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Abstract: Growing evidence suggests an altered gut microbiome in patients with heart failure
(HF). However, the exact interrelationship between microbiota, HF, and its consequences on the
metabolome are still unknown. We thus aimed here to decipher the association between the severity
and progression of HF and the gut microbiome composition and circulating metabolites. Using
a mouse model of transverse aortic constriction (TAC), gut bacterial diversity was found to be
significantly lower in mice as early as day 7 post-TAC compared to Sham controls (p = 0.03), with a
gradual progressive decrease in alpha-diversity on days 7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021)
compared to day 0, which coincided with compensated hypertrophy, maladaptive hypertrophy, and
overtly failing hearts, respectively. Strikingly, segregated analysis based on the severity of the cardiac
dysfunction (EF < 40% vs. EF 40–55%) manifested marked differences in the abundance and the
grouping of several taxa. Multivariate analysis of plasma metabolites and bacterial diversity produced
a strong correlation of metabolic alterations, such as reduced short-chain fatty acids and an increase in
primary bile acids, with a differential abundance of distinct bacteria in HF. In conclusion, we showed
that HF begets HF, likely via a vicious cycle of an altered microbiome and metabolic products.

Keywords: heart failure; gut microbiome; gut–heart axis; dysbiosis; circulating metabolites

1. Introduction

The microbiota, which is an “ecological community of commensal, symbiotic and
pathogenic microorganisms” [1,2], is gaining increasing attention due to its modulating
function in several human diseases. Gut dysbiosis, i.e., changes in the physiological
composition of gut microbiota due to disease conditions, has increasingly been associated
with several cardio-metabolic diseases [3]. Bacterial colonization and translocation of their
toxins to the bloodstream due to altered intestinal permeability are directly correlated with
systemic inflammation [4]. In this regard, the activation of proinflammatory pathways and
chronic inflammation was hypothesized as a major contributing factor in the pathogenicity
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and progression of heart failure (HF), which is a multisystem disorder and a leading
cause of mortality and morbidity worldwide [5,6]. Hence it is thought that the changes
in gut microbial content and/or its metabolic products likely affect the heart function
and vice versa. In our pilot study, we provided evidence that patients with HF reveal
dysbiosis of intestinal microbiota compared to healthy individuals [7–11]. Along these
lines, Beale et al. [12] and the authors from the GUMPTION study [13] demonstrated
key gut microbial changes in patients with heart failure with preserved ejection fraction
(HFpEF). Similarly, Sun et al. showed the occurrence of gut dysbiosis in chronic HF
patients [14]. Furthermore, an interesting study from Hayashi and colleagues, using whole-
genome shotgun sequencing of fecal samples and mass-spectrometry-based profiling of
amino acids demonstrated the relationship between gut dysbiosis and amino acid metabolic
disturbances in patients with HF [15]. However, it is not yet clear whether the altered gut
microbiome observed in HF patients is really an effect, whether these effects are dependent
on the severity of the disease, and whether and how an altered gut microbiome affects
cardiac homeostasis.

To establish cause and effect, controlled experimental time course models are neces-
sary to understand the mechanisms and the interrelationship between heart disease and
the microbiome. In recent years, mouse models have been used to study not only the
impact of the intestinal microbiota on host physiology and the onset of gastrointestinal dis-
eases but also to investigate metabolic and neuronal disorders, cancers, and various other
diseases [16,17]. The study of HF in laboratory mice bears significant advantages since mice
bred in the same vivarium share similar intestinal microbiota and genetics. Thus, identical
conditions could be applied within the commonly used models of HF. For example, in a
mouse model of autoimmune myocarditis, Barin et al. demonstrated that the depletion
of intestinal bacteria by antibiotics can alleviate experimental myocarditis [18]. Similarly,
a recent study in an experimental myocarditis mouse model suggested that fecal transplan-
tation can improve myocardial injury by decreased infiltration of inflammatory cells [19].
Along these lines, we employed the mouse model of transverse aortic constriction (TAC)
since this model is well established for inducing pressure overload and subsequent cardiac
failure [20]. Using a controlled experimental setup of mice, evaluation of gut microbiome at
different stages and severity of cardiac dysfunction, and multi-variate association studies
of the gut microbiome and circulating metabolites, we specifically aimed to evaluate the
role of host–microbiota correlation in the development of HF.

2. Materials and Methods
2.1. Animals

All animal experiments were locally approved by the Ministry of Energy Transition,
Agriculture, Environment, Nature, and Digitalization (MELUND) of the state of Schleswig-
Holstein (V241-60965/2017 (129-10/17)). The study conformed to the principles outlined
in the Declaration of Helsinki and the animal experiments were carried out stringently
following the ethical guidelines of the University of Kiel. C57BL/6J mice were purchased at
6 weeks of age from Charles River Laboratories, Sulzfeld, Germany; fed a standard rodent
chow diet; and kept under 12 h light and dark cycles. After arrival in our laboratory, the
mice were accustomed to the local vivarium for 2 weeks before starting the experiments.
The mice were 8-weeks-old at the beginning of the trial (Figure 1A).
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Figure 1. Diversity differences between Sham and TAC sample types. (A) Pictorial representation of
the study plan. (B) Box plots for the Shannon alpha-diversity index in Sham and TAC samples at
different time points. The box plot boxes indicate interquartile ranges (IQR), the black line indicates
the median, whiskers extend till extreme values within 1.5 times the IQR, and black points outside
whiskers are outliers. For the 1st- and 6th-week samples, Shannon index values with significant
differences in the Sham and TAC samples are shown (*, **, and ns correspond to p ≤ 0.05, p ≤ 0.01,
and not significant, respectively). (n values are as follows: Sham day 0 = 10, day 7 = 10, day 14 = 9,
day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16, day 42 = 15). (C) Box plots for the Shannon alpha-
diversity index within sample type (Sham and TAC) at different time points. Observed significant
differences for each timepoint sample comparison with the 0th-day TAC samples. (n values are as
follows: Sham day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16,
day 42 = 15). (D) For different time points, separate clusters were observed in the PCoA plot for all
sample types. For the 6th-week samples, distinct clusters were observed for the control, Sham, and
TAC sample types (PERMANOVA p-value: 0.001, beta dispersion p-value: 1 × 10−4). (n values are
as follows: control day 0 = 12, day 7 = 12, day 14 = 12, day 42 = 12; Sham day 0 = 10, day 7 = 10,
day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16, day 42 = 15). (E) PCoA plot of
Sham samples at different time points. The 6th-week samples formed a separate cluster compared to
other timepoint samples for the Sham sample type. (PERMANOVA p-value: 0.377, beta dispersion
p-value: 0.3875) (n values are as follows: day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9). (F) PCoA
analysis of TAC samples at different time points. The 6th-week samples formed a distinct cluster as
compared to other time point data of TAC samples with large variations. (PERMANOVA p-value:
0.001, beta dispersion p-value: 1 × 10−4) (n values are as follows: day 0 = 16, day 7 = 16, day 14 = 16,
day 42 = 15).
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2.2. Model of Transverse Aortic Constriction

For the TAC experiment, mice were anesthetized with buprenorphine, intubated,
and kept under anesthesia using 3% isoflurane, as previously described [20]. Briefly, the
body temperature of each mouse was kept stable using a temperature regulation pad.
After midline sternotomy, a Prolene 6.0 suture was placed around the aorta between the
branching of the brachiocephalic artery and the left carotid artery. A blunt 27-gauge needle
was positioned along the aorta and the suture was tightened around the needle. After
removing the needle, the chest was closed and the overlying skin was adapted using
a Vicryl 5.0 suture. Postoperatively, buprenorphine was administered in the drinking
water for 2 days. In mice that underwent the Sham procedure, the same procedures were
carried out except for the placement of the suture around the aorta. A total of 39 mice
were subjected to the trial. Seventeen mice received a TAC, 10 mice underwent the Sham
procedure, and 12 mice were control mice that did not receive treatment of any kind. All
mice were kept in individual cages post-surgeries. Stool samples (fresh) were collected on
days 0, 7, 14, and 42 of the trial and immediately frozen at −80 ◦C for storage. All mice
were sacrificed on day 42. The hearts and lungs were weighed and immediately frozen in
liquid nitrogen. Mouse blood was collected for plasma preparations by cardiac puncture in
EDTA-coated (5 mM) tubes centrifuged at 6000× rpm for 10 min at 4 ◦C and clear plasma
was transferred to fresh tubes.

Transthoracic echocardiography was performed on days 14 and 42 using the Visu-
alSonics Vevo 3100 ultrasound system. The heart rate was kept at 400–500 bpm during
the procedure. Recordings obtained were in two-dimensional B- and M-modes. Cardiac
output (CO), stroke volume (SV), end-diastolic volume (EDV), and end-systolic volume
(ESV) were determined based on B-mode images of the parasternal long axis.

2.3. DNA Extraction and Sequencing of Bacterial 16S rDNA

We used the QIAamp DNA stool kit (Qiagen) automated on the QIAcube and a
prior bead-beating step to extract DNA from the murine stool/ileum samples. The 16S
rRNA gene (variable regions v1–v2) was amplified using the primers described by Ca-
poraso et al. [21]. The SequalPrep Normalization Plate Kit (Life Technologies) was used
to normalize PCR products. These were pooled (based on the Qubit dsDNA BR Assay
Kit measurements) (Thermo Fisher) and sequenced on an Illumina MiSeq (2 × 300 bp).
According to the barcode sequences, demultiplexing was based on zero mismatches. The
16S rDNA sequencing data were deposited to the European Nucleotide Archive (ENA,
https://www.ebi.ac.uk/ena/browser/home, accessed on 9 August 2021) and are available
under the accession number PRJEB45533.

2.4. Metabolite Analyses in the TAC Model

For metabolite analyses, plasma samples were analyzed using liquid chromatogra-
phy coupled with tandem mass spectrometry and gas chromatography–mass spectrom-
etry, as previously described [22–25]. Briefly, the GC–MS system consisted of an Agi-
lent 6890 GC coupled to an Agilent 5973 MSD (Agilent, Waldbronn, Germany), and the
autosamplers were CompiPal or GCPal from CTC (CTC, Zwingen, Switzerland). High-
performance liquid chromatography (HPLC) was performed via gradient elution using
methanol/water/formic acid on reversed-phase separation columns. Target and high
sensitivity MRM (multiple reaction monitoring) profiling in parallel to a full-screen analysis
was performed using mass spectrometric detection. MS detection was performed with
repetitive cycles of MRM transitions for important preselected metabolites followed by a
full scan from m/z 100 to 1000. The HPLC instruments were purchased from Agilent 1100
(Agilent, Waldbronn, Germany), while the MS instruments were the model API4000 from
SCIEX (AB SCIEX, Darmstadt, Germany).

https://www.ebi.ac.uk/ena/browser/home
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2.5. Processing of 16S rRNA Data

16S rRNA sequencing data for 258 samples were analyzed using a DADA2 (v1.13.1)
pipeline for identification of amplicon sequence variants (ASVs) (https://benjjneb.github.
io/dada2/tutorial.html, accessed on 10 July 2021) [26]. Raw reads were trimmed at 240 nu-
cleotide positions and filtered with a quality cut-off of 20 and an expected error threshold of
2. Further, filtered reads were dereplicated, denoised, and checked for chimeric sequences
using default parameters of the DADA2 pipeline. Overall, the sequence table was com-
prised of 258 samples with an average number of reads per sample of 23,651 ± 6636. Out
of 3081 ASVs, 1585 ASVs with an overall abundance of more than 10 were considered
for taxonomic assignments using the Ribosomal Database Project (RDP) naive Bayesian
classifier [27] with the SILVA (v132) database [28]. Further analysis was carried out in R
(v3.6) using the packages phyoseq [29], vegan [30], microbiome [31], metgenomeSeq [32],
and ggplot2.

2.6. Bacterial Compositional Analysis

To analyze the microbial diversity and richness within different sample types at
different time points, Chao1 (richness), Shannon (richness and evenness), and Simpson
(evenness) alpha-diversity indices were calculated using the estimate_richness function
implemented in the phyloseq R package, and differences within sample types (control,
Sham, and TAC) were tested using the non-parametric Wilcoxon’s test. The beta diversity
analyses were carried out using generalized UniFrac distances, as implemented in the
GUniFrac and ggplot2 R packages, and significant grouping in samples was assessed using
permutational multivariate analysis of variance (PERMANOVA). To identify differentially
abundant ASV’s within different sample types, linear discriminant analysis effect size
(LefSe) was used as implemented on the Galaxy server [33]. To identify the difference
in microbial abundances in the two groups, the Wilcoxon test was performed, and the
p-values were adjusted using the false discovery rate (FDR) method.

2.7. Functional Analysis

To predict the metabolic potential of microbial communities from 16S rRNA sequenc-
ing data in terms of KEGG orthology (KO), Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt2) was used [34]. Statistical analysis
using the Kruskal–Wallis test was done to identify differentially abundant KEGG modules
within different sample types. Statistical Analysis of Metagenomic Profiles (STAMP) was
used to identify significant pathways that were differentially abundant within different
sample types [35]. Normalized metabolome data for the 2nd- and 6th-week TAC/Sham
samples were considered for correlation analysis. A total of 81 metabolites that were ei-
ther differentially abundant (p < 0.05, ANOVA test) or those that belonged to important
metabolite classes (amino acids, carbohydrates, complex lipids and fatty acids, and energy
metabolism) were used to find correlations with 50 differentially abundant genera using
Pearson’s correlation. Correlation networks were generated using Cytoscape v3.8.0.

2.8. Statistics

All the results are presented as box plots with a minimum-to-maximum range or
bar graphs (showing all points) unless specified otherwise. Statistical significance within
sample types (control, Sham, and TAC) for bacterial composition analysis was tested using
non-parametric Wilcoxon’s test and the significant grouping in samples was assessed using
permutational multivariate analysis of variance (PERMANOVA). To identify the difference
in microbial abundances between the two groups, Wilcoxon’s test was performed, and the
p-values were adjusted using the false discovery rate (FDR) method. Mice echocardiography
data were analyzed using one-way analysis of variance (ANOVA, followed by the Student–
Newman–Keuls post hoc test), whereas statistical analysis using the Kruskal–Wallis test was
used to identify differentially abundant KEGG modules within different sample types. The
p-values ≤ 0.05 were considered statistically significant.

https://benjjneb.github.io/dada2/tutorial.html
https://benjjneb.github.io/dada2/tutorial.html
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3. Results
3.1. HF Induced Changes in Bacterial Composition and Loss of Diversity of Fecal Bacteria

In this study, we used TAC as a model to induce HF due to pressure overload in
mice to perform systemic analyses of fecal microbiota at different stages of HF (Figure 1A).
Sham-operated mice were used as controls. We also maintained one cohort of mice that did
not undergo any surgical procedure to identify whether the gut microbiome is impacted
by thoracotomy-dependent stress, independent of TAC/Sham surgery. We earlier showed
a state of compensated hypertrophy after 2 weeks, and the onset of decompensation and
subsequent heart failure between 2 and 6 weeks after the TAC treatment [22]. Thus, fecal
samples were collected on days 0, 7, 14, and 42, and were subsequently processed for
total DNA extraction and 16S rDNA-sequencing-based microbiota assessment. Out of
258 samples (6,448,250 reads) processed using the DADA2 pipeline, 26 samples were
excluded by applying a filtering cut-off of 10,000 total reads; hence, our final sequence
table comprised 214 samples (TAC: n = 90, Sham: n = 52, control: n = 72) with an average
number of 23,651 sequences with a standard deviation of 6636 per sample. These samples
resulted in 3081 amplicon sequence variants (ASVs), out of which, 1585 ASVs with an
overall abundance count of more than 10 were used for further taxonomic assignments
(Supplementary Table S1).

To assess the alpha-diversity (a measure for intraindividual bacterial variance), we
calculated the Shannon diversity index for both richness and evenness based on amplicon
sequence variants count in mice that underwent TAC or a Sham procedure, as well as
untreated controls. A significant decrease in alpha-diversity was observed in TAC operated
mice compared to Sham controls on days 7, 14, and 42 (p = 0.031, p = 0.064, p = 0.004)
(Figure 1B). In contrast, the Shannon diversity in Sham mice compared to control mice
revealed no significant differences on days 0, 7, 14, and 42 (Supplementary Figure S1A).
Interestingly, we observed a gradual progressive decrease in alpha-diversity on days
7, 14, and 42 (p = 0.014, p = 0.0016, p = 0.0021) compared to day 0, which coincided
with compensated hypertrophy, maladaptive hypertrophy, and failing hearts, respectively
(Figure 1B). Again, no significant differences were observed between fecal samples from
Sham-operated mice and untreated controls at different time points (Figure 1C). Principal
coordinate analysis (PCoA) based on GUniFrac distances in fecal samples from the control,
Sham, and TAC samples at different time points showed distinct clustering on day 42 after
the TAC treatment. Beta diversity analyses indicated that the effects were more pronounced
at later time points of the experiment, which eventually led to a significant change in
microbial composition (Figure 1D). Separate PCoA in TAC- and Sham-treated mice also
showed distinct clustering on day 42 in the TAC group with more interindividual variations
than the Sham group, demonstrating that time progression leads to profound changes in
intestinal microbiota (Figure 1E,F). PCoA plots comparing TAC, Sham, and control mice at
each time point separately showed no distinct grouping on day 0, indicating no significant
baseline differences in the three groups before starting the experiment (Supplementary
Figure S1B). However, on day 7, analysis of the TAC- and Sham-treated mice showed
distinct clusters compared to the controls (Supplementary Figure S1C). On days 14 and 42,
distinct clustering was observed only in fecal samples from TAC-treated mice, indicating
more variations in diversity (Supplementary Figure S1D,E).

Further dissection of the taxonomy at the genus level for fecal samples using relative
abundance data in the TAC, Sham, and control mice for the top 20 genera showed that
most of the variations were present in the TAC mice. The Lachnospiraceae NK4A136 group
from the Firmicutes phylum was found to be the most abundant genus in all groups, which
gradually decreased with the progression to HF in TAC mice but remained unaltered
in Sham and control groups (Supplementary Figure S2). Similarly, the abundance of
Mucispirillum, Roseburia, and Desulfovibrio was reduced in TAC mice as compared to their
initial abundances (Supplementary Figure S2). On the other hand, Bacteroides, Prevotellaceae
UCG-001, Alistipes, Parasutterella, Ruminococcaceae UCG-014, and Ruminococcus 1 were found
to increase gradually with time in TAC mice. At the same time, there were only minor
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changes in their abundances in Sham and control samples (Supplementary Figure S2).
Furthermore, the Prevotellaceae NK3B31 group, Ruminiclostridium, Roseburia, Anaeroplasma,
Lachnoclostridium, the Ruminococcaceae NK4A214 group, and Tyzzerella_3 genera were found
to be significantly abundant in TAC and Sham mice, as calculated by Wilcoxon’s test
(Figure 2A,B). Tyzzerella_3, Roseburia, and Ruminiclostridium were more abundant in Sham
mice, while the Prevotellaceae NK3B31 group genus abundance was higher in TAC mice
(Figure 2A).

Figure 2. Comparative analysis of gut microbial content in Sham Vs. TAC mice. (A) Box plot showing
relative abundances of the total of 7 genera that were found to be differentially abundant using
Wilcoxon’s test in the Sham and TAC comparison, indicating that most of the genera were found
to be more abundant in Sham samples as compared to TAC samples (*, **, and *** correspond to
p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively). (n values are as follows: Sham = 38, TAC = 63).
(B) Heat-tree showing significantly different genera in the Sham and TAC comparison using
Wilcoxon’s test (p-value ≤ 0.05). (n values are as follows: Sham = 38, TAC = 63).



Biomedicines 2022, 10, 809 8 of 20

3.2. Severe HF Was Associated with Aggravated Alterations in Intestinal Microbiota Compared to
Mild or Moderate HF

To analyze the impact of the degree of HF on intestinal microbiota at day 42, we
grouped the animals into two sub-groups (based on the echocardiography parameters at
day 42): those that had an LVEF < 40% (severe HF, sHF, n = 8) after the TAC procedure and
those that had an LVEF from 40–55% (mild-to-moderate HF, mHF, n = 9) (Supplementary
Figure S3A–E). We observed no significant differences in the alpha-diversity of the mHF
(mean = 4.29, SD = 0.32) and sHF (mean = 4.28, SD = 0.29) samples (Figure 3A–F). A
comparison of the top 20 genera in the Sham, sHF, and mHF mice revealed that the
Prevotellaceae_NK3B31_group and Ruminococcaceae_UCG-014 genera were abundant in sHF.
Meanwhile, the Prevotellaceae_UCG-001, Ruminococcus_1, Alistipes, Ruminiclostridium_6,
and Bacteroides genera were abundant in both the sHF and mHF sub-groups compared to
the Sham group. In contrast, the Lachnospiraceae_NK4A136_group, Ruminiclostridium, and
Mucispirillum genera were less abundant on day 42 in mice that received the TAC procedure
(both sHF and mHF) (Figure 3G).

Figure 3. Diversity and microbial compositional differences in the mHF, sHF, and Sham samples.
(A) Box plot for Shannon diversity index showing a significant difference in sHF vs. Sham samples
(p-value = 0.038). (B) Box plot for the Shannon alpha-diversity index showing significant differences
in the mHF and Sham samples (p-value = 0.039). (C) Box plot for the Shannon alpha-diversity index
for the mHF and sHF samples showing no significant differences in samples. (D) PCoA plot with
separate clustering in the sHF and Sham samples (PERMANOVA p-value: 0.258, beta dispersion
p-value: 0.2498). (E) PCoA analysis of the mHF and Sham samples with no distinct cluster formation
(PERMANOVA p-value: 0.411, beta dispersion p-value: 0.3976). (F) PCoA analysis results of the sHF
and mHF samples showing no significant differences (PERMANOVA p-value: 0.733, beta dispersion
p-value: 0.7322). (G) Top twenty genera relative abundances in the mHF, sHF, and Sham sample
types. (H) Heat-tree showing 13 differentially abundant taxa in the sHF vs. Sham comparison using
Wilcoxon’s test. (I) Heat-tree for significantly abundant taxa between the mHF and Sham samples
comparison using Wilcoxon’s test. (J) Heat-tree showing no significant differences in the mHF and
sHF samples using Wilcoxon’s test. (n values for 3F–3J are as follows: Sham = 9, mHF = 7, sHF = 6).
* and ns correspond to p ≤ 0.05, non-significant, respectively.
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Furthermore, the Firmicutes and Deferribacteres phyla levels were reduced by almost
50% in sHF compared to the Sham controls. Meanwhile, the abundance of genera from the
Bacteroidetes phylum was exceptionally high in sHF, indicating a major shift in microbial
composition in severe HF cases. A total of 13 genera were found to be differentially abun-
dant in Sham versus sHF mice calculated using Wilcoxon’s test, out of which, Mucispirillum,
Oscillibacter, Ruminiclostridium, Roseburia, Butyricicoccus, Lachnoclostridium, and Harryflintia
were significantly reduced in the sHF as compared to Sham controls (Supplementary
Figure S3F). Conversely, the Prevotellaceae_NK3B31_group, Bacteroides, Alistipes, Lactobacil-
lus, Ruminococcaceae_UCG-010, and Erysipelatoclostridium accumulated in samples from
mice with sHF (Figure 3H). When comparing bacteria in fecal samples from mice with mHF
to Sham controls, a total of only three genera were found to be differentially abundant,
as calculated using Wilcoxon’s test. Ruminiclostridium and Roseburia were significantly
reduced, while Erysipelatoclostridium was highly abundant in mHF compared to the Sham
group (Figure 3I). Interestingly, however, no significant differences were observed between
mHF and sHF, except for the UBA1819 genus from the Ruminococcaceae family, which was
significantly more abundant in sHF compared to mHF (Figure 3J).

3.3. Functional Metabolic Analysis of the Gut Microbiome Revealed Altered Carbohydrate, Lipid,
and Amino Acid Metabolism in Failing Hearts

To predict the functional impact of altered gut microbial communities from 16S rRNA
sequencing data, we carried out a KEGG orthology analysis using PICRUSt2. Functional
comparison of fecal microbiota and metabolites in mice with sHF, mHF, and Sham controls
at different KEGG annotation levels indicated significant differences in the abundances
of imputed KEGG modules related to carbohydrate, lipid, and amino acid metabolism
using the Kruskal–Wallis test (Table 1). Specifically, KEGG modules related to the microbial
metabolites short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), bile acid
metabolism, and amino acid metabolism were significantly altered between these groups.

Table 1. Level 2 KEGG annotations using multivariate analysis in fecal samples of mice with sHF
versus mHF versus Sham and Sham versus TAC mice (* and ** correspond to p ≤ 0.05 and p ≤ 0.01,
respectively, ns: non-significant).

BRITE Hierarchy Pathway Module (Level 2) p-Value—mHF vs.
sHF vs. Sham

p-Value—Sham vs.
TAC

Environmental adaptation ** *

Protein families: metabolism ** ns

Biosynthesis of other secondary metabolites * ns

Cellular community—prokaryotes * *

Unclassified: genetic information processing * ns

Cell growth and death * ns

Digestive system * ns

Metabolism of terpenoids and polyketides * ns

Transcription * *

Carbohydrate metabolism * *

Membrane transport * *

Metabolism of other amino acids * ns

Unclassified: metabolism * *

Nucleotide metabolism * ns

Lipid metabolism * ns

Glycan biosynthesis and metabolism * ns
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Table 1. Cont.

BRITE Hierarchy Pathway Module (Level 2) p-Value—mHF vs.
sHF vs. Sham

p-Value—Sham vs.
TAC

Signal transduction * ns

Protein families: signaling and cellular
processes * ns

Cell motility * ns

Energy metabolism * ns

Protein families: genetic information
processing * ns

Unclassified: signaling and cellular processes * ns

3.3.1. Bile Acid Metabolism

The bacterial enzyme choloylglycine hydrolase (bile salt hydrolase), which is required
for the deconjugation step to remove glycine/taurine from conjugated primary bile acid,
was found to be highly abundant in the imputed functional profile of the fecal samples of
mice with sHF and mHF as compared to the Sham control mice (Figure 4A), which showed
steady increases at days 7, 14, and 42 after the TAC treatment (Figure 4B). In contrast,
7-α-hydroxysteroid dehydrogenase, which is an essential enzyme for converting primary
to secondary bile acid, was less abundant in the sHF and mHF mice than the Sham controls
(Figure 4C) and progressively decreased at different time points after the TAC treatment
(Figure 4D).

Figure 4. Abundances of KEGG pathway modules were found to be significant using Kruskal–
Wallis multivariate analysis related to bile acid synthesis. (A) Relative abundance of the choloyl-
glycine hydrolase gene in the sHF, mHF, and Sham samples (Kruskal–Wallis test p-value = 0.0037).
(n values are as follows: Sham = 9, mHF = 7, sHF = 6). (B) Relative abundance of the choloylglycine
hydrolase gene in the Sham and TAC samples at different time points showing an increase in the con-
centration of the gene with time in TAC samples as compared to Sham samples (Kruskal–Wallis test
p-value = 0.23 for Sham samples and p-value = 0.01 for TAC samples). (n values are as follows: Sham
day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16, day 42 = 15).
(C) Relative abundance of 7-α-hydroxysteroid dehydrogenase gene in the sHF, mHF, and Sham
samples with a significant decrease in sHF and mHF compared to the Sham samples (Kruskal–Wallis
test p-value = 0.042). (n values are as follows: Sham = 9, mHF = 7, sHF = 6). (D) Relative abundance of
7-α-hydroxysteroid dehydrogenase gene in the Sham and TAC samples at different time points with a
significant decrease in abundance with time in the TAC samples (Kruskal–Wallis test p-value = 0.0025).
(n values are as follows: Sham day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day
7 = 16, day 14 = 16, day 42 = 15). *, **, and *** correspond to p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001,
respectively; ns, non-significant.
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3.3.2. Short-Chain Fatty Acids Metabolism

We also observed significant differences in butanoate and propanoate metabolism in
the sHF, mHF, and Sham mice. A total of four predicted functional modules involved in
propionate synthesis and six modules involved in butyrate synthesis showed less abun-
dance in sHF and mHF than the Sham controls (Figure 5A–D). Furthermore, a total of
14 functional modules related to butyrate and propionate metabolism were significantly
altered in the Sham and TAC samples at different time points (Supplementary Figure S4).

Figure 5. Box plot showing differences in the abundances of modules involved in butanoate and
propanoate biosynthesis. (A) Differences in the abundances of genes involved in butanoate biosyn-
thesis are shown for the sHF, mHF, and Sham samples. (n values are as follows: Sham = 9, mHF = 7,
sHF = 6). (B) Genes involved in butanoate metabolism in the Sham and TAC samples at differ-
ent time points indicating a significant decrease in gene concentrations in TAC samples with time.
(n values are as follows: Sham day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16,
day 14 = 16, day 42 = 15). (C) Differences in the abundance of genes involved in propanoate biosyn-
thesis are shown for the sHF, mHF, and Sham samples. (n values are as follows: Sham = 9, mHF = 7,
sHF = 6). (D) Abundances of genes in propanoate biosynthesis at different time points in the Sham
and TAC samples showing a decrease in gene concentrations in both the Sham and TAC samples
with respect to time. TAC samples showed a significant decrease (p-value ≤ 0.05) for different time
point samples relative to the initial (0th day) samples. (n values are as follows: Sham day 0 = 10, day
7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16, day 42 = 15). *, **, and ***
correspond to p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively; ns, non-significant.

3.3.3. TMA and TMAO Pathways

The trimethylamine-N-oxide reductase (cytochrome c) (torZ) and betaine/carnitine
transporter (BCCT) families involved in TMA synthesis using TMAO were less abundant
in the Sham controls at different time points as compared to the TAC mice, which indicated
why the TMAO levels were higher in mice after the TAC treatment (Figure 6A). Choline
dehydrogenase (betA) (EC:1.1.99.1) (CHDH) and betaine-aldehyde dehydrogenase (betB,
gbsA) (EC:1.2.1.8), which are required for the conversion of choline to betaine, and L-
carnitine CoA-transferase (caiB) (EC:2.8.3.21), which is required for the conversion of
L-carnitine to γ-butyrobetaine, were accrued more in the TAC samples as compared to the
Sham samples (Figure 6B).
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Figure 6. Box plot showing differences in the abundances of genes involved in the TMAO pathway
in the Sham and TAC samples. (A) Differences in the abundances of the torZ gene are shown for the
TAC and Sham samples. Significant differences in the torZ concentrations in TAC samples at the
1st and 6th weeks were found as compared to the initial TAC samples (0th week) using Wilcoxon’s
test. (B) Differences in the abundances of the betaine/carnitine transporter involved in the TMAO
pathway are shown for the TAC and Sham samples. The Wilcoxon’s test showed a significant decrease
in gene concentration at the 1st and 6th weeks in the TAC samples. (n values are as follows: Sham
day 0 = 10, day 7 = 10, day 14 = 9, day 42 = 9; TAC day 0 = 16, day 7 = 16, day 14 = 16, day 42 = 15).
* and ** correspond to p ≤ 0.05, p ≤ 0.01 respectively; ns, non-significant.

3.3.4. Amino Acid Metabolism

Prominent differences in predicted KEGG modules related to amino acid metabolism
were observed in the sHF, mHF, and Sham-operated mice. A significant increase in the
genes involved in branched-chain amino acid degradation was observed in sHF mice
compared to Sham and mHF animals (Figure 7A). Moreover, genes related to aromatic
amino acid catabolism were significantly more abundant in the sHF group (Figure 7B). The
essential amino acid tryptophan, which is the precursor of many physiologically essential
metabolites, especially kynurenine, accounts for ~95% of the overall tryptophan degrada-
tion [36]. Metabolome data demonstrated an increase in the concentration of kynurenine
as compared to tryptophan for week 6 in mice with sHF (Figure 7C). The degradation of
positively charged amino acids was also significantly higher in mice with sHF followed by
mice with mHF compared to Sham controls (Figure 7D), while the biosynthesis of positively
charged amino acids was the lowest in mice with sHF followed by mHF as compared to
Sham controls (Figure 7E).
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Figure 7. Box plots showing the differentially abundant KEGG pathway modules for amino acid
metabolism. (A) Branched-chain amino acid degradation-related genes in the sHF, mHF, and Sham
samples (Kruskal–Wallis test p-value = 0.001). (B) Aromatic amino acid metabolism in the sHF, mHF,
and Sham samples (Kruskal–Wallis test p-value = 0.024). (C) Aromatic amino acid biosynthesis in the
sHF, mHF, and Sham samples (p-value = 0.012). (D) Positively charged amino acid degradation in the
sHF, mHF, and Sham samples (Kruskal–Wallis test p-value = 0.036). (E) Positively charged amino
acid biosynthesis in the sHF, mHF, and Sham samples (Kruskal–Wallis test p-value = 0.018). (n values
are as follows: Sham = 9, mHF = 7, sHF = 6). * and ** correspond to p ≤ 0.05, p ≤ 0.01 respectively; ns,
non-significant.

3.4. Gut Dysbiosis Caused Alterations in Circulating Metabolites

To advance the understanding of the role, if any, played by gut bacterial dysbiosis
in metabolic changes in HF, Pearson’s correlation analysis was conducted to compare
50 altered genera (genera with ≥0.01% abundance) with 81 metabolites involved in amino
acid metabolism, energy metabolism, complex lipids and fatty acid metabolism, along with
the vitamins and related metabolites and nucleobases and related metabolites classes. For
metabolites, an ANOVA test was carried out on ratios of the TAC and Sham samples at 14
and 42 days, and molecules with significant p-values or showing large differences in their
ratios (≥0.3 or ≤−0.3) were considered for correlation calculations (Figure 8A).

A total of 21 amino acids and related metabolites were found to be significantly
different in the TAC and Sham samples at different time points. ASV contributions to
KEGG modules and correlation analysis indicated that most of the amino acids and their
synthesis-related KEGG functional modules (tryptophan, tyrosine, arginine, and lysine
biosynthesis) were positively associated with the genera Candidatus Saccharimonas, Candida-
tus Arthromitus, Candidatus Soleaferrea, Defluviitaleaceae UCG-011, Muribaculum, Prevotellaceae
NK3B31 group, and Ruminococcus_1. At the same time, ASF356, Lachnoclostridium, Tyzzerella,
Lachnospiraceae_UCG-006, and Ruminiclostridium_9 were negatively correlated with speci-
fied KEGG modules (Figure 8B). Of note, tryptophan catabolism leads to kynurenic acid
formation, which is known to be associated with several cardiovascular disease entities,
including HF [37,38]. Consistently, we found a significant increase in kynurenic acid in
TAC samples at different time points. Furthermore, the KEGG modules K00453 (TDO2
kynA; tryptophan 2 3-dioxygenase (EC:1.13.11.11)) and K01556 (KYNU kynU; kynureni-
nase (EC:3.7.1.3)), which are essential enzymes for the formation of kynurenic acid from
tryptophan, were significantly increased in TAC samples as compared to the Sham controls
over time. These modules might have been contributed to by ASVs from the genera Propioni-
ciclava and Diaphorobacter and the family Burkholderiaceae, which were more abundant in the
TAC samples than the Sham controls (Figure 8B). Tryptophan catabolism also leads to the
formation of 3-indoxy sulfate, which is a uremic toxin that was found to be correlated with
adverse cardiovascular events [39]. We observed an increased concentration of 3-indoxy
sulfate in TAC mice and a strong positive correlation with the Alistipes genus (Figure 8B).
ASVs belonging to the Alistipes genus were predicted to express the tnaA; tryptophanase
(EC:4.1.99.1) enzyme by PICRUSt2, likely explaining the strong correlation between the
Alistipes genus and 3-indoxy sulfate. Creatinine, which is another compound derived
from amino acid catabolism related to cardiovascular disease, was also comparatively



Biomedicines 2022, 10, 809 14 of 20

higher in the TAC samples. It was positively correlated with Ruminococcaceae_UCG-014
and negatively correlated with Parasutterella, Desulfovibrio, Anaerotruncus, UBA1819, and
Ruminococcaceae_NK4A214_group (Figure 8B).

Figure 8. Serum metabolites and gut–microbiome correlation analysis. (A) Heatmap showing Pear-
son correlations between differentially abundant genera and metabolites with large differences in
their ratios in the Sham and TAC samples with significance (* p-values ≤ 0.5, ** p-value ≤ 0.01,
*** p-values ≤ 0.001). (B) Pearson correlation network in amino-acids-related metabolites and
differentially abundant genera in the Sham and TAC samples. (C) correlation network between
carbohydrate-related metabolites and differentially abundant genera. (D) correlation network be-
tween complex lipids/fatty acids and differentially abundant genera. (E) correlation network between
energy-metabolism-related metabolites and differentially abundant genera. (n values are as follows:
Sham = 38, TAC = 63).
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Changes in microbiota composition affect carbohydrate metabolism, e.g., intesti-
nal microbial alterations, have been linked to changes in insulin sensitivity and glucose
metabolism [40]. Glucose concentration was found to be decreased in TAC samples with
time, while it remained unchanged in the Sham samples. These observations could be
positively correlated to Ruminiclostridium_9 and ASF356 genera, and negatively corre-
lated to Ruminococcus_1, Muribaculum, Candidatus Arthromitus, and Candidatus Soleaferrea
(Figure 8C).

Primary bile acid (cholic acid, taurocholic acid, and taurochenodeoxycholic acid) levels
were increased in the blood of the TAC mice, which was negatively correlated with the
abundance of Ruminiclostridium_9, Acetatifactor, ASF356, and Lachnoclostridium (Figure 8D).
On the other hand, the circulating levels of ceramide were reduced in the TAC mice
and were positively correlated with the Lachnospiraceae_UCG-006, Butyricicoccus, and the
Lachnoclostridium genera from the phylum firmicutes and negatively correlated with the
Ruminococcus_1 and Muribaculum genera (Figure 8D).

Recent studies indicated an increase in myocardial utilization of 3-hydroxybutyrate
(3-OHB) in patients with HF [41]. Along these lines, we found a decrease in the serum
concentration of 3-OHB in the TAC mice with time compared to the Sham-operated mice.
3-OHB was further positively correlated with Mucispirillum, Lachnospiraceae_UCG-006,
Butyricicoccus, Lachnoclostridium, and Harryflintia, and negatively correlated with the Pre-
votellaceae_NK3B31_group, Muribaculum, and Parabacteroides genera (Figure 8E).

4. Discussion

We and others have previously demonstrated gut microbiome alterations in HF pa-
tients [7,9,10]. To further assess the direct effects of HF on gut dysbiosis in a controlled
and progressive setup, here we analyzed the time-dependent changes in intestinal micro-
biota using fecal samples from mice that developed HF of different severity in response to
pressure overload. Extending the knowledge of HF–gut dysbiosis associations from recent
findings [42,43], we observed that HF led to a steady decrease in the alpha-diversity of
intestinal bacterial communities over time compared to control mice, pointing toward the
notion that sustained HF leads to progressive changes in intestinal microbiota. Furthermore,
the alterations were closely associated with the severity of the HF condition.

Butyrate, which is a microbiota-derived SCFA, the levels of which are known to be
reduced in human HF patients [8], was shown to attenuate inflammation and myocardial
hypertrophy and to improve cardiac function following myocardial infarction [44,45].
Interestingly, for the first time in mice, we observed a significant decrease in butyrate
and propanoate synthesis and metabolism in mice with HF compared to Sham controls.
In our HF study, Lachnospiraceae_NK4A136_group was the most abundant genus in all
groups at the initial time point, which gradually decreased with time in the TAC group but
remained unchanged in the Sham and control groups. Kamo et al. found a reduced relative
abundance of Eubacterium rectale and Dorea longicatena (Lachnospiracea family) and levels of
Faecalibacterium (Ruminococcaceae family) were lower in older patients [9]. In a metagenomic
analysis, Cui et al. demonstrated reduced levels of Faecalibacterium prausnitzii in patients
with HF [8]. A common finding in these studies was the relative reduction in taxa from the
Lachnospiracea or Ruminococcacea families, which are known for their capacity for butyrate
production. Lachnospiraceae_NK4A136_group is a butyrate-producing bacteria that was
recently shown to exhibit anti-inflammatory effects and proposed to have a probiotic
potential [46,47] (DOI: https://doi.org/10.21203/rs.3.rs-48913/v1, accessed on 24 August
2021). Future research could thus be directed toward exploring the beneficial effects, if any,
of maintaining the gut levels of Lachnospiraceae_NK4A136_group, e.g., through probiotic
administration or butyrate supplementation.

Similarly, Lactobacillus spp., which is a well-established lactic-acid-producing probiotic
bacteria that also carry anti-inflammatory and cholesterol-lowering effects [48,49], were
significantly reduced in mice with severe cardiac dysfunction. In a recent report using
the TAC mouse model in C57BL/6J mice, ferulic acid increased intestinal Lactobacillus
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abundance and improved cardiac function [50]. Furthermore, Lactobacillus acidophilus,
Lactobacillus reuteri, and several strains of Lactobacillus plantarum have cardioprotective
effects mitigating doxorubicin-induced cardiomyopathy in rats [48,49,51]. Interestingly, a
recent report illustrated that a probiotic mixture of Lactobacillus plantarum strains not only
improve metabolic syndrome (one of the hallmarks of HF with preserved ejection fraction
(HFpEF)) but also enriched Lachnospiraceae_NK4A136_group [46]. These findings suggested
that the use of Lactobacillus plantarum strains might serve a dual role when protecting the
heart, first by exerting beneficial effects of its own, and second, by enriching other likely
beneficial bacteria, e.g., Lachnospiraceae_NK4A136_group.

Intriguingly, we also observed differential regulation of specific amino acids and their
biosynthesis precursors between the TAC and Sham mice in close association with intestinal
dysbiosis. For example, tryptophan, tyrosine, arginine, and lysine biosynthesis was found
to be positively associated with the genera Candidatus Saccharimonas, Candidatus Arthromitus,
Candidatus Soleaferrea, Defluviitaleaceae UCG-011, Muribaculum, Prevotellaceae NK3B31 group,
and Ruminococcus_1, while ASF356, Lachnoclostridium, Tyzzerella, Lachnospiraceae_UCG-006,
and Ruminiclostridium_9 were negatively correlated with the specified KEGG modules.
Tryptophan catabolism leads to kynurenic acid formation, which is known to be associated
with several cardiovascular diseases, including HF [52]. Furthermore, elevated plasma
levels of metabolites of the kynurenine pathway and metabolite ratios are associated with
increased mortality in patients with HF [38]. We also found a significant increase in the
ratio of kynurenic acid in TAC samples at different time points. Furthermore, tryptophan
catabolism also leads to the formation of 3-indoxy sulfate, which is a uremic toxin that is
also shown to be correlated with adverse cardiovascular events [53]. ASVs belonging to
the Alistipes genus predicted to express the tnaA tryptophanase enzyme showed a strong
correlation of the Alistipes genus and 3-indoxy sulfate. This finding points to a possible
mechanism contributing to the generation of harmful metabolites in mice with HF.

Altogether, the results of our study demonstrate a direct correlation of disruption of
intestinal microbiota with the severity of HF. Our study was the first to precisely describe
the simultaneous changes in intestinal microbiota and metabolome in a mouse model of
pressure overload and demonstrated that intestinal microbiota and the associated metabo-
lites were significantly altered in mice with HF. These findings are the first line of evidence
showing the direct impact of HF on gut dysbiosis and associated microbial metabolites.
Findings from the present study in conjunction with other reports would be valuable for
the future course of research, where researchers will now have to establish whether altering
the gut microbiome would impact cardiac function.

With advancements in sequencing technologies and an increasing number of focused
studies identifying the gut microbial association with HF, the gut microbiome is looked to
as a novel therapeutic target for the treatment of cardiovascular disease [54], and potential
strategies for targeting intestinal microbial processes need to be taken. Steps are being
taken in these directions, e.g., GutHeart human trial, which is a Phase II human trial
that aimed to improve cardiac function in HF patients using antibiotics or probiotic yeast
Saccharomyces boulardii to target the gut microbiome [55]. However, 3 months’ treatment
with S. boulardii or rifaximin did not significantly affect LVEF, microbial diversity, or the
measured biomarkers in a study population including HF patients [56]. Notwithstanding,
we believe that these are important steps forward with gut-microbiome-targeted heart
failure therapy and long-term interventions might exhibit significant results.

Limitations: Although only 85% of genes are conserved between mice and hu-
mans [57], the mouse is by far the most important animal model for human disease.
Given that intestinal microbes can both colonize the mouse and human gut in principle,
microbiome research could potentially overcome the species barrier between humans and
mice. In this regard, “humanizing” mice with human microbiota seemed quite successful
since 88% of genus-level taxa were found both in mice and donor samples [58]. However,
it was already demonstrated that there are significant differences in the gut microbiota
between healthy humans and WT mice [59]. Of note, several apparent differences between
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the intestinal tract of mice and humans received considerable attention, e.g., as diet has
a strong effect on the microbiome composition of the intestine in humans [60]. Moreover,
there are differences in gut pH, emptying rate of the gut, etc. [61]. Nevertheless, we be-
lieve that mouse models are adequate systems to study the impact of the microbiome
on specific diseases, such as HF, because the pivotal role of the gut on the immune sys-
tem and other pathophysiologic conditions appears to be conserved between different
species [61]. Moreover, the mouse model allows for the standardization of food intake and
other environmental factors such that the microbiome may be the only variable in a given
experiment. Eventually, the key to a better understanding of the role of the microbiome in
cardiovascular health and disease might be a focus on reproducing microbial differences at
different locations with different mouse strains to truly show a robust effect of the relative
contribution of diet, genotype, and environmental factors on the microbial composition.
We believe that our study can deliver an important contribution to this canon.

5. Conclusions

In conclusion, the results of our study indicated that severe HF, as opposed to mild-to-
moderate HF, was associated with marked dysbiosis. Overall, changes that were already
observed in mice with moderate HF were more pronounced in mice with severe HF.
This supports the hypothesis that HF is the underlying pathology of the disruption of
microbiota and that the degree of HF correlated with the changes in intestinal microbiota.
We hypothesized that the marked changes in the microbiome observed in severe HF further
worsen cardiac function by reciprocating directly, e.g., via bacterial toxins, or indirectly, e.g.,
via metabolites or their intermediates. Our study comprehensively described the alteration
of intestinal microbiota during HF in a standardized model. We identified distinct bacterial
populations and the associated metabolites that are altered, and thereby provide a basis
for future interventional studies, e.g., by probiotics or supplementation/suppression of
specific metabolites.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines10040809/s1, Figure S1: Alpha and Beta diversity;
Figure S2: Heatmap of relative abundance of top-20 genera at different time-points in TAC, sham and
control samples; Figure S3: Echocardiography parameters and relative abundance of significantly
abundant genera; Figure S4: Box plots showing differentially abundant KEGG pathway modules
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