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Heart failure with preserved ejection fraction (HFpEF) is one of the largest unmet clinical 

needs in 21st-century cardiology. It is a complex disorder resulting from the in�uence of 

several comorbidities on the endothelium. A derangement in nitric oxide bioavailability 

leads to an intricate web of physiological abnormalities in the heart, blood vessels, and 

other organs. In this review, we examine the contribution of cardiac and noncardiac factors 

to the development of HFpEF. We zoom in on recent insights on the role of comorbidities 

and microRNAs in HFpEF. Finally, we address the potential of exercise training, which is 

currently the only available therapy to improve aerobic capacity and quality of life in HFpEF 

patients. Unraveling the underlying mechanisms responsible for this improvement could 

lead to new biomarkers and therapeutic targets for HFpEF.

Keywords: heart failure, pathophysiology, comorbidities, endothelium, microRNA, iron de�ciency,  
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INTRODUCTION

Heart failure (HF) is a complex clinical syndrome that results from a structural or functional 
impairment of contraction or �lling of the heart. It is a very common condition: 1–3% of 
the adult population has HF, and the prevalence rises with age (Dunlay et  al., 2017). �e 
chief symptoms of HF are exercise intolerance and dyspnea on exertion. Fatigue, peripheral 
edema, orthopnea, paroxysmal nocturnal dyspnea, loss of appetite, and nycturia are other 
possible signs and symptoms.

Current guidelines divide HF patients according to le� ventricular (LV) ejection fraction 
(de�ned as LV stroke volume over LV end-diastolic volume) (Yancy et  al., 2013; Ponikowski 
et  al., 2016). Signs and symptoms are equal in those with reduced and preserved ejection 
fraction, but there are di�erences in pathophysiology and treatment. Patients with HF and 
reduced ejection fraction (HFrEF) have a prominent LV contraction problem. Fatigue and 
exercise intolerance are directly caused by the reduced systolic function as the low cardiac 
output is insu�cient to meet the body’s demands. Congestion is also directly caused by the 
reduced contractility: blood accumulating in the LV causes end-diastolic pressure to rise. �is 
higher pressure is transferred to the pulmonary, portal, and peripheral circulation, where 
extravasation of �uid causes lung, splanchnic, and peripheral edema.
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In patients with HF and preserved ejection fraction (HFpEF), 
LV ejection fraction is normal, although contractile dysfunction 
is o�en present and only detected with advanced imaging 
techniques. End-diastolic pressure elevation and congestion 
are as severe as in HFrEF (Van Aelst et  al., 2018). In HFpEF, 
the rise in end-diastolic pressure is caused by a complex 
interplay between diastolic dysfunction, subtle systolic 
dysfunction, atrial and LV sti�ness, and reduced arterial 
compliance. �e LV, the le� atrium, the aorta, and peripheral 
arteries all participate (Borlaug, 2014). �is interaction is 
explained in detail below.

HF symptoms are more subtle in HFpEF than in HFrEF 
and o�en only present on exertion, a fact that o�en delays 
diagnosis. Prognosis is, however, equally grim as in HFrEF: 
5-year mortality is around 75%, which is worse than most 
cancers (Shah et al., 2017). Neurohumoral drugs, device therapy, 
and cardiac rehabilitation have improved survival rates in HFrEF, 
but not a single treatment has been able to consistently improve 
prognosis in HFpEF. Guidelines currently advise to treat 
symptoms with diuretics, and to control comorbidities such 
as hypertension and diabetes tightly (Yancy et  al., 2013; 
Ponikowski et  al., 2016).

Age-standardized incidence rates of HF are more or less 
stable. Still, due to aging of the population and increasing 
presence of cardiovascular risk factors, the prevalence of HFpEF 
will steadily increase in the coming decades (Dunlay et  al., 
2017). �ese epidemic proportions, together with the lack of 
treatment, make HFpEF one of the greatest unmet needs in 
21st-century cardiology.

In this review, we give an overview of HFpEF pathophysiology. 
First, we  outline the underlying causes of exercise intolerance 
in HFpEF. �ree players in this process are highlighted: the 
endothelium, comorbidities, and microRNAs. We  critically 
review existing evidence and address gaps in our current 
knowledge for each section. Finally, we  anticipate on the 
potential e�ects of exercise training in HFpEF.

CARDIOVASCULAR STRUCTURAL AND 
FUNCTIONAL ALTERATIONS IN HEART 
FAILURE WITH PRESERVED EJECTION 
FRACTION

Several pathophysiologic mechanisms lead to an increased LV 
end-diastolic pressure in HFpEF, and thus cause HF symptoms 
(Figure 1). Most patients exhibit several pathophysiological 
abnormalities in a complex interplay, although one mechanism 
may be  more prominent in a single patient (Borlaug et  al., 
2010). �is includes cardiac (diastolic dysfunction, reduced 
cardiac output reserve, atrial �brillation, coronary artery disease), 
and noncardiac elements (reduced vasodilation, arterial sti�ness, 
ventilatory dysfunction, skeletal myopathy, activation of the 
autonomic nervous system, and renal dysfunction) (Figure 2). 
A detailed explanation of all these factors falls outside the 
scope of this review, but we  describe the most important 
contributors to exercise intolerance in HFpEF below.

Diastolic Dysfunction and  
Ventricular Stiffness
All patients with HFpEF exhibit some degree of diastolic 
dysfunction, and diastolic dysfunction is considered a precursor 
of symptomatic HFpEF. �e diastole or �lling phase of the 
cardiac cycle can be divided in two parts. First, the LV changes 
from a contracted to a fully relaxed state. �is is called the 
“active relaxation” phase, because cardiomyocyte relaxation is 
an energy-consuming process. �e second phase of diastole 
is called “passive sti�ness.” No energy is consumed, but the 
LV passively stretches under the in�uence of further �lling 
(Segers and De Keulenaer, 2013). A landmark invasive 
hemodynamic study by Zile et  al. showed that HFpEF patients 
had both impaired active relaxation and increased passive 
sti�ness (Zile et al., 2004). �ese �ndings were later con�rmed 
in a community-based study comparing HFpEF patients to 
age- and comorbidity-matched controls (Lam et al., 2007). �e 
matching to controls is important because mild diastolic 
dysfunction is o�en present in elderly adults without 
HF symptoms.

In the absence of mitral valve disease, le� atrial pressure 
re�ects LV end-diastolic pressure. Long-standing le� atrial 
hypertension leads to le� atrial dilation, which is used as a 
marker of long-term diastolic dysfunction. HFpEF patients are 
characterized by an increased le� atrial volume at rest and 
reduced le� atrial �lling on exertion (Reddy et  al., 2017).

Reduced Cardiac Output Reserve
Despite a normal ejection fraction, HFpEF patients o�en have 
subtle signs of systolic dysfunction. Global longitudinal strain, 
a very sensitive parameter of LV contraction, is reduced at 
rest in HFpEF patients (Kraigher-Krainer et  al., 2014). More 
dramatic systolic abnormalities become evident on exertion: 
load-independent parameters of LV contractility are reduced 
by 65% at peak exercise in HFpEF patients (Borlaug et  al., 
2010). Also, the exercise-induced increase in heart rate is lower 
than in controls. �e latter is called chronotropic incompetence 
and can be in�uenced by the concomitant use of beta blockers. 
Reduced contractile reserve and chronotropic incompetence 
combine in a reduced cardiac output reserve, which contributes 
to exercise intolerance in HFpEF (Borlaug, 2014).

Arterial Stiffness, Reduced Vasodilator 
Reserve, and Ventricular-Arterial Coupling
Apart from the cardiac abnormalities mentioned above, the 
blood vessels also play a vital role in HFpEF pathophysiology. 
Increased sti�ness is not only seen in the LV, but also in large 
arteries such as the aorta. Invasive measurement of arterial 
waveforms shows reduced arterial compliance and higher arterial 
elastance at rest in HFpEF patients, independent of blood 
pressure (Reddy et  al., 2017). Arterial sti�ening correlates well 
with end-diastolic pressure and cardiac output reserve. On 
exertion, increased pressure wave re�ections and exaggeration 
of the abnormal compliance and elastance are seen.

An important function of normal blood vessels is to vasodilate 
on exertion, to meet the increased oxygen (O2) demands of 
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FIGURE 1 | Pathophysiology of HFpEF and possible contribution of exercise training. Endothelial dysfunction contributes to exercise intolerance through 

noncardiac disturbances (see Figure 2) and modulation of cardiac function, through the nitric oxide – soluble guanylyl cyclase pathway (see Figure 3). 

Comorbidities also contribute to exercise intolerance, either directly, or indirectly by inducing vascular in�ammation and endothelial dysfunction and by 

impeding endothelial repair. MicroRNAs could play a regulatory role at each level of interaction. In other cardiovascular disorders, exercise is known to reduce 

in�ammation, improve endothelial function, and increase levels of circulating endothelium-repairing cells. Possibly, the improvement in exercise tolerance with 

exercise training in heart failure with preserved ejection fraction is due to the bene�cial effects on the endothelium. Other possible bene�cial effects of exercise 

training include direct improvement of cardiac factors (chronotropic incompetence, diastolic function), noncardiac factors (arterial stiffness, muscle function), 

and comorbidities (metabolic syndrome), although improvement of endothelial function could be the physiologic base of all these effects. HFpEF = heart failure 

with preserved ejection fraction.

FIGURE 2 | Cardiac and noncardiac factors linking endothelial dysfunction and exercise intolerance in HFpEF. Besides diastolic dysfunction,  

which is well known, recent evidence implicates other cardiac (orange) and noncardiac (blue) factors in the development of exercise intolerance in HFpEF. 

Endothelial dysfunction is an underlying mechanism of many factors associated with exercise intolerance. The “in�ammatory microvascular dysfunction” 

hypothesis puts endothelial dysfunction at the root of LV hypertrophy and LV stiffness. Endothelial dysfunction is also a precursor of atherosclerosis and 

contributes to many noncardiac factors implicated in exercise intolerance. HFpEF = heart failure with preserved ejection fraction, LA = left atrium,  

LV = left ventricle.
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skeletal muscles. �is reactive vasodilation is regulated by shear 
stress on the endothelial cells and is impaired in almost half 
of HFpEF patients (Borlaug et al., 2010). Patients with impaired 
vasodilation have a worse prognosis compared to patients with 
a normal vasodilatory response (Akiyama et  al., 2012).

In the normal heart, cardiac and vascular reserves together 
maintain an e�cient ventricular-arterial coupling during exercise. 
In HFpEF, however, contractile and vascular reserve impairments 
lead to an abnormal ventricular-arterial coupling. �e arterial 
elastance-end-systolic elastance ratio is reduced less and cardiac 
output is increased less in HFpEF patients (Borlaug et  al., 
2010). �e most obvious e�ect of this mismatch is a lower 
increase in blood pressure on exertion in HFpEF patients.

CELLULAR ALTERATIONS UNDERLYING 
STRUCTURAL AND FUNCTIONAL 
CHANGES IN HEART FAILURE WITH 
PRESERVED EJECTION FRACTION

�e complex interplay of structural and functional changes 
outlined above can be  explained by pathologic alterations in 
di�erent cardiac and noncardiac cells, including cardiomyocytes, 
�broblasts, and endothelial cells. Also, cross talk between 
these cell types is thoroughly altered in HFpEF, as is reviewed 
elsewhere (Segers et  al., 2018). Here we  focus on the 
endothelium, as is seems to play a central role in HFpEF 
pathophysiology. Building on early work by Brutsaert in the 
1980’s (Brutsaert et  al., 1988), Paulus and Tschöpe formulated 
the “in�ammatory coronary microvascular dysfunction” 
hypothesis. �is states that cardiac sti�ness and LV remodeling 
in HFpEF are not caused by intrinsic cardiac changes, as in 
HFrEF, but develop because of changes in the cardiac 
endothelium (Paulus and Tschöpe, 2013).

Endothelial Cells
Normal Endothelial Function

�e endothelium is the innermost layer of the blood vessels, 
present from the smallest capillary to the aorta. More than 
just a protective layer between the blood and extravascular 
tissues, endothelial cells are dynamic, highly interactive cells 
that regulate vascular function and homeostasis (Segers et  al., 
2018). �e healthy endothelium prevents platelet aggregation 
and leukocyte adhesion, inhibits smooth muscle proliferation, 
and regulates vascular tone through release of vasoactive 
substances. �ese processes are largely mediated by nitric oxide 
(NO), the main endothelial e�ector molecule.

NO has the unique property of being a gaseous signaling 
molecule, thus being able to diffuse quickly into neighboring 
cells. This property is exploited in the mechanism of 
endothelium-dependent vasorelaxation: increased blood flow 
and the accompanying shear stress induce increased NO 
production and release from endothelial cells, which diffuses 
into vascular smooth muscle cells. There, NO activates soluble 
guanylyl cyclase (sGC) and its second messenger cyclic 
guanosine monophosphate (cGMP), producing relaxation of 

the vascular smooth muscles and widening of the blood 
vessel (Segers et  al., 2018).

Endothelial Dysfunction

In the setting of cardiovascular risk factors (aging, hypertension, 
diabetes, obesity, dyslipidemia, and smoking), endothelial 
homeostasis is disturbed (Chistiakov et  al., 2015). �ese risk 
factors all increase oxidative stress at the level of the 
endothelium. Reactive oxygen species (ROS) directly react 
with NO, forming peroxynitrite (ONOO−) and reducing NO 
bioavailability. ROS also uncouple endothelial NO synthase, 
which starts to produce highly reactive superoxide ( O2

- ) 
instead of NO, further increasing oxidative stress. �is vicious 
circle leads to a vasoconstricting, pro-in�ammatory, and 
pro-thrombotic state called “endothelial dysfunction” 
(Chistiakov et  al., 2015; Gevaert et  al., 2017a).

Endothelial dysfunction is considered the �rst step in the 
atherosclerotic process and a precursor to overt cardiovascular 
disease (Leucker and Jones, 2014). Clinically, endothelium-
dependent vasodilation measured by ultrasound (�ow-mediated 
dilation, FMD) or peripheral arterial tonometry (PAT) predicts 
cardiovascular events (Bonetti et  al., 2004; Ras et  al., 2013).

Endothelial Repair

Normal turnover of endothelial cells is slow, lasting at least 
47  days (Hobson and Denekamp, 1984). �is turnover is 
not only dependent on proliferation of existing endothelial 
cells. In 1997, Asahara et  al. discovered that a subgroup of 
CD34+ cells form tube-like structures and express endothelial 
markers in vitro (Asahara et  al., 1997). �ese endothelial 
progenitor cells (EPCs) are derived from the bone marrow 
and circulate in low numbers in the bloodstream under 
normal circumstances. �ey can be  recruited to ischemic or 
damaged endothelium, where they participate in endothelial 
repair (Van Craenenbroeck and Conraads, 2010). �rough 
growth factor secretion and other paracrine signaling, EPCs 
promote proliferation of resident endothelial cells and 
neovascularization. Some authors even suggest that EPCs are 
able to di�erentiate into endothelial cells and integrate into 
the endothelial cell layer (Hristov et  al., 2003).

In vitro, EPCs require presence of CD3+ CD31+ T lymphocytes 
for optimal growth (Hur et  al., 2007). �ese “angiogenic” 
T cells (TAs) or circulating angiogenic cells are also derived 
from the bone marrow. TAs secrete high amounts of 
pro-angiogenic factors (vascular endothelial growth factor, 
IL-8) and are thought to participate in endothelial repair 
through paracrine control of EPCs via CD184 (Walter et  al., 
2005). We  have recently shown that numbers of circulating 
EPCs and TAs are reduced in HFpEF patients, indicating a 
de�cient endothelial repair (Gevaert et  al., 2019). Restoring 
endothelial regenerative capacity could be  a future target in 
HFpEF research.

Cardiomyocytes
Brutsaert et  al. discovered that besides vascular smooth 
muscle  cells, cardiomyocytes are also in�uenced by the 
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NO-sGC-cGMP pathway (Brutsaert et al., 1988). cGMP activates 
protein kinase G (PKG) in the cardiomyocyte, which acts 
as a brake on signaling pathways regarding cardiomyocyte 
sti�ness and hypertrophy (Brutsaert, 2003). Sti�er, larger 
cardiomyocytes contribute to impaired active relaxation  
and passive sti�ness. �rough this pathway, endothelium-
derived NO thus directly regulates cardiac diastolic function 
(Lim et  al., 2015; Segers et  al., 2018).

In HFpEF, Paulus and Tschöpe hypothesized in 2013 that 
comorbidities such as aging, hypertension, diabetes, and obesity 
induce a systemic pro-in�ammatory state (Paulus and Tschöpe, 
2013). Circulating in�ammatory cytokines increase oxidative 
stress at the level of the endothelium through activation of 
oxidative enzymes, reducing NO bioavailability. In the coronary 
microcirculation, this means that the NO-cGMP-PKG signaling 
pathway in adjacent cardiomyocytes is disrupted (van Heerebeek 
et al., 2012). Increased cardiomyocyte sti�ness and cardiomyocyte 
hypertrophy follows, impairing diastolic function and starting 
the chain reaction of pathologic maladaptation leading to overt 
HFpEF (Leucker and Jones, 2014; Segers et  al., 2018). �is 
hypothesis is summarized in Figure 3.

�e main molecular determinant of cardiomyocyte sti�ness is 
the giant cytoskeletal protein titin. PKG is the most potent regulator 
of titin sti�ness, by in�uencing its phosphorylation, isoform 
switching, and oxidative modi�cations (Hamdani et  al., 2013b; 
Linke and Hamdani, 2014) Indeed, animal HFpEF models and 

cardiac biopsies of HFpEF patients exhibit an increased 
cardiomyocyte sti�ness which is reversed by PKG administration 
(van Heerebeek et al., 2012; Hamdani et al., 2013a,b) and related 
to microvascular endothelial in�ammation (Franssen et  al., 
2016b; Sorop et al., 2018). Of note, cardiomyocytes from HFpEF 
patients exhibit higher passive sti�ness than HFrEF 
cardiomyocytes (van Heerebeek et  al., 2006). Finally, 
cardiomyocyte sti�ness is also in�uenced by diastolic calcium 
content and the associated regulatory proteins (Hamdani et  al., 
2013c; Røe et  al., 2017). For a detailed description of these 
other mechanisms involved in passive cardiomyocyte sti�ness, 
we refer the reader to other reviews (Linke and Hamdani, 2014; 
Franssen et  al., 2016a).

Cardiomyocyte hypertrophy is an almost universal �nding 
in animal and human HFpEF (van Heerebeek et  al., 2006; 
Franssen et  al., 2016b; Gevaert et  al., 2017b). Besides the 
abovementioned NO-mediated mechanisms, cardiomyocyte 
hypertrophy is additionally induced by other molecular 
pathways. Hypertrophy can be  induced directly by  
increased stretch on cardiomyocytes, through intrinsic 
mechanotransduction mechanisms (Lammerding et al., 2004). 
However, the relative contribution of mechanotransduction-
induced hypertrophy is probably lower in HFpEF than HFrEF: 
cardiomyocyte diameters are larger in HFpEF, while wall 
stress is generally lower due to more concentric remodeling 
(van Heerebeek et al., 2006). Additionally, both angiotensin II 

FIGURE 3 | Endothelium-cardiomyocyte interaction in HFpEF. In�ammatory mediators such as TNF-α, IL-6, and sST2 induce oxidative stress at the level of the 

endothelium. ROS scavenge NO and induce ONOO− formation, reducing the amount of NO available for diffusion to neighboring cells such as cardiomyocytes. Less 

NO diffusing to cardiomyocytes locally downregulates the sGC-cGMP-PKG pathway, which serves as a brake on cardiomyocyte hypertrophy and passive stiffness. 

Also, in�ammatory mediators induce endothelial expression of adhesion molecules such as ICAM. Attracted leukocytes transmigrate and secrete TGF-ß, which 

stimulates collagen secretion in �broblasts, thus contributing to ventricular stiffness. Adapted from Paulus and Tschöpe (2013) with permission. cGMP = cyclic 

guanosine monophosphate, HFpEF = heart failure with preserved ejection fraction, ICAM = intercellular adhesion molecule, IL-6 = interleukin-6, NO = nitric oxide, 

ONOO− = peroxynitrite, PKG = protein kinase G, ROS = reactive oxygen species, sGC = soluble guanylyl cyclase, sST2 = soluble suppression of tumorigenicity 2, 

TGF-ß = transforming growth factor ß, TNF-α = tumor necrosis factor α.
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and aldosterone cause cardiomyocyte hypertrophy independent 
of hypertension-associated wall stress increase, through 
upregulation of nicotinamide adenine dinucleotide phosphate 
oxidase (Li et  al., 2002; Mihailidou, 2012). �us, activation 
of the renin-angiotensin-aldosterone system, which is 
frequently seen in HFpEF patients, participates in maladaptive 
cardiac remodeling. For a detailed description of other 
pathways leading to cardiomyocyte hypertrophy, we  refer 
the  reader to other reviews (Heineke and Molkentin, 2006; 
Shimizu  and Minamino, 2016).

Fibroblasts
Passive LV sti�ness in HFpEF is not only caused by cardiomyocyte 
sti�ness, but also by changes in the composition and structure 
of the extracellular matrix, especially in �brillar collagen. Cardiac 
biopsies from HFpEF patients show increased extracellular 
�brosis (Mohammed et  al., 2015; Zile et  al., 2015). Likely, 
extracellular �brosis is physiologically more important than 
cardiomyocyte sti�ness in HFpEF, as LV end-diastolic pressure 
is only correlated to collagen-based sti�ness, not to titin-based 
sti�ness (Zile et  al., 2015). Notably, microvascular changes 
(reduced capillary density) are strongly associated with the 
degree of extracellular �brosis, again suggesting a link with 
microvascular endothelial dysfunction (Mohammed et al., 2015).

Of course, cardiac �broblasts play a prominent role in the 
development of extracellular �brosis. �ey reside in the 
extracellular matrix in a quiescent state, but are able to convert 
to collagen-secreting myo�broblasts a�er activation by 
in�ammatory cytokines (Kendall and Feghali-Bostwick, 2014). 
Transforming growth factor ß is regarded as the most potent 
stimulus for myo�broblast di�erentiation. Again, endothelial 
dysfunction is considered a contributing factor. Circulating 
in�ammatory cytokines induce expression of endothelial 
adhesion molecules such as vascular cell adhesion molecule 
and E-selectin (Westermann et  al., 2011). �eir expression 
promotes adherence and in�ltration of monocytes, and polarizes 
macrophages in�ltrated in cardiac tissue. Secretion of 
in�ammatory mediators, including transforming growth factor 
ß, then induces myo�broblast di�erentiation and subsequent 
collagen secretion (Figure 3). Additionally, angiotensin II and 
aldosterone induce extracellular �brosis through direct 
stimulation of collagen secretion by myo�broblasts, nicotinamide 
adenine dinucleotide phosphate oxidase activation, and 
suppression of matrix metalloproteinases (Murdoch et al., 2014; 
Jia et  al., 2018).

Experimental and Clinical Evidence  
for a Systemic Dysfunction of 
Endothelium-Cardiomyocyte-Fibroblast 
Interaction in Heart Failure With Preserved 
Ejection Fraction
�e pro-in�ammatory state in HFpEF is thought to be systemic. 
As such, in�ammatory endothelial activation is probably not 
con�ned to the coronary circulation but present throughout 
the vasculature. A system-wide reduction in NO bioavailability 

could explain several pathophysiological �ndings in HFpEF, 
including reduced exercise-induced peripheral vasodilation, 
reduced vasoreactivity and vascular remodeling in the 
pulmonary arteries, reduced capillary density in the heart 
and skeletal muscle, and reduced renal blood �ow (Figure 2; 
Shah et  al., 2016; Gevaert et  al., 2017a).

Our group and others have shown that endothelial 
in�ammation and endothelial dysfunction are present in HFpEF 
animal models (Adams et  al., 2015; Franssen et  al., 2016b; 
Gevaert et  al., 2017b). Interestingly, in aging mice developing 
HFpEF, the degree of endothelial dysfunction was comparable 
to that in “normally” aging mice. Endothelial in�ammation, 
however, was present in aging mice but was incremental in 
aging mice with HFpEF (Gevaert et  al., 2017b). �is could 
point toward a higher relative importance of endothelial 
in�ammation compared to endothelial dysfunction, when 
considering HFpEF pathophysiology.

In HFpEF patients, evidence is con�icting with regard to 
the presence of clinical endothelial dysfunction. �is has 
been reviewed extensively recently (Gevaert et  al., 2017a). 
In short, vascular function in large and medium-size vessels 
seems relatively preserved in HFpEF patients. However, almost 
all studies comparing microvascular endothelial function 
between HFpEF patients and matched healthy volunteers 
show a microvascular endothelial dysfunction in HFpEF 
(Borlaug et  al., 2010; Akiyama et  al., 2012; Lee et  al., 2016; 
Gevaert et  al., 2019).

Knowledge Gaps
�e hypothesis that links comorbidities, endothelial 
in�ammation, and endothelial dysfunction is derived from 
rather circumstantial evidence. It is still unknown whether 
endothelial in�ammation indeed leads to clinical endothelial 
dysfunction in HFpEF. Also, vascular dysfunction has been 
described in HFpEF patients in cross-sectional studies, but a 
causal relation is di�cult to assess without longitudinal follow-up. 
Finally, the role of reduced numbers of endothelium-repairing 
cells in the development of endothelial dysfunction in HFpEF 
needs to be  explored further.

RISK FACTORS AND COMORBIDITIES

�e noncardiac comorbidities associated with HFpEF lie at 
the root of the in�ammatory endothelial activation (Franssen 
et  al., 2016a). Besides female sex and increasing age, HFpEF 
is associated with obesity, diabetes mellitus, arterial hypertension, 
anemia, chronic obstructive pulmonary disease, and chronic 
kidney disease (Mentz et  al., 2014). All these comorbidities 
can induce a systemic in�ammatory state. In cross-sectional 
studies, potent in�ammatory cytokines such as IL-6 and tumor 
necrosis factor alpha (TNF-α) are elevated in HFpEF patients 
and predict new onset of HFpEF in a community population 
(Kalogeropoulos et  al., 2010; Collier et  al., 2011). We  zoom 
in on some of the most important risk factors and 
comorbidities below.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gevaert et al. Heart Failure With Preserved Ejection Fraction

Frontiers in Physiology | www.frontiersin.org 7 May 2019 | Volume 10 | Article 638

Aging
�e prevalence of HFpEF increases with age in both sexes 
(Dunlay et  al., 2017). Besides an obvious role for an 
age-dependent increase in almost all other HFpEF risk factors, 
aging is thought to directly in�uence some of the 
pathophysiological mechanisms behind HFpEF.

LV sti�ness increases progressively with age, and this 
increase is more prominent in women (Red�eld et al., 2005). 
�is leads to a higher prevalence of LV diastolic dysfunction 
with aging (Red�eld et  al., 2003). Underlying molecular 
mechanisms include increased transforming growth factor ß 
signaling and reduced expression of elastases leading to 
interstitial �brosis, as well as mitochondrial oxidative stress, 
genomic instability, and epigenetic changes leading to altered 
calcium handling (Lo�redo et  al., 2014).

Aging is also linked with an increase in arterial sti�ness 
and a reduction in endothelium-dependent vasodilation 
(Celermajer et  al., 1994; Red�eld et  al., 2005; El Assar et  al., 
2012). Moreover, cellular endothelial repair declines  
with aging. Reduced numbers, migration, and proliferation 
of EPCs are seen in older individuals. �is decline seems 
to relate to oxidative stress, as the number of EPCs inversely 
correlates with circulating levels of ROS (Ross et  al., 2016). 
Also, numbers of circulating TAs are inversely related  
to age. Circulating EPCs and TAs are usually increased  
by exhaustive exercise; however, in healthy elderly, the 
exercise-induced increase in EPCs and TAs is attenuated 
(Ross et  al., 2018).

We have shown in an aging mice model that, while aging 
leads to diastolic dysfunction without heart failure, adding 
a high-fat, high-salt diet leads to increases in vascular 
in�ammation and signs of HFpEF (exercise intolerance, 
pulmonary edema, elevated LV �lling pressures) (Gevaert 
et  al., 2017b). Mice with HFpEF speci�cally showed an 
increase in cellular senescence in endothelial cells. Cellular 
senescence is a state of growth arrest linked to the aging 
process (Shakeri et  al., 2018a). Premature senescence is 
thought to accelerate the development of cardiovascular 
diseases through continued secretion of in�ammatory mediators 
(Shakeri et  al., 2018b). �ese are secreted by senescent cells 
to signal their removal to the immune system, but they 
induce in�ammation in the surrounding tissue and can 
accelerate senescence in neighboring cells, initiating a vicious 
circle of senescence and in�ammation. In HFpEF, this 
“senescence-associated secretory phenotype” could be  the 
missing link between aging and endothelial in�ammation 
(Gevaert et  al., 2017b).

Female Sex
Both epidemiological studies and randomized trials 
consistently showed that most HFpEF patients are women 
(50–84%) (Lam et  al., 2011). This sex bias can partly 
be  attributed to the age distribution of the population at 
risk of HFpEF, as women have a higher life expectancy 
(Dunlay et al., 2017). In fact, when adjusting HFpEF incidence 
for sex-specific differences in age, obesity, blood pressure, 

drug treatment, and coronary artery disease, men are not 
at a significantly lower risk of HFpEF than women (Ho 
et  al., 2016). The higher percentage of women in HFpEF 
populations can thus be  explained by differences in 
demographic, anatomic, and risk factors. However, sex-specific 
analyses of large randomized trials do show a differential 
response to treatment. For example, North and South American 
women enrolled in the Aldosterone Antagonist Therapy for 
Adults with Heart Failure and Preserved Systolic Function 
(TOPCAT) trial had an improved prognosis when treated 
with the aldosterone antagonist spironolactone, while men 
did not (Merrill et  al., 2019). Also, women show a better 
response to exercise training (Witvrouwen et  al., 2019).

While we do not fully understand these divergent responses, 
perhaps the underlying molecular mechanisms leading to 
HFpEF di�er according to sex. Endothelial dysfunction and 
arterial sti�ness are less prominent in women (Beale et  al., 
2018), but on the other hand women are more prone to 
cardiac hypertrophy and �brosis (Regitz-Zagrosek et  al., 2010; 
Chen et  al., 2015).

Also, the comorbidity pro�le di�ers between male and 
female HFpEF patients. Recent “big data” approaches to datasets 
of HFpEF risk factors have shown that di�erent phenotypes 
can be identi�ed, some of which exhibit a sex-speci�c dominance 
(Kao et  al., 2015; Shah et  al., 2015; Ahmad et  al., 2018; 
Tromp et  al., 2018). �ese phenotypes show a di�erence in 
treatment response and prognosis (Kao et  al., 2015; Ahmad 
et  al., 2018). Finally, regulation of genes and noncoding  
RNAs is highly sex-speci�c (Regitz-Zagrosek et  al., 2010; 
Vidal-Gómez et  al., 2018).

Metabolic Syndrome
Obesity, arterial hypertension, and diabetes mellitus are common 
in HFpEF patients and o�en coexist (Mohammed et al., 2012). 
Arterial hypertension increases a�erload on the LV, further 
increasing pro-hypertrophic signaling in cardiomyocytes and 
directly impairing ventricular-vascular coupling (Borlaug, 2014). 
Long-standing arterial hypertension also induces vascular 
remodeling leading to arterial sti�ness (Red�eld et  al., 2005).

Obesity is a potent inductor of in�ammatory signaling. 
Visceral adipose tissue is in�ltrated by macrophages, which 
continuously secrete in�ammatory cytokines (Berg and Scherer, 
2005). Obese HFpEF patients also have an increased plasma 
volume, correlating with LV end-diastolic pressure (Obokata 
et al., 2017). Measures of body composition (body mass index) 
and more speci�cally of adiposity (fat mass index and leptin 
levels) also relate to exercise capacity in HFpEF (Carbone et al., 
2016). �is could be  linked to adipose in�ltration in skeletal 
muscles, which independently predicts peak oxygen uptake 
(peak VO2) (Haykowsky et  al., 2014).

Diabetes mellitus can contribute to the development of 
HFpEF through several pathways. First, diabetes mellitus is 
associated with a systemic in�ammatory state and increased 
oxidative stress, causing microvascular dysfunction and LV 
hypertrophy (Tabit et  al., 2010). Second, diabetes accelerates 
atherosclerosis, leading to myocardial ischemia. �ird, renal 

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Gevaert et al. Heart Failure With Preserved Ejection Fraction

Frontiers in Physiology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 638

function is progressively impaired in diabetes, contributing 
to volume overload.

Arising from a systemic in�ammatory state and increased 
oxidative stress, patients with hypertension, obesity, or diabetes 
also have impaired endothelial function and reduced EPC 
and TA levels (Brunner et  al., 2005; Case et  al., 2008; 
Tousoulis et  al., 2008).

Anemia and Iron De�ciency
Most data on anemia and iron de�ciency in HFpEF are 
extrapolated from studies in HFrEF patients. Iron de�ciency 
is the most frequent cause of anemia in HF patients, and 
both anemia and iron de�ciency without anemia predict mortality 
(Okonko et  al., 2011). Besides its well-known role in 
erythropoiesis, iron is also a key factor in mitochondrial 
metabolism, crucial for cells with a high energy consumption 
such as cardiac and skeletal myocytes. In HF, iron de�ciency 
arises from nutritional defects, increased red cell destruction, 
hepatic congestion, in�ammatory bone marrow dysfunction, 
and chronic kidney disease. Iron de�ciency severely impacts 
functional status and exercise capacity (Jankowska et al., 2013). 
Regardless of the presence of anemia, intravenous correction 
of iron de�ciency improves exercise performance, symptoms, 
and quality of life, and reduces hospitalizations in patients 
with HFrEF (Jankowska et al., 2016). Iron de�ciency is thought 
to contribute to the development of HFpEF through increased 
oxidative stress and reduced mitochondrial function, but evidence 
is scarce (Paulus and Tschöpe, 2013; Hoes et  al., 2018).

Knowledge Gaps
While we  know that abovementioned comorbidities contribute 
to endothelial dysfunction and diastolic dysfunction, the 
underlying mechanisms leading to these changes are unknown. 
Most animal models of HFpEF are young, male animals subjected 
to an acute event (surgery, salt overload) which does not 
accurately re�ect HFpEF pathophysiology. Also, the relation 
between comorbidities and vascular dysfunction has never been 
examined speci�cally in HFpEF patients. Finally, an important 
barrier in identifying sex-speci�c underlying mechanisms of 
HFpEF is the predominance of male animals in experimental 
studies (Horgan et  al., 2014).

GENETIC REGULATION

Unlike HFrEF, in which several monogenic subtypes have been 
de�ned, little is known about potential genetic determinants 
of HFpEF (Tayal et  al., 2017). Some genetic cardiomyopathies 
do exhibit a phenotype with preserved ejection fraction, for 
example hypertrophic cardiomyopathy and hereditary 
transthyretin amyloidosis. However, in most cases, it is di�cult 
to discern genetic determinants of HFpEF from the in�uence 
of comorbidities: certain genetic factors may only be important 
in the presence or absence of a certain comorbidity. �us, 
genetic determinants may di�er between HFpEF phenotypes 
(Kao et al., 2017). An extensive review of gene reprogramming 

in HF falls beyond the scope of this review, we  refer the 
readers to previous work (Dirkx et  al., 2013; Deng, 2015). 
Recent advances have focused on the deregulation of noncoding 
RNA in HFpEF, which we  summarize below.

Role of the Noncoding Genome
Although about 75% of the human genome is transcribed, 
less than 2% is translated into proteins. However, the remaining 
“noncoding” transcripts do participate in regulation of biological 
processes, through interaction with coding RNA (�um and 
Condorelli, 2015). MicroRNAs, short (20–25 base pairs) 
noncoding RNA molecules, are especially active as 
posttranscriptional regulators. �ey in�uence gene expression 
by binding to messenger RNA and causing its degradation or 
inhibiting its translation (Bartel, 2004). One microRNA can 
target hundreds of messenger RNA, and one messenger RNA 
can be  targeted by several microRNAs, leading to an intricate 
network of posttranscriptional control. MicroRNAs are involved 
in all major biological processes and are implicated in several 
disease states, including cardiovascular disorders (Romaine 
et  al., 2015; Schiattarella et  al., 2018). Other noncoding RNA 
molecules (long noncoding RNAs, circular RNAs) are still 
poorly studied in HFpEF (Viereck and �um, 2017).

MicroRNAs as Biomarkers

MicroRNAs can be  secreted in the circulation, packed in 
exosomes and microparticles, or bound to lipoprotein complexes 
or RNA-binding proteins. �ese circulating microRNAs are 
stable in plasma and thus form attractive biomarkers (Valadi 
et  al., 2007; Vickers et  al., 2011). Cells release microRNAs in 
response to stimuli such as ischemia or cell death, and they 
can be  taken up by target cells such as endothelial cells 
(Poller et  al., 2018).

In HF, microRNAs have been investigated as possible biomarkers 
to aid in diagnosis. Several microRNAs provide bene�t over 
traditional biomarkers to di�erentiate HFrEF from HFpEF (Watson 
et  al., 2015; Wong et  al., 2015). Also, several microRNAs are 
related to aerobic capacity or the response to exercise training 
(Sapp et  al., 2017). MicroRNAs are released in the circulation 
a�er even short-term exercise, and training induces long- 
term changes in microRNA expression (Baggish et  al., 2011; 
Uhlemann et  al., 2014; Van Craenenbroeck et  al., 2015).

MicroRNAs as Therapeutic Targets

As active participants in cellular cross talk, microRNAs are 
also attractive therapeutic targets. Inhibiting a microRNA or 
mimicking its activity potentially in�uences dozens of genes, 
which could lead to larger treatment e�ects compared to standard 
drugs (Poller et al., 2018). While microRNA-interfering therapy 
is still in its early developmental stage, several pilot studies 
have shown promising results in treating cardiovascular disease 
(Rupaimoole and Slack, 2017). For example, an inhibitor of 
microRNA-92a (which in�uences angiogenesis) improved blood 
�ow a�er peripheral ischemia and enhanced recovery a�er 
myocardial infarction in mice (Bonauer et  al., 2009). Inhibition 
of proapoptotic microRNA-34a or pro-�brotic microRNA-21 
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improved LV function in mice with HF due to pressure overload 
(�um et al., 2008; Bernardo et al., 2012). An increasing number 
of phase I  and II clinical trials using microRNA therapy are 
being started (Rupaimoole and Slack, 2017). MicroRNA-based 
therapies for HFpEF are not yet under development, but some 
microRNAs have been identi�ed as crucial regulators of 
pathophysiological processes underlying HFpEF, and are under 
investigation as therapeutic targets (Rech et  al., 2018).

Knowledge Gaps
As microRNA research is still emerging, little evidence exists, 
and many questions remain. Is there a mechanistic link between 
microRNAs and exercise intolerance in HFpEF? Or between 
microRNAs and vascular function? Is microRNA expression 
in�uenced by exercise training? What are the downstream 
targets of these deregulated microRNAs and can they become 
a novel therapeutic target? Can microRNAs be used as biomarkers 
to identify HFpEF phenotypes, or HFpEF patients with certain 
traits (e.g., responders to exercise training)?

EFFECTS OF EXERCISE TRAINING IN 
HEART FAILURE WITH PRESERVED 
EJECTION FRACTION

While a drug therapy that improves prognosis or quality of 
life in HFpEF patients is still lacking, guidelines currently 
recommend exercise training as a therapy to improve aerobic 
capacity and quality of life in HFpEF patients (Ponikowski 
et al., 2016). �is recommendation is based on the randomized 
multicenter Exercise in Diastolic Heart Failure (Ex-DHF)  
pilot trial and meta-analyses of several single-center trials that 
showed an improvement in peak VO2 and/or quality of life 
(Edelmann et al., 2011; Pandey et al., 2014; Fukuta et al., 2016).

How exercise training improves peak VO2 in HFpEF patients 
remains unclear. Following the Fick principle, i.e., VO2 = cardiac 
output × arteriovenous O2 di�erence, improvement in peak 
VO2 is caused by a cardiac factor (cardiac output), a noncardiac 
factor (peripheral O2 extraction), or both. In HFrEF patients, 
both cardiac and noncardiac factors are improved by exercise 
(Tucker et al., 2018). In HFpEF, several mechanisms have been 
proposed, investigated, and then refuted. Potential bene�cial 
e�ects of exercise in HFpEF are displayed in Figure 1. Unraveling 
the bene�ts of exercise training in HFpEF is important, as its 
molecular determinants could hold the clue for novel 
pharmaceutical therapies, which will also bene�t patients who 
are unable to perform exercise.

Improvement in diastolic function could be  important as 
a “cardiac” mechanism. In middle-aged sedentary subjects, two 
years of exercise training was able to improve invasively measured 
ventricular sti�ness (Howden et  al., 2018). In HFpEF patients, 
the Ex-DHF pilot trial indeed showed an improvement in 
echocardiographic diastolic function with exercise training 
(Edelmann et  al., 2011). However, several later studies could 
not con�rm this �nding (Smart et  al., 2012; Fu et  al., 2016; 
Kitzman et  al., 2016).

As mentioned above, HFpEF patients also su�er subtle 
reductions in systolic function. Two studies showed no changes 
in peak cardiac output during exercise in HFpEF patients, but 
instead a signi�cant change in arteriovenous O2 di�erence was 
observed (Haykowsky et  al., 2012; Fu et  al., 2016). �e main 
sites for peripheral O2 extraction during exercise are the skeletal 
muscles. Skeletal muscle abnormalities are an o�en overlooked 
but clinically important feature of HFpEF patients: abnormal 
muscle mass, composition, capillary density, and oxidative 
metabolism have all been described (Kitzman et  al., 2014). 
Although Fu et  al. did show improved vastus lateralis muscle 
oxygenation in 30 HFpEF patients following a training program 
(Fu et  al., 2016), no clinical study has speci�cally examined 
skeletal muscle abnormalities before and a�er exercise training 
in HFpEF. Animal studies suggest exercise improves muscle 
atrophy associated with HFpEF, although training did not a�ect 
muscle strength or fatigability (Bowen et  al., 2017).

Skeletal muscle abnormalities can further contribute to 
exercise intolerance through overactivation of the autonomic 
nervous system (Piepoli and Crisafulli, 2014). Muscle atrophy 
in HF patients leads to enhanced sensitivity of muscle 
metaboceptors, which drive a feedback system called “ergore�ex” 
(Piepoli et al., 2006). �e ergore�ex promotes hyperventilation, 
causing premature exercise discontinuation because of dyspnea. 
Ergore�ex activity is linked to the severity of HF and is 
increased in patients with decompensated HFrEF (Pardaens 
et  al., 2014). In HFpEF, ergore�ex overactivity has been 
described in animal models, and was linked to the abnormal 
hemodynamic response to exercise in patients (Cli�on et  al., 
2017; Roberto et  al., 2017). Exercise training is able to reduce 
the overactivation of autonomic re�exes in HFrEF patients 
(Piepoli et  al., 1996), but the e�ect in HFpEF patients has 
not been tested.

Peripheral O2 extraction also relies on appropriate distribution 
of blood to the peripheral tissues, and thus on normal endothelial 
function. By upregulating and phosphorylating endothelial NO 
synthase, reducing NO-scavenging free radicals, and increasing 
VEGF release, exercise training improves endothelial function 
(Haram et al., 2008; Adams et al., 2017). Clinically, endothelial 
function (FMD) can indeed be  improved by exercise training 
in HFrEF patients (Pearson and Smart, 2017). However, in a 
single-center trial of 63 HFpEF patients, FMD was unchanged 
a�er 16  weeks of moderate aerobic exercise training despite 
an improved peak VO2 (Kitzman et  al., 2013). Of note, in 
this study, diastolic function also remained unchanged a�er 
exercise, as well as arterial sti�ness.

Knowledge Gaps
Evidence regarding the cause of improvement in peak VO2 
a�er exercise training in HFpEF is con�icting. Recent studies 
indicate that noncardiac improvements are more important, 
but whether this is due to improved peripheral vascular function 
or other factors (i.e., skeletal muscle metabolism) is still unknown. 
Moreover, the e�ects of exercise training on microvascular 
endothelial function and cellular endothelial repair in HFpEF 
are unknown. �e recently completed multicenter Optimizing 
Exercise Training in Prevention and Treatment of Diastolic 
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Heart Failure (OptimEx) and Ex-DHF 2 trials will soon shed 
more light on the bene�ts of exercise training in HFpEF.

SUMMARY

HFpEF is one of the largest unmet clinical needs in cardiology. 
It is a complex disorder with a central role for endothelium 
dysfunction induced by several comorbidities. Endothelial 
dysfunction leads to an intricate web of physiological 
abnormalities in the heart, blood vessels, and other organs. 
Several microRNAs have been identi�ed as crucial regulators 
of pathophysiological processes underlying HFpEF, and could 
form interesting future diagnostic and therapeutic tools. Exercise 
training is currently the only available therapy to improve 
aerobic capacity and quality of life in HFpEF patients. Unraveling 
the underlying mechanisms responsible for this improvement 
could lead to new biomarkers and therapeutic targets for HFpEF.
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