for it’s signal type (250ms for PAP, 200ms

for other pulsatile signals).

(iv) All peak locations are aligned to these reference peak locations by computing the

average delays over the entire signal length (similar to in MMNI). Signals with a

too large standard deviation (> 150ms) on these delays are removed from the list

of signals of interest.

(v) Different peaks are combined as discussed in section 3.3.
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Figure 6. Percentages of signals with given identifier that are detected by the

proposed method for automatic signal detection. The first bars indicate the sensitivity

percentages of each signal type after inspecting the PSD similarity (see section 3.1),

the seconds bars indicate the percentages of used signals after removing the signals

with too high variability in delay values (see section 3.2).

4. Results

4.1. Automatic signal detection

The correctness of the automatic detection of signals of interest was evaluated on the

challenge training set and the mentioned subset of the MGH/MF dataset (see figure 6).

It should be noted that some of these assumed signals of interest might actually be too

noisy to use, so the actual sensitivity values of useful signals are a bit higher.

As indicated, the signals that were used for the final beat locations were chosen in

two steps. In the first step the similarity of the PSD values was used in order to get

a first list of signals of interest. The most important signals of interest (BP, ECG and

ART) are correctly detected in at least 91% of the cases after this first step.

Additional signals of interest were removed if the found alignment delays between

the signals had a too high variance. The loss in detection sensitivity is limited here

for the most important types of signals. The sensitivity drop is however larger for the

CVP and PAP signals, and almost none of the SV signals are remained for further

processing after this step. After this procedure, 10 non-pulsatile signals remained for

further processing. All of them were however signals with R peak interference, so no

signals were falsely selected for the final heart beat computation.

4.2. Multimodal heart beat detection

The performance of the different heart beat detection algorithms is evaluated by using

the sensitivity (Se) and positive predictive value (+P) of the detected R peaks. R peak

positions were labeled as a true positive if they were within a distance of 150ms of

the correct reference annotations. Two variants of both measurements are used here.
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Table 1. Results (in %) for the different proposed methods for multimodal heart

beat detection. Also the results for the other final official top 5 challenge entries and

for the unimodal gqrs algorithm are shown. MMNI − limited and MMWI − limited

indicate the limited versions of both algorithms which can only use two signals. The

last column indicates the average performance over both discussed datasets.

Challenge training set MGH/MF subset Overall

Method Segr +Pgr Av Segr +Pgr Av Av

gqrs 94.11 91.00 92.55 83.25 94.32 88.78 91.30

MMNI 94.60 92.36 93.48 90.76 96.71 93.73 93.56

MMWI 95.40 93.32 94.36 97.11 97.75 97.43 95.38

MMNI − limited 95.04 92.32 93.68 89.31 96.66 92.98 93.44

MMWI − limited 93.99 93.09 93.54 93.14 96.83 94.99 94.02

Johnson et al. (2014) 93.91 92.48 93.20 92.37 92.15 92.26 92.88

Vollmer (2014) 93.54 94.61 94.07 97.22 97.96 97.59 95.25

Gieraltowski et al. (2014) 94.22 93.29 93.75 78.77 95.80 87.29 91.60

Teo et al. (2014) 93.09 92.10 92.60 82.89 94.67 88.78 91.32

Table 2. Results for the different proposed methods for multimodal heart beat

detection on the hidden challenge test set. The old version of the MMWI algorithm

is the algorithm as described in De Cooman, Goovaerts et al. (2014).

Method Segr (%) +Pgr(%) Seav (%) +Pav(%) Ov(%)

MMWI − limited (old) 89.49 86.06 87.09 87.78 87.60

MMWI − limited 90.74 90.15 89.59 89.62 90.02

MMNI − limited 88.96 87.52 86.44 85.30 87.05

Segr indicates the sensitivity over the entire dataset, whereas Seav indicates the average

sensitivity over the recordings (similar for +Pgr and +Pav). The overall performance

(Ov) is defined as the average of these 4 measurements (Moody et al. 2015). The average

performance (Av) is the average of Segr and +Pgr.

Table 1 shows the results from both mentioned algorithms on the training set and

the subset of the MGH/MF database. Because the Physionet server had a restricted

processing time for each entry, which typically only allowed peak detection in two signals,

also limited versions of the algorithms were elaborated that use maximally two signals

(called MMNI − limited and MMWI − limited). These two selected signals are the

reference ECG signal and the first detected signal of interest (either by using the PSD

procedure in MMNI − limited or using the signal ID’s in MMWI − limited).

The results of the discussed algorithms and the original versions of these algorithms

as discussed in De Cooman, Goovaerts et al. (2014) on the hidden test set, are shown

in table 2. The initial version of the algorithm ended third in the last stage of the

official challenge (Moody et al. 2015). A maximum score of 90.02% was found for the

MMWI − limited algorithm on the hidden test set of the challenge.

The results of the other official top 5 entries from the 2014 Physionet/Computing in

Cardiology challenge (Goldberger et al. 2000) and the unimodal gqrs algorithm (applied
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on the available ECG signal) are also shown in table 1.

All proposed multimodal algorithms result in a clear performance increase compared

to when only the ECG signal is used. Especially for the subset of the MGH/MF database

this increase is significant: a performance increase of 8.65% and 5.06% for the MMWI

and MMNI algorithms. The performance gain in the challenge training set is a bit

smaller as half of this dataset (the original training set) already had a performance

of around 99.6% for the gqrs algorithm, which did not leave much room for further

improvement. A similar trend is noticeable for the limited algorithm versions, but most

often with a lower performance increase.

5. Discussion

5.1. Automatic signal detection

During the first phase of the automatic signal detection procedure, typical reasons for

missing the most important signals (ECG, BP and ART) were noisy (reference) signals

or too many false R peak detections in the reference ECG signal. Missed detections of

PAP and CVP signals were typically due to too much interbeat variation in these signals,

which would otherwise lead to bad peak detection in further processing. Some EEG,

EOG and EMG signals contaminated with R peaks were also detected with this method,

which would not be possible with the MMWI algorithm. A few low-frequency signals

(e.g. respiration) were however falsely detected if they accidentally had a harmonic

frequency peak at HRav.

After the second stage of the algorithm, most signals with inaccurate heart beat

locations were removed from the signals of interest. This can be seen in the big drop

in detection sensitivity for the SV signals, and to a lesser extent for the CVP and PAP

signals. Some important signals were however also dropped, either by the absence of

periodic positive peaks or due to bad R peak detection, but the sensitivity drop for

these signals was significantly lower.

The introduced method for automatic signal detection does not only detect most

of the pulsatile signals, but also discovered new signals that can improve the heart beat

detection. Apart from that advantage, other advantages of this approach are that the

algorithm can also be used reliably if

• there are no signal type identifiers available in the database;

• signal type errors can often occur; or

• the way of signal identifying is unknown or uncertain (full names versus

abbreviations for IDs, different types of abbreviations, different language, etc.).

The method however still requires the availability of 1 known ECG signal.

One of the main drawbacks of this method is that it assumes that all signals are

noise-free during the selected noise-free ECG period. This is however not always the

case. A first problem is that the approach for detecting the noise-free ECG period

assumes that the majority of the ECG is noise-free, but this is however not the case
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in some recordings. This could possibly lead to missing all potential signals of interest

in that recording. A second problem is that the approach also assumes that when the

reference ECG signal is noise-free, all other signals are also noise-free, which is not

always true. A signal that is temporarily detached during the noise-free ECG period

might be useful outside this period, but will not be selected as a signal of interest. A

potential solution to the latter problem would be to apply the same method for detection

of a noise-free period on each signal instead of only the known ECG. To see if a signal

s, 2 ≤ s ≤ N , with N the number of signals in the recording, is a signal of interest, one

can combine both similarity matrices in order to find a period in time in which both

signals have a maximal similarity

a(s) = argmax
j

l−1
∑

n=0

M
(1)
j−n +M

(s)
j−n (5)

The PSD values and their similarity to the ECG PSD values can then be computed

in this segment. This procedure is left for future work. It however still requires the

reference ECG signal to be noise-free for at least 50% of the signal.

5.2. Multimodal heart beat detection

In both datasets and both algorithm versions, MMWI resulted in a better performance

than MMNI , but this difference was minimal in case of the limited versions. Several

reasons for the difference in performance can be found. In case the majority of the

reference ECG signal is noisy, a noisy ECG segment is more likely to be selected. This

can produce errors in HRav, possibly leading to missing all potential signals of interest

or aligning towards bad R peak locations. A second reason is the fact that MMWI is

able to switch the reference signal. By doing this, a noisy or disconnected ECG can

be exchanged for another signal with a more logical RR sequence. The alignment step

is therefore more reliable, typically leading to less shifted heart beat locations. By

adding this procedure to the MMWI algorithm, a performance increase of around 1.5%

was found on the hidden challenge test set. MMNI was however not able to find any

peak location in 5 recordings in the hidden test set because of its dependency on the

ECG signal. Finally, MMWI is able to use the specific QRS algorithm gqrs on possible

additional ECG signals in the MGH/MF database. MMNI however had to use the

general peak detector, which is less accurate and is not able to detect negative R peaks.

If however the majority of the reference ECG is indeed noise-free, both algorithms have

a very similar performance. For the initial challenge training set, MMNI even worked

slightly better as it was able to detect some extra signals with R peak interference,

which was not possible with MMWI .

The original version of the proposed algorithms was described in De Cooman,

Goovaerts et al. (2014). The main differences of the current versions compared to

the original version are the addition of the automatic selection of the reference signal

(MMWI), the lowering of the PSD similarity threshold (MMNI) and fixing of some
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programming bugs (MMNI & MMWI). By making these adjustments on the MMWI

algorithm, a performance increase of 2.42% was accomplished on the new hidden test

set for the MMWI algorithm (see table 2).

Compared to the other official top 5 challenge entries, both proposed limited

methods would get a third place on the challenge training set. The difference with the

better performing algorithms here is the fact that these use another R peak detector,

which are probably better suited for ECG signals with pacemaker artifacts. The used

gqrs algorithm is not able to deal well with these artifacts, typically leading to either

shifted R peak locations or additional peaks for these artifacts. Beats from other signals

could be aligned to these erroneous R peak locations, which can lead to large series of

shifted R peak locations. However for the MGH/MF subset, only the algorithm proposed

in Vollmer (2014) gives a better performance. The algorithm does not put a limit on

the number of signals to be used, but as it is typically around 5 signals in this dataset,

computing it might be too long for using it on the Physionet server. The non-limited

version of the MMWI algorithm however gives the best performance over both datasets.

It should be noted that a fairly high amount of false and missed R peak detections

occurred due to the mentioned shifted R peak locations. These sometimes occur in large

series of shifted peaks, but the resulting immediate heart rate measurements only differ

in the beginning and end of these series. The intermediate heart rate values are most

often correct in this case. Because typically only the heart rate values themselves are

used in practice, the real error rate is even lower than the R peak detection error.

The proposed algorithms worked well during different observed arrhythmias, leading

to a performance increase compared to unimodal heart beat detection. Because the

algorithms try to find the most ”logical” RR sequence in the available R peak locations,

it can however occur that a wrong R peak location is chosen in case of a special beat (e.g.

a premature beat). These special beats lead to an abnormal looking heart rate value

compared to previous values, and might therefore not be preferred if a more smooth RR

sequence can be obtained with another available R peak location from another signal.

This however only occurs if the corresponding R peak locations from both signals do

not resemble well and if at least one of the signals contains artifacts during this period.

The number of these errors were however limited in the observed datasets. The presence

of arrhythmia’s does not interfere with the detection of signals of interest.

The general peak detection algorithm was rather basic in order to be able to detect

peaks in multiple different signals of interest. Nevertheless it was able to give similar

results as specific BP and R peak detectors in case of positive peaks and limited noise. If

the specific BP detector from theWFDB toolbox would be used in theMMWI algorithm,

performance slightly decreased on the discussed training sets. More enhanced QRS and

BP peak detectors could however be used in order to further optimize the performance.
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6. Conclusion

The proposed multimodal algorithms were able to detect the R peaks more robustly

compared to unimodal algorithms. The most important signals that can help to improve

the R peak detection were reliably detected in at least 90% of the cases, and also

other signals with strong R peak interference were detected with the proposed method.

The individual peaks of the different signals of interest were successfully combined by

a procedure containing majority voting, heart beat location estimation and Hjorth’s

mobility. Its performance can be further increased by optimizing the individual peak

detection algorithms or by incorporating reliability scores to the different signals during

the voting procedure. The methods could be used to improve R peak detection in

several multimodal heart beat detection applications like in the ICU or for epileptic

seizure detection using ECG in the hospital (De Cooman, Carrette et al. 2014).
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