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Abstract

Accurate heart rate monitoring during intense physical exercise is a challenging problem

due to the high levels of motion artifacts (MA) in photoplethysmography (PPG) sensors.

PPG is a non-invasive optical sensor that is being used in wearable devices to measure blood

flow changes using the property of light reflection and absorption, allowing the extraction of

vital signals such as the heart rate (HR). However, the sensor is susceptible to MA which

increases during physical activity. This occurs since the frequency range of movement and HR

overlaps, difficulting correct HR estimation. For this reason, MA removal has remained an

active topic under research. Several approaches have been developed in the recent past and

among these, a Kalman filter (KF) based approach showed promising results for an accurate

estimation and tracking using PPG sensors. However, this previous tracker was demonstrated

for a particular dataset, with manually tuned parameters. Moreover, such trackers do not

account for the correct method for fusing data. Such a custom approach might not perform

accurately in practical scenarios, where the amount of MA and the heart rate variability

(HRV) depend on numerous, unpredictable factors. Thus, an approach to automatically

tune the KF based on the Expectation-Maximization (EM) algorithm, with a measurement

fusion approach is developed. The applicability of such a method is demonstrated using an

open-source PPG database, as well as a developed synthetic generation tool that models

PPG and accelerometer (ACC) signals during pre-determined physical activities.
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Chapter 1

Introduction

1.1 Literature Search and Motivation

Heart rate information is one of the most important vital signs that can be gathered from

a person, along with blood pressure, temperature and respiration. It also provides intrinsic

information about the state of the cardiovascular system, which resembles the quality and

health of an individual’s life. Moreover, it represents a useful indicator of physiological

adaptation and intensity of effort [3]. For this reason, heart rate monitoring is important

since it translates the process of oxygen circulation and other nutrients to the body. Thus,

if the heart is not functioning properly, it will affect all other systems. This represents a

direct relation with the stroke volume and the cardiac measurement at each beat.

Heart rate (HR) is defined as the number of heart pulses in a period of time, and it’s

usually presented in beats per minute (BPM). This corresponds to one’s cardiovascular fit-

ness or how the heart adapts to unpredictable stimuli. Usually HR is used as an indicator

of sympathetic and parasympathetic nervous system activity in response to physiological

1



conditions [4]. So, it is necessary to track its pattern in order to determine possible arrhyth-

mias (abnormalities), since this might indicate a heart defect or a serious heart condition

that requires immediate intervention. According to a study conducted by the World Health

Organization in 2017, cardiovascular diseases (CVDs) are the number one cause of death

globally and almost 18 million people died from CVDs in 2016, which accounts for 31% of

all global deaths [5]. These numbers represent the importance of monitoring one’s cardiovas-

cular system and why researchers keep going further to find better, faster and more reliable

solutions to estimate heart rate information, whether in hospitals or more recently, in wear-

able devices. There have been several methods presented over the years to measure and

track heart rate information. Not unitl the 19th century, in modern Europe, that research

started to take place in order to find how the heart performs its task and how the electrical

activity spreads throughout the heartbeat cycle. The movement initiated with the original

electrocardiograph composed by a string galvanometer, which recorded the potential differ-

ence between extremities resulting from the heart’s electrical activation [6]. Then, in the

first half of the 20th century, several innovations set in motion the whole movement and fas-

cinating sequence of discoveries that led to the well known 12 lead electrocardiogram (ECG)

as we know. For many years, ECG was established as the dominant cardiac monitoring

technique to identify cardiovascular problems and detect irregularities in heart rhythms [6].

Even though traditional cardiac monitoring through ECG has developed exponentially over

the years, in order to commit to continuous requirements of their users, notedly, accuracy,

and user comfort, these techniques, up until now, have not provided user flexibility, portabil-

ity, and convenience [7]. In each step of this unending development, physicians involved the

ECG as being an essential clinical instrument, even though it had recognized deficiencies.

This concept pushed researchers to improve the technology allowing for optimization and

improvements for better, faster and affordable non-invasive instruments.

2



As mentioned before, ECG was the first and most accepted method throughout the entire

medical community. However, other methods such as radial pulse, applanation tonometry,

and cardio-phonography are also used for HR monitoring, but they all have in common limi-

tations such as the restricting movement of the user, capacity to be worn just in a few periods

of time, wiring and price. Usually, these instruments need several attachments and connec-

tions in order to accurately provide heart rate information from someone’s health, which also

refrains the movement and comfort of the user. Since this intermittent measurement usually

is the common method, it provides only a periodic overview of the cardiovascular system’s

state, which cannot be considered truly accurate. More importantly, maintenance and high

cost are drawbacks of these methods, since usually, each method demands assistance and

space to be able to be used correctly.

Due to all of those facts, photoplethysmography (PPG) seemed to be an alternative,

providing low cost through a simple optical-based technique for monitoring blood flow. PPG

comprises then, a novel technique to estimate heart rate. It’s an optical and non-invasive

method used to detect volume changes in blood vessels [8]. It measures HR based on the

changes in light absorption in the tissue in a specific color spectrum range, usually red/green

and infra-red wavelength. Light travels through biological tissues and is absorbed with

different amplitudes by different substances, including pigments in the skin, blood vessels,

muscles, and bones. However, most changes in blood flow occur mainly in the arteries

and arterioles. Consequently, arteries that contain more blood during the systolic phase

(ventricles contract) than the diastolic phase (ventricles relax) provide better heart rate flow,

which in theory produces better signal acquisition from the PPG sensors. They optically

detect the change in the blood flow volume between these movements, in the microvascular

tissue which appears after filtering, in HR information. This method provides a fast, reliable

and cost-effective solution if compared to the usual method of ECG.
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Thus, PPG became popular in the past years representing a non-invasive, cost-effective,

and lightweight method for HR estimation. Researchers have been studying and implement-

ing better algorithms in order to retrieve reliable information with PPGs, although motion

artifacts (MA) , scattering of light and some other drawbacks are presented as common

difficulties to be solved.

It is very difficult to obtain the PPG signal without motion artifact, which can be caused

by several reasons, such as movement, the gap between the sensor and the skin, environmental

noise and reflection/backscattering of the light [9]. Thus, this new method opened a broad

field for research and market acquisition. Major companies in the industry of wearable

devices have been investing in this sector, and significant research has been done in order

to provide better filtering of these MA, smarter and more accurate devices and of course,

commercialization.

1.2 Organization of the Thesis

Photoplethysmography became a very popular topic among the scientific and medical com-

munities in the past years, and several fitness/health companies have been investing in this

area. According to an international research firm, smartwatches and fitness trackers will be

one of the most invested and bright spots over the next years, jumping to almost 200 million

units shipped in 2022 [10]. Also, as it can be seen in Figure 1.1, the number of publications

regarding PPG for heart rate estimation also increased over time. This also enforces that

several methods and algorithms have been implemented for PPGs sensors.

As mentioned before, PPGs are influenced negatively primarily by MA and extensive

research has been developed in this area. Reduction of MA is very difficult because their
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Figure 1.1: Published research under the photoplethysmography topic.

Source: [10] and [11].

major frequency components overlap with the reliable frequency (HR) from the sensor. Sev-

eral methods have been developed from filtering techniques to machine learning, but usually,

they lack a system capable of estimating the state for each heartbeat and fall behind when

compared to more robust but also complex algorithms. Since common filtering methods

have a fixed frequency range, researchers in the last decade, have proposed two methods

to reduce MA from PPG signals. First, is a non-motion reference method, which extracts

information from the distorted signal based on the idea that the pulse signal is a major

component in the measurement signal, in addition, that the frequency (HR) slowly changes

if compared with MA [12–17]. The second category is a motion reference method that uses

a reference to body sensors. [18, 19]. It utilizes active noise cancellation requiring a filter

optimization algorithm. Laguerre, Least mean Square (LS), Recursive Least mean Square

(RLS), Principal Component Analysis (PCA) are a few of the methods proposed, usually

the cancellation is made for simple motions, such as vertical and horizontal movements, for

finger or forehead sensor acquisition. The first method is not suitable for wearable devices
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since it’s time-consuming and requires a significantly large amount of data, in order to ex-

tract the features of the signal. The second, since it’s based on the fact of slow movements,

it’s unsuitable for daily usage, which requires more complex algorithms to decrease MA for

more complex motions, such as running and cycling, for example.

Thus, there is a need to combine complex yet feasible algorithms for wearable devices

to accurately estimate HR measurements during physical exercise. This thesis focuses on

this statement and is divided into six chapters. The first Chapter introduces the overall

composition of the project and the motivation behind the development of the HR estimation

method. Chapter 2 focuses on the background study of photoplethysmography sensors and

their use, advantages, and challenges with HR estimation. Next, Chapter 3 presents several

methods for HR estimation using PPG sensors, as well as the proposed method algorithm

and its framework. Chapter 4 explores the different fusing methods available and analyzes

the best method for fusing several sensors for a reliable HR estimation. As a result, Chap-

ter 5 provides a synthetic data simulation tool for evaluation of available HR estimation

methods, allowing a faster evaluation and generation of signals during physical exercise for

wearable devices. Chapter 6 explores the design requirements and processes of the hard-

ware implementation. Lastly, Chapter 7 summarizes the conclusion and future scope of the

project.

1.3 Problem Statement

Heart rate estimation becomes a very complex task while in movement, since spectrum of

the desired signal (PPG) may overlap with the spectrum related to the movement. This

costs in accuracy in wearable devices. Moreover, parameters related to the user physiology

are usually not accounted for, which causes algorithms to be tuned for specific datasets
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instead of allowing HR estimation of patients that have other more complex cardiovascular

problems, such as Atrial Fibrilation (AF) and Blood Pressure (BP) for example. This thesis

focuses on an optimal algorithm to reduce MA from PPGs sensors during physical exercise

also accounting for user parameters that interfere with a correct HR estimation. In addition,

a synthetic PPG signal generation tool is formulated which allows comparison of published

HR algorithms to be evaluated indenpendently of exercise duration.
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Chapter 2

Background to the Study

The field of electronics have been by far, investing the most to the field of medicine. New

medical devices are constantly developed and better techniques are discovered with this out-

going investment. This, in turn, reflects on advances in clinical and self-monitoring systems,

providing accurate and reliable methods for living a healthier life. These devices are based

on the available medical knowledge combined with technologies available in the electronics

field [20]. This increasing demand is driving production and integration for portable devices,

stimulating the creation of more reliable, faster, affordable and smaller technologies and

methods.

2.1 Wearable Sensor and Systems

Wearable health monitoring technologies have attracted considerable consumer interest over

the past years, representing a new emerging field to health monitoring, from hospitals and

clinical facilities to fitness/tracking applications. They could be described as an unobtrusive,

autonomous, and ubiquitous system that supports continuous, multiparameter monitoring

and treatment, and telemetric abilities [21,22]. These devices, usually come integrated with
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a wide range of sensors, capable of measuring physiological and environmental conditions.

Such sensors can be characterized in two categories: Biosensors, which are used to monitor a

clinical process, allowing measurement of biopotentials and other physical parameters, and

peripheral sensors, responsible for sensing environmental conditions, enhancing the awareness

of the system [20]. Biosignals then can be generated by several forms of energy, allowing

their division between six important groups, as it can be seen in Table 2.1 below.

Form of energy Parameters Example of biosignals

Electrical
Voltage, current, resistance, ca-
pacitance, inductance, etc.

ECG, EEG, EMG, EOG, ENG

Mechanical
Displacement, velocity, accelera-
tion,force, pressure, flow, etc.

Blood pressure, pulse wave, veloc-
ity

Thermal
Temperature, heat flow, conduc-
tion

Body core temperature, skin tem-
perature

Radiant
Visible light, infra-red waves,
etc.

SpO2, photoplethysmography

Magnetic
Magnetic flux, field strength,
etc.

Magnetoencephalography, flow
meters

Chemical Chemical composition, pH, etc. Glucose, cholesterol

Table 2.1: Classification of biosignal according to associated form of energy

Source: [20]

2.2 Photoplethysmography

2.2.1 Brief History

The term “plethysmograph” derived from the Greek, and is composed by two words: “plethys-

mos ’ which means increase, enlarge, and “graphos” from graphein, which is the word for

writing. Meaning an instrument to obtain tracings showing volume changes of parts of the

body. Originally, this is related to volume variations due to blood circulation with the body
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part of interest [23]. But it was just in 1938 when Hertzman introduced the term to describe

a transcutaneous technique, which would allow registration of blood flow volume changes in a

non-invasive procedure [8]. The principle relies on the observation that the light transmitted

through the living tissue, acquire a change in time of the heartbeat frequency [8].

2.2.2 Functionality

As mentioned before, PPG is a non-invasive and low-cost sensor to continuously moni-

tor blood volume changes inside capillary vessels using the property of light reflection and

absorption, producing usable biomedical information such as HR, oxygen saturation and

measure respiratory rates [24, 25]. The signal consists of two major components: a steady

DC component and a pulsatile AC component [26]. The DC part corresponds to the light

absorption by non-pulsatile blood, skin, bone and other tissues, while the AC component

represents the light absorption by pulsatile blood volume changes between the systolic and

diastolic phases of the cardiac cycle [27, 28]. As seen in Figure 2.2, the AC component

translates the interaction between the blood volume changes with the sensor. It varies with

time and has a frequency of about 1 Hz and slowly varies its baseline (DC component).

The AC component is provided by the cardiac synchronous variation in the blood, which

happens because of the heartbeats. This component depicts changes in blood volume, which

represents the systolic and diastolic phases [29]. Features such as rise time, amplitude and

shape can predict vascular changes in the blood flow [29]. Also, it is possible to see two

unique phases: a rising edge of the pulse, which is also called anacrotic (systole), and falling

edge, called catacrotic, which represents diastole. Additionally, a dicrotic notch is usually

visible at the catacrotic phase. These features are explained in Table 2.2.

The other component is shaped by respiration, sympathetic nervous system activity, and
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PPG feature Description

Systolic Amplitude
Reflects AC variation in blood volume around the measure-
ment site

Pulse Area
Total area under the PPG curve. Interval between two systolic
peaks

Peak to Peak Interval Interval between two systolic peaks

Large Artery Stiffness In-
dex

The time interval between the systolic and diastolic peaks

Table 2.2: Features of PPG signal

Source: [7]

thermoregulation [7]. While the AC component has clinical importance due their synchrony

with the cardiac cycle, the DC component also provide valuable information, such as hy-

peraemic or hypoaemic states, temperature changes, sympathetic outflow, venous volume

fluctuations, and other regulatory mechanisms [30].

The sensor monitor changes in the light intensity, via transmission or reflection. Trans-

mission mode provides a relatively good signal since both sensors, LED and photodiode are

across each other, providing a better signal reflectance between them. However, the sensor

must be located on the body at a site where transmitted light can be readily detected, such

as fingertip, nasal septum or earlobe, for example. This becomes a disadvantage to this

mode, since, for daily activities, this might represent interference to movements and reliable

acquisition of the signal. Reflectance mode, on the other hand, eliminates this problem, since

both sensors are side-by-side, allowing more mobility during data acquisitions. However, MA

and pressure perturbances may corrupt the PPG signal and limit the measurement accuracy

of physiological parameters [28].

The relation between light and biological tissue may involve scattering, absorption and/or

reflection of the signal. For this reason, studies were conducted in order to determine the

relation, characteristics, and penetration of the light in human skin. It was discovered that
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Figure 2.2: Typical waveform of the PPG: (a) AC component (red curve) represents the light
absorption by pulsative blood volume, DC(black curve) is a slowly varying component. (b)
ratio AC/DC after detrending and inversion. ECG is recorded simultaneouly and appears
in blue color.

Source: [31]

within the visible color spectrum the dominant absorption peak is found to be in the blue

region, followed by the green-yellow spectrum (between 500 and 600nm) corresponding to

the red blood cells [9]. Moreover, other studies defend that working on the green range of the

spectrum, provides better readability of the sensor, since the green light is absorbed entirely

by the body, also providing a good correlation between oxyhemoglobin (oxygenated blood)

and deoxyhemoglobin (blood without oxygen present) [32]. This in fact, translates into a

greater change in the reflected green light, resulting in a better signal to noise ratio of the

signal, providing measurements that are more accurate [25,28,33,34]. Thus, the green wave-

length is typically used in reflectance mode, for the measurement of superficial blood flow,

while infra-red is usually used in transmission mode PPG sensors, in order to measure blood

flow in deeper tissues [28]. As previously mentioned, in Figure 2.3 there is a representation

about the spectrum range against absorption for oxygenated and deoxygenated hemoglobin,

and it’s possible to see that realization of oxygen absorption is higher at the green spectrum

range found out by [25,32,35, 36].

Even though there is a wide color range of LEDs, which allows different light absorption
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by the tissue, the green LED is considered the most commonly used. This is merely because

green light waves penetrate superficially into the tissue, producing the strongest plethysmo-

graphic signal for light reflectance measurement and detect pulse rate with a higher degree

of precision [34]. As pointed by Maeda et al, 2010, a study was conducted in healthy sub-

jects, which were subjected to different ambient temperatures. Their research investigated

that green wavelength PPG sensors, produced a higher correlation with R-R interval (which

indicates the heart beat-to-beat interval) of an electrocardiogram, compared with infrared

waves, as it is usually also accepted for PPG sensoring. Results then, suggested that re-

flected green light PPG has an advantage over reflected infrared PPG sensors, even more

with the temperature variation. Other studies, defend the same concept of light absorp-

tion and that detection of pulse rate has a higher degree of precision with a green light for

photoplethysmography sensors [25, 28, 35, 37].
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2.3 Motion Artifacts

In addition to light wavelengths, previous research identified other side-effects that influence

negatively the signal acquisition by PPG sensors. These side-effects are broadly called motion

artifacts (MA). This comes mainly from the fact that signal acquisition is decreased and

unreliable data information is acquired due to motion and/or environmental noise. It is

because of MA that PPG has not yet been widely accepted as a sensor for mobile and health

care applications. According to Chong et al. (2014), there are three distinct sources of MA

that compromise readability of PPG sensor’s acquisition: environmental, physiological and

experimental artifacts, which can be attributed to electromagnetic and power interference

around the body; cross-talk pickup of other physiological signals and instrumental noise [24].

Other disruptions may be caused by, but not exclusive to a measurement site, contact force,

artifacts of mechanical movement, subject posture and breathing, ambient temperature, skin

characteristics and blood perfusion [9, 38].

Tissue modifications can alter inner tissues, made voluntary or involuntary by muscles’

movements and/or dilatation of other tissues. The light that is received back from the

sensor, may be modified by these movements, generating noise, corrupting the correct signal.

Individuals anatomy, differences in organ sizes and amount of fluids retained by tissues result

in variation of light propagation in the inner layer [7]. Another factor that modifies the signal

is the displacement of the sensor relatively with the skin. This, in fact, is caused primarily

because the system is sensitive to motion, and the electrode-skin impedance changes over

movement too. For wrist-type PPG sensors, during intense hand movement, the gap between

the wrist’s skin and the sensor changes, and as a result, the measured intensity of the PPG

varies with it. This variation is often correlated with the frequency in which the hand

moves [39]. As be seen in Figure 2.4, PPG signal is corrupted by MA due to movement and

physical displacement between the sensor and skin, during intense physical movement, such
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as running, for example.

Figure 2.4: (a) A segment of the ECG (ground truth) and (b) corresponding PPG in time
domain. (c) Periodogram representation for both cases and spurious MA peaks near the HR
peak.

Source: [39]

It might even happen that when the sensor gets so separated from the skin that the

original peak corresponding to the HR might be totally absent from the spectrum [39].

Figure 2.5 shows this case.

Sometimes, the frequency of the movement and the HR frequency might get close that

the HR peak becomes imperceptible for a given resolution on the periodogram, as in Figure

2.6.

In summary, MA represents a very complex and difficult disadvantage on the use of

PPG sensors, however, when tackled with good algorithms to suppress and or/separate

its effects, these sensors become a reliable, cost-effective and user-friendly application for

health monitoring devices. Another method that has been universally accepted, is the use

of complementary sensors, such as accelerometers (ACC) and gyroscopes (GYRO) to mimic

the noise presented in the motion, and through the application of filters and other methods,

decrease/reject artifacts presented on the data and improve heart rate, and other factors,
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Figure 2.5: (a) A segment of the ECG (ground truth) and (b) corresponding PPG in time
domain. (c) Periodogram representation for both cases and no peak detection of HR.

Source: [39]

for example.

2.4 Tissue Optical Characteristics

Methods for determining the optical parameters of tissue can be divided into two large

groups: direct and indirect. Direct methods are based on fundamental concepts such as

the Beer-Lambert Law, the single scattering phase function for thin samples, or the effects

of light penetration in tissues [40]. These methods are advantageous in the way that they

are simple analytical expressions for algorithms and reconstruction of data processing. Their

disadvantage, on the other hand, is that they are based on experimental conditions which are

grounded in a model implying some sort of hardness in the method approach. Indirect models

are based on obtaining the solution of the inverse scattering problem using a theoretical

model of light propagation. These, on the contrary, are very complex models and time-

consuming for algorithm composition. For this reason, direct methods are commonly found

in literature and provide a reasonable application for PPG sensors. Optical scattering is the
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Figure 2.6: (a) A segment of the ECG (ground truth) and (b) corresponding PPG in time
domain. (c) Periodogram representation for both cases and MA peak and HR peak are
almost imperceptible from each other.

Source: [39]

main disadvantage of PPG sensors, as explained in previous sections. It can be described

as either a scattering of particles that have a refractive index different from the surrounding

medium, or as scattering by a medium with a continuous but fluctuating refractive index [41].

Medium, in this case is the skin, more concentrated in the outter skin, within dermis and

subcutaneous layer, which would contain blood vessels for precise heart rate estimation using

PPG sensors. As shown in Figure 2.7, modelling the skin is a very complex and cumbersome

method, as there are several variables to be accounted for, such as blood flow, reflectance of

the light in different absorption coefficient layers, scattering of the light and temperature, to

name a few.

Another constraint is how the light is absorbed for different skin tones. Even though

humans have a broad range of skin tones, the intensity and wavelength light that is captured

by the PPG sensor depends on the skin tone of the person wearing a wearable device.

That is, different skin tones absorb light differently, thus being characterized by a different
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Figure 2.7: Schematic diagram of optical pathways in skin. Keratinized squamous cells
(1) and large melanin aggregates (2) are responsible for absorption and scattering. The
vascularized dermis (3) includes absorbers such as oxygenated and deoxygenated hemoglobin,
caroten and bilirubin.

Source: [42]

absorption spectrogram [38]. There is even a scale proposed by Fitzpatrick in order to

categorize as a numerical classification of skin tones and their response to ultra-violet light.

In the wavelength range of 350-1200nm, which is the spectral range where PPG sensors

work, melanin is the major absorber of radiation in the epidermis, especially at shorter

wavelengths [43]. Dermal scattering, therefore, portrays an important topic in determining

the depth of the radiation of different wavelengths that penetrate the dermis [44].

Not only skin tone but also pigments can influence negatively with PPG sensoring. Apple

watch users’ who have tattoos on the wrist, encountered some problems using the device to

measure heart rate. This happens because the ink present on tattoos can interfere with an

accurate reading as they may block the light from penetrating the skin [45].
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2.5 Sensor Location

Anatomical measurement sites influence how optical HR sensors interpret biosignals. Since

the sensor has direct contact with the skin, light reflected and/or absorbed also varies with

the sensor location. Usually, sensors are placed in the finger (transmissive method), but also

in the hand, forehead, ankle, arm, chest, wrist and ear, but mostly in these last 3 regions.

According to Tamura et al. 2010, flow to the skin of trunk, arms, and legs was almost

equal and showed much less flow compared with palmar and plantar surfaces and the skin

of the face and head [46]. Moreover, they found out that the peripheral pulse characteristics

vary across individuals and since peripheral areas have a larger vascular bed, amplitude and

variation in perfusion volume are greater at these peripheral sites. Nevertheless, since green

light is less sensitive to differences in perfusion, it is less sensitive in different anatomical

regions.

Even though there are several locations where PPG sensors could be used and depending

on those, the signal acquisition may differ significantly, comfort and mobility are prerequi-

sites to choose a PPG sensor location for wearables. Since wearables have attracted serious

attention from both the research community and industry, these state-of-the-art technolo-

gies still struggle with size, portability and battery consumption. Due to these facts, the

end-user is constantly looking for comfort, better experience, and reliability. Thus, the best

solution for wearable health monitoring is to integrate as many functionalities and sensing

applications into one single device, enhancing user experience and convenience [47]. One of

the best locations for wearables is the wrist, compared to other sites, such as chest, forehead,

and ears, even though these might provide a slightly better signal-to-noise ratio than sensors

on the wrist, they become a challenging and cumbersome monitoring device solution when it

comes to the user accessibility and comfort. Now, in terms of technical challenges, the wrist
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is not appropriate to locate such sensors, mainly because of motion artifacts and size limita-

tion. In modalities that require strong motion, PPG signals may get mixed up with motion

frequencies, resulting in doubtful information. In addition, hand movements also may cause

physical displacement of the device with the skin, altering the light reflected/absorbed by the

sensor, introduce noise on the readings and/or change skin impedance, which as mentioned

before, contributes negatively for good quality signal acquisition. Device dimensions, also

reveal a negative impact while using PPG sensors located on the wrist, since they need to be

small and lightweight as possible, so the user feels comfortable when using in a long period

of time [20].

2.6 Perfusion

Perfusion is the process of a body delivering blood to a capillary bed in tissue for tissue

oxygenation and cellular metabolism. For different skin tone, the level of perfusion varies

between individuals. Problems such as obesity, diabetes, heart conditions and arterial dis-

eases lower, even more, these levels. Body extremities retain lower perfusion, which can

reveal challenges for health monitoring systems, since signal-to-noise ratio may drastically

decrease, once lower perfusion correlates with lower blood flow signals. Depending on the

population set that is using a wearable device, for example, elderly people, which tend to

have lower perfusion, it tends to impact negatively with the accuracy of these devices. Also,

the pulsatile flow at peripheric sites is most vulnerable when there is a diversion of blood

flow to more vital organs due to temperature drop [48].
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2.7 Crossover Problem

Continuous repetition or similar motion is also considered a major problem for wearable

devices. This happens because the cadence or step rate of the movement, may overlap or

crossover with the incoming optical data, presenting unreliable information. This is usually

seen with an activity that involves repetitive movement, such as jogging and running since

the step rates measured during these actions fall within the same general range as that of

heartbeats (140-180 beats/steps per minute) [38]. In Figure 2.8, when the heart rate and

step rate crossover each other, many wearables tends to lock on to step rate and present that

measurement as heart rate, which may not be the case since the heart rate might change

drastically after the crossover.
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2.8 Advantages

Heart rate monitoring (HRM) techniques that rely on photoplethysmography sensors present

several advantages over traditional ECG based systems. Size and portability is a unique char-

acteristic for PPG sensors. As explained before, HRM through PPG requires the need of a

single sensor to be placed on the skin, in contrast with ECG which uses at least three channel

electrodes that require attachment in different parts of the body, for a reliable data acquisi-

tion (a “12-lead” ECG is usually used). This requirement greatly restricts patients mobility.

In addition, PPG sensors can be placed in the extremities, allowing other parts of the body

to be independent of the readings, permitting flexibility of motion and if they are placed

at specifically easy accessible anatomical positions, signals can also be collected with higher

quality [7]. PPG sensors do not require a galvanic connection between patient and base-

unit, allowing a safer environment to higher isolation voltages. Even though it is possible to

perform ‘non-contact’ electrocardiography [49,50], the method is subjected to environmental

noise and motion artifacts, limiting the use to potential applications. Another advantage is

the easy and fast acquisition of data. PPG sensor devices are not time-consuming, compared

to ECG, which require electrodes adherence in different body parts, hydrogel application on

electrodes (in order to maintain hydrated and good connectivity with the skin) and time to

set up the necessary equipment for an ECG procedure.

In addition, the baseline advantage of monitoring HR as a non-invasive method added

to the performance of a “non-contact” application, PPG sensors can be integrated into

wearable devices, enhancing comfort and user experience, allowing high data reliability for

health monitoring devices.

22



2.9 Challenges

One of the limiting factors for PPG acceptance comes from its own mode of operation.

Each mode, transmission, and reflectance should be well study before implementation. In

transmission mode, the light source and detector are separated by the tissue, but too much

pressure can slow down and interfere with peripheral blood flow, causing reduction of ven-

omous oscillations [7]. The waveform obtained by PPG differs depending on the pressure

contact with the tissue. Ideally, the best PPG signal can be obtained under conditions of

transmural pressure, defined as the pressure across the wall of the blood vessel. However,

PPG under excessive pressure can lead to low AC signal amplitude and distorted wave-

forms [9]. On the other hand, for reflectance mode, the light sources and light detector are

placed on the same surface, therefore can be placed within one patch. This contributes to

MA being sourced to both sensors, besides having the light scattered in every direction.

Size influences on the hardware level as well. As shown in Table 2.3, as the detector moves

closer to the emitter, it decreases the signal-to-noise-ratio, since there is a higher percentage

of critical light into the detectors, causing the light to not interact with the tissue. When

the spacing between the detector and emitter increases, it captures less total light into the

detector, but allows more light to interact with blood flow, providing a cleaner signal to the

device [51].

Also, most heart rate monitoring devices support PPG and other sensors, such as ac-

celerometers. The integration of this multi-platform is not simple, and implicates challenges

due to size limitation, power consumption and transfer bandwidth [47]. Integration of sev-

eral components, power management for life endurance, are considered big challenges in

today’s electronic history. In order to improve these, novel system architecture and better

estimation of battery cycle and expenditure may be required. Lastly, motion artifacts as
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Close (2 mm) source-detector spacing Wide (4 mm) source-detector spacing

Table 2.3: Wider spacing between source-detector captures less total light, but has a higher
ratio to blood-flow scatter compared to motion-related scatter.

Source: [38]

mentioned before, are considered the biggest challenge for PPG sensors. In practical sys-

tems, MA in PPGs is more severe if compared to MA in ECG devices. ECG requires a strong

and fixed electrode-skin contact, while PPG sensors rely on the optical reflection signal that

is reflected/transmitted from the tissue. More recently, MA in PPGs has become an inter-

esting topic among researchers and in the wearable industry. Several methods have been

discussed and implemented, but there is still a need to accurately estimate HR information,

even though there are severe MA presented.

2.10 Existing Research

Extensive research has been developed related to PPG sensoring. As previously shown, mo-

tion artifacts influence on this sensor readings, motivating more and better methods/algorithms

in order to extract reliable information of heart rate, oxygen saturation and blood pressure,

among other biosignals. Various approaches to mitigate MA reduction have been proposed.

Some of them are related to sensor attachment [52] and localization [25]; even though this
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approach enhances expectation for better signal acquisition, it doesn’t provide a significant

reduction of MA. Others are more concerned in the classification of the PPG signal for

medical applications based on machine learning approaches [53, 54], although reported ac-

curacy is currently similar to other processing methods. On the other hand, most proposed

methods in literature usually model MA with motion sensors, such as accelerometers (ACC)

and/or gyroscopes (GYRO). These sensors can be used as reference signals for adaptive

filtering, for example [14]. Some other adaptive algorithms such as Adaptive Least Mean

Square (LMS) [55], or Normalized Least Mean Square adaptive noise canceler (NLMS) have

already been proposed [56] to solve this problem. Other methods for attenuating MA in

PPG have been implemented such as blind source separation through Principal Compo-

nent Analysis (PCA) [57], or Independent Component Analysis (ICA) [58] and Singular

Spectrum Analysis [24]. Others, rely on techniques such as Singular Value Decomposition

(SVD) [59], Kalman Filtering (KF) [2], particle filtering [60], Wiener filter [61], etc. As for

frequency-based methods, wavelet noise reduction [14] and power spectral analysis [2,62] are

also implemented. As can be seen, MA is a problem that needs to be addressed properly for

accurate HR estimation through the use of photoplethysmography sensors.
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Chapter 3

Methodology

Photoplethysmography sensors provide a novel and accurate way for estimating HR infor-

mation as an unobtrusive system on wearable devices. However, as explained in section 2.3,

HR information may become unreliable due to MA, resulting in wrong measurements. This,

on the other hand, allows research development and implementation of better, faster and

more accurate methods for HR estimation using PPG sensors. Research has been done in

this area, and common sense is already set regarding the block sedimentation for accurate

HR estimation. The majority of well known published methods follow this procedure, which

comprises basically of 3 main stages as shown in Figure 3.9.

Figure 3.9: Flowchart of 3 main stages for HR estimation.

Figure 3.9 represents the common framework found in the literature. The first stage

comprises retrieving sensor available information, such as ACC, GYRO, and PPG sensors,
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filtering out the bound frequency ranges and preparation for the oncoming stage. De-

noising and MA reference translates into receiving filtered sensor information and combi-

nation/subtraction of specific features in order to prepare for estimation. In the final stage,

the signals have already been cleansed and MA artifact reduction has been applied; this

stage deals with final HR estimation, prediction and smoothing of the HR measurement.

3.1 HR Estimation Methods

There is a wide range of HR estimation methods, some focusing on accuracy and others

in performance. This happens since different methods may present accurate results, but

demand very complex calculations, costing, on the other hand, in algorithm performance

and implementation. Moreover, usually datasets follow several restrictions, and it becomes

very difficult to produce an evaluation between different methods and replication of results.

Even though this is the case here, the dataset publicly available in [1] still manages to provide

a vast spectrum range of PPG signals while patients perform several physical activities.

3.1.1 Dataset

The trace library employed for trials provides a comprehensive set of test cases. It compre-

hends datasets for 23 individuals divided as follows: The database that includes 13 traces

are subjects aged from 18 to 35 years old, recorded while running, and 10 other traces from

eight subjects during arm rehabilitation exercises and boxing. All males are healthy, and

the female subject has abnormal heart rhythm and BP. The test set up is composed by data

of two green LED PPG sensors at 515 nm, a tri-axial ACC, all data being collected from a

wrist-type PPG wearable device. True heart rate is also available by ECG trace acquired

from electrodes placed on the chest. Usually, each dataset lasts about 300 seconds, which
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turns out producing around 40,000 samples of data. All signals are sampled at a frequency

of fs = 125 Hz and estimations are taken every 8 seconds of data, with an overlap of consec-

utive windows of 6 seconds. HR estimation is done every Ts = 2s, corresponding to a report

rate of 0.5 Hz.

Table 3.4: Database of 23 PPG recordings from IEEE SP CUP [1]

Rec Subject ID Activity Type Age/Weight/Height Sex Healthy?

1 1 T1

18-35y/-/-

M Y
2 2 T1 M Y
3 3 T1 M Y
4 4 T1 M Y
5 5 T1 M Y
6 6 T1 M Y
7 7 T1 M Y
8 8 T1 M Y
9 9 T1 M Y
10 10 T1 M Y
11 11 T1 M Y
12 12 T1 M Y
13 13 T2 20y/64kg/162cm M Y
14 14 T2 29y/70kg/169cm M Y
15 15 T2 21y/77kg/188cm M Y
16 15 T3 21y/77kg/188cm M Y
17 16 T3 19y/54kg/174cm M Y
18 13 T3 20y/64kg/162cm M Y
19 17 T3 20y/57kg/174cm M Y
20 18 T2 19y/70kg/180cm M Y
21 18 T3 19y/70kg/180cm M Y
22 19 T3 21y/73kg/180cm M Y
23 20 T2 58y/70kg/156cm F N**

T1 = walking/running on a treadmill. T2 = rehabilitation arm exercises. T3 = intensive
arm movements (boxing) ** Abnormal heart rhythm and blood pressure were noted.

The details of the database are given in Table 3.4. Three main activities were performed.

Type 01 involved activities of walking or running on a treadmill. The subjects were asked to

purposely use the hand with the wrist band to perform usual activities as dressing, pushing
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buttons on the treadmill, etc. The activity followed the pattern shown in Table 3.5.

Table 3.5: Activity level performed for dataset in [1].

Activity Type Resting Walking Running Walking Running Resting

Data 01 - 8km/h 15km/h 8km/h 15km/h -
Data 02 - 6km/h 12km/h 6km/h 12km/h -

Duration 30s 60s 60s 60s 60s 30s

Activity type 02 included various forearm and upper arm exercises, which are common

in rehabilitation (e.g. shake hands, stretch, push, running, jump and push-ups). Type 03

activity consisted of intense forearm and upper arm movements (e.g. boxing).

3.1.2 Comparison Between Methods

State of the art methods such as [1] have recently been proposed to estimate HR from PPG

signals where scenarios of MA are very strong [25]. The method was based on signal decom-

position, sparsity-based high-resolution spectrum estimation and peak tracking detection

reporting average absolute error of 2.34 beats per minute (BPM) on 12 PPG recordings.

This method was enhanced in [63] where spectra of PPG and ACC signals were jointly esti-

mated using common sparsity constraint to reduce error. The database of 23 PPG recordings

of people running or performing intense physical activity is available publicly for algorithm

evaluation. The rules and evaluations presented in the database allow comparison between

different methods. Since the published database, several HR estimation algorithms have

already been implemented and tested [2,16,24,25,56,61,68] and others have been compared

in Appendix A.

In [12], PPG signal extraction is done by spectrum estimation using the Lasso method,

even though reporting reasonable HR estimation, the method required several tunned pa-

rameters for a smoothed measurement. In [14] MA cancellation is performed by Singular
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Value Decomposition (SVD), even though it presents reliable results due to the robustness

of the decomposition technique, it demands high performance of the device for algorithm

implementation. In [15] the method is performed by organizing estimated HR frequency

peaks over spectrum estimation, the method is efficient in computational time and memory

storage, however, it depends entirely on peak selection threshold values. This may present

as a fast algorithm implementation, but might underperform in other datasets. in [16], even

though Fast Fourier Transform (FFT) might underperform when compared to Short-time

Fourier Transform, the use of moving average filters add a memory to the system, which

can contribute negatively for real-time applications. Although they report improvements in

performance, available methods are usually accompanied by the increased number of free

parameters, which may indicate a sign of overfitting given the size of data available in the

dataset. Moreover, although the whole database of 23 recordings is available since 2015,

several recent methods still prefer to report results on the ‘easier’ part of the dataset. In [61]

the approach to HR estimation is based on Wiener filtering and phase vocoder, not relying

on a set of heuristic rules and thresholds values if compared to previous methods. This

method requires a few parameters to be tuned and provides a reasonable HR estimation for

the available dataset. However, when analyzed to other datasets or with the proposed simu-

lation tool, this algorithm performs poorly when compared to more sophisticated methods.

In addition, even though studies reported improvement of HR estimation, there is a trade-off

between precision and performance [2]. It is reported in [1] that in order to estimate HR

for the first 12 recordings [1] takes several hours, [63] takes around 5 minutes, [39] takes

200s and [14] takes several hours for HR estimation. In [2] MA reduction is based on the

degree of decorrelation between the accelerometer and the PPG signal. However, parameter

estimation is assumed as constant, variances of noise and measurement in published Kalman

algorithms for HR estimation are set values, assuming that parameters should be the same
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independently of user physiology. This assumption, even though it may work for limited

recordings, it won’t precisely estimate for different datasets.

3.2 Proposed Algorithm

In this study, novel parameter estimation is presented based on the Expectation Maximiza-

tion (EM) algorithm and Kalman filter (KF) . Kalman filter represents the optimal solution

for tracking, assuming that estimated parameters are known. Since user physiology varies,

it becomes difficult to estimate the variance of noise presented for each individual. Thus,

through the EM algorithm, it’s possible to estimate these parameters independently of the

user rather than assuming predetermined values. This in fact, produces a better parameter

estimation, which reflects in a more accurate estimation of HR measurement. In addition, a

novel simulation tool is developed for evaluation of known HR estimation methods. This tool

allows comparison of different methods independetly of the signal duration. Thus, the ability

to produce synthesized data, provides the researcher an easier way for algorithm evaluation.

In Chapter 4 the simulation tool is demonstrated and known HR estimation methods are

compared.

The flowchart of the HR estimation system is shown in Figure 3.10. Accelerometer and

photoplethysmography signals are filtered and segmented following the same procedure as

in [2]. Through SVD method, segmented signals are used to find a subset of filtered PPG

signals that contain all useful information to estimate HR. Frequency analysis is performed

in these denoised signals allowing estimation of HR measurement by locating the largest

spectral peak in the reconstructed signal spectrum as in [2]. These raw HR measurements

(zppg1 and zppg2) are passed through a KF allowing a smoother HR estimation, while the

EM algorithm iteratively updates KF parameters, based on the data received, producing a

31



more accurate HR measurement. This developed system is described in detail in Section

3.2. Section 3.3 briefly explains the HR model and its parameters. Section 3.2 gives a brief

overview of the EM algorithm and provides the proposed solution for estimating autonomous

HR information using the EM algorithm and in Section 3.5 and 3.5.2 metrics and performance

of the proposed approach are demonstrated for both simulated and real data.

Figure 3.10: Flowchart of HR estimation system. Proposed algorithm belongs to the final
block (KF & EM)

3.2.1 Framework

As explained at the beggining of Chapter 3, the problem with HR estimation through the

use of PPG sensors demands a very complex algorithm and a structured process for reliable

HR estimation. Thus, it’s possible to divide the problem of reliable HR estimation using

photoplethysmography sensors into the following stages: processing of input signals, such

as PPGs and sensors such as accelerometers and/or gyroscopes for filtering and segmenta-

tion; de-noising and MA reference for correct cardiac cycle analysis and post-processing for

tracking and predictive HR estimates. This main stage procedure is explained below:

3.2.2 Processing of input signals

First, both PPG and ACC signals are filtered to remove out-of-bound frequencies and smooth

of the signal. This is performed by using a 4th order Butterworth filter with a bandwidth of

32



0.67-3.67 Hz. This represents the possible range of HR measurements that an individual can

experience while in physical activity and comprehends the boundaries of minimum and max-

imum HR values an individual can respond (40BPM - 220BPM). Secondly, segmentation is

applied since the sampling frequency fs = 125Hz and the observation window Tw is analyzed

within 8 s of data, which represents N = 1000 sample points. The HR is then estimated at

every Te = 2 s since the windows have an overlap of 75% (i.e 6 s) as in [1]. Thus, the HR

value is estimated every 2 s, corresponding to a reporting rate of 0.5 Hz.

3.2.3 De-noising and MA reference

The recorded signal can be filtered and cleansed by SVD selecting all useful information from

the PPG sensor. That means, the noise reference signal is generated from decomposed data

of the acceleration signals and the degree of decorrelation with PPG signals, as done in [2].

In every 8-second window of data Tw, SVD is applied to maintain all useful information

preserved in the matrix, while the interference caused by MA is reduced. The criterion for

principal signal component selection is based on the degree of decorrelation with the ACC

signals. As pointed out in [2], the process is done for each batch of data, allowing to recon-

struct denoised versions of both PPG signals. Now, reference signals for adaptive filtering

are generated by decomposing the three-axis acceleration signal into singular components.

The PPG signals are filtered using all singular acceleration signal components successively

by SVD. For each data segment ppg1(nTs) or ppg2(nTs) of length N, obtained from either

of the two PPG sensors, and for each triaxial accelerometer output, respectively, ax(nTs),

ay(nTs) and az(nTs), trajectory matrices are formed: Dppg1 , Dppg2 and Dax , Day and Daz .

For a PPG sensor output ppg(nTs), vectors s̄(j) are defined as:

s̄(j) = [s(jTs)s((j + 1)Ts)...s((j + L− 1)Ts)]
T (3.1)
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with L ≤ N . The corresponding vectors d̄s(j) are obtained by subtraction of the mean µs(j)

from each element of s(j).

µs(j) =
1

L

L
∑

i=1

s[(j + 1)Ts] (3.2)

d̄s(j) = s̄(j)− µs(j) (3.3)

The trajectory matrix Ds is then

Ds = [d̄s(1)d̄s(2)...d̄s(J)] (3.4)

with 1 ≤ j ≤ J = N − L + 1. In the same manner, Da is formed with accelerometer

output samples arranged in vectors ā(j). Singular value decompositon returns for any of the

trajectory matrices the following:

D = UΣVT (3.5)

where U = [ū(1) ū(2)...ū(J)] and contains the left singular vectors of D, matrix V is formed

by the right singular vectors and Σ is the diagonal matrix of singular values, in decreasing

order. The subspace applied to s(nTs) is done with the purpose of finding an index subset

JPPG ⊂ {1, ...J} allowing that all useful information from the PPG sensor output is preserved

in the matrix as:

DPPG =
∑

j∈JPPG

ūs(j).Σs(j, j).v̄s(j)
T (3.6)
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while the interference of the motion artifacts, modeled by the accelerometer signals, are

minimized. Now, the proposed criterion for principal component selection is based on the

degree of decorrelation with the accelerometer signals. This means that by considering the

left eigen vector matrices Us and Ua, whose columns are direction vectors for the principal

components of s(nTs) and a(nTs), respectively. PPG components of s(nTs) are minimal

along the principal acceleration component. Accordingly, for each accelerometer axis, the

principal component can be associated as:

Cs,a(i) = max
1≤j≤J

uT
s (i)ua(j) (3.7)

Then, the subset formation of JPPG is done by selecting the principal components of s(nTs)

for which the sum of indices in 3.7, computed over the three accelerometer signals, is below

a set threshold value τ

JPPG = {i : Cs,ax(i) + Cs,ay(i) + Cs,az(i) < τ} (3.8)

The threshold value used is the same as presented in [2] and it was a refined version from [64].

The process is performed at every batch of data and for both PPG channels. This allows a

reconstruction of denoised version of both sensors, as seen in Figure 3.11. Figure 3.11 shows

the spectrum comparison between raw PPG and ACC signals, along with PPG denoised

signal, accomplished by the SVD decorrelation method. Spurious peaks that are outside the

true value (REF) are minimized allowing a reconstruction of the PPG signal for correct HR

estimation.

Frequency analysis is performed after the signal is cleansed by the SVD de-noising stage.

The initial HR measurement is obtained by the frequency analysis of the denoised PPG

signal. As in [2] HR frequency should have a minimum resolution of one BPM, which
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Figure 3.11: Spectrum comparison of raw PPG signal, ACC and denoised PPG signal, after
denoising stage with SVD method.

indicates a need to detect a minimum frequency shift ∆f < (1/60) Hz. This represents an

enhancement of 7.5 times than the grid step obtained by a Discrete Fourier Transform (DFT)

with the 8-s observation window Tw. On the other hand, extending the signal acquisition to

60-s of data is impractical. Thus, there is a trade-off between resolution and performance.

By zero-padding the signal to extend the DFT to 213 bins, the grid step is re-defined with

frequency bins of ≃ 15mHz. Since the spectrum of PPG signals is parameterized of harmonic

components this grid resolution would be enough to resolve them [2]. Thus, HR frequency

can be estimated by finding the largest spectral peak in the reconstructed signal spectrum

as:

peak = argmax
m

|X(mfpeak)| (3.9)

where X(mfpeak) is the zero-padded DFT of the denoised signal. The frequency estimate for

the kth observation window Tw is calculated as z(kTe) = mfpeak(kTe)f . Since the signal was

bound by frequency as in section 3.2.2, the set range of acceptable frequency values are in
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accordance with physiological parameter limits. As explained in section 2.3, sometimes the

HR estimated value may fall in the same range of the MA frequency, this would indicate that

the denoised version would have eliminated both MA and PPG frequency peaks. In order to

overcome this problem, the frequency estimate obtained from the analysis of denoised data is

compared with the estimate of unprocessed data. The occurrence of this condition can thus

be detected and accurately processed for correct frequency estimation. To conclude, this

stage follows the same implementation done in [2], since the SVD method for MA reference

and denoising produces a better-denoised refinement fo the signal acquired by PPGs without

the interference of the movement, which translates into saving the meaningful information

of the signal for reliable frequency estimation.

3.2.4 Post processing and HR estimation

The HR measurements provided by the previous stage, that represents the frequency esti-

mation by DFT are still considered raw measurements. This comes from the fact that even

though the majority of signal denoising done by SVD in addition with spectrum estimation

accomplished by the DFT, HR estimated frequencies still can be produced by unreliable

signal input. For this reason, this final stage deals with the final estimation, filtering and

smoothing of the signal, providing a considerably more accurate HR measurement. This is

accomplished by the optimal Minimum Mean Square solution: Kalman filter.

According to the discrete model-based on the discrete-time random walk process as in [2]

xk+1 = Fxk + vk (3.10)

where xk+1 is the current HR value and vk is a zero mean white noise random process with

finite variance σ2
v . The refined HR estimate is obtained by the KF presented in Figure 3.12,
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xk|xk denotes the KF estimate of the HR given all the measurements up to time k and Pk|k

is the variance of this estimate. The observation model for the HR tracking problem comes

down to

zk = Hxk + wk (3.11)

where xk is the true HR (see (3.10)) at the sampling instance k, zk is the measured HR,

vk is the process noise that is assumed zero-mean Gaussian with s.d. σv, and wk is the

measurement noise that is assumed zero-mean Gaussian with s.d. σw. Further, σw can be

estimated through the signal processing steps described in Section 3.2. Figure 3.12 represents

the detailed block implementation of the KF used in our algorithm as in [2]. For standard KF

the observation model equation follows exactly as in (3.11), however, for the implemented

KF of Figure 3.12, the observation model has two measurements referenced as zppg1 and

zppg2.

This block diagram is essentially a fusion method of two measurements. Broadly, the

fusion is performed based on innovation – the new measurement out of zppg1 and zppg2 that

produces the less innovation is selected. That means, the Kalman Filter in [2] process these

two raw estimates zppg1 and zppg2, in order to obtain a single estimate of the actual HR.

However, values of σ2
v and σ2

w are related to the subject, and vary significantly depending on

the user. In [2], these values are “hard-wired”, assuming that they do not change for different

subjects, independently of their physiology or other parameters, such as body temperature

and step cadence. This assumption might work for a specific dataset, but may diverge for

different users, ages and anatomy, for example. For this reason, there is a need to estimate

those parameters iteratively, providing an accurate HR estimation independently of user

physiology.

38



Figure 3.12: Detailed Kalman Filter diagram from [2].

3.3 Problem Definition

The KF approach to track HR, developed in [2], infers set model parameters, such as the

process noise variance σ2
v and the measurement noise variance σ2

w, assuming that the noise

accumulated by the PPG sensor can vary depending on physiological features, activity level,

etc. Similarly, the process noise variance can vary from person to person and from one

activity to another. Hence, rather than assuming predetermined values for σ2
v and σ2

w, as it
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is done in [2], they are estimated. In section 3.2, we summarize the EM algorithm that is

developed in, to estimate σ2
v and σ2

w of the state-space model of (3.10) and (3.11).

Now, given the instantaneous measurements zk, the objective is to recursively estimate

the xk. The Kalman Filter gives the best estimate for xk given that all model parameters,

F,H, σv and σr are known. Unfortunately, the process model 3.11, parametrized by σv and

σw, is closely related to the individual’s physiology and as such not precisely known. The

objective to develop an approach that concurrently estimates the process model parameters

as well as xk the desired state. The proposed approach is described in Section 3.2.

3.4 Review of the EM Algorithm

3.4.1 The EM Algorithm

In this section, we give a brief review of the Expectation Maximization (EM) algorithm

[65–67]. Consider the following scenario where N observations

Z = {zi}Ni=1 (3.12)

are generated from a set of parameters Θ. The likelihood of the parameter Θ given the

above observations (that is assumed independently and identically distributed – iid) is given

by

L(Θ) = p(Z|Θ) =
N
∏

i=1

p(zi|Θ) (3.13)
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Now, the maximum likelihood estimation of the parameters is given by

Θ̂ML = argmax
Θ

L(Θ) (3.14)

The above optimization in (3.14) is sometimes intractable because of the nature of the

observation model. The EM algorithm offers an approximate, iterative way to perform this

optimization.

The EM algorithm starts by considering that the observed data Z is incomplete; i.e.,

it assumes that there is a certain information that the observations Z doesn’t have; let us

denote thismissing information as X . With that, the complete data is written as Z = (Z,X ).

Using Bayes’ theorem, the joint density function of this complete data can be written as

p(z|Θ) = p(z, x|Θ) = p(z|x,Θ)p(x|Θ) (3.15)

Now, instead of writing the likelihood function as a function of Θ, such as L(Θ) in (3.13),

a new function is defined as follows

Q(Θ,Θi−1) = E
[

log p(Z,X|Θ)|Z,Θi−1
]

(3.16)

where the expectation is with respect to the probability density function of X ; as such,

the resulting quantity Q(Θ,Θi−1) is not a function of X . In summary, we introduced a

variable X to define the likelihood function and then removed that same variable by taking

an expectation. The positive effect of this process is that the resulting Q(Θ,Θi−1) is in a

form that can be easily maximized.

Similar to the likelihood function L(Θ), Q(Θ,Θi−1) is dependent on Θ; in addition, it is

also dependent on Θi−1, the initial guess on Θ. Now, the expectation step above is formally
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written as:

Expectation Step:

Q(Θ,Θi−1) = E
[

log p(Z,X|Θ)|Z,Θi−1
]

=

∫

x

log p(Z, x|Θ)f(x|Z,Θ(i−1))dx
(3.17)

It must be noted that the probability density of x, f(x|Z,Θ(i−1)), is not yet defined; how to

find such a density is one of the practical aspects of EM algorithm design. In the next section,

we will show how to select (and estimate) such a density using Gaussian mixture density

estimation as an example. It is important to note that such selection will be different for each

type of density, such as a Poisson density or Bernoulli density; and it will differ depending

on the problem.

Now, the new value of Θ is obtained as:

Maximization Step:

Θ(i) = argmax
Θ

Q(Θ,Θi−1) (3.18)

The important difference between the cost function L(Θ) and Q(Θ,Θi−1) is that unlike

L(Θ), Q(Θ,Θi−1) can be optimized in a closed form. Starting from an initial guess for

Θi−1, the EM algorithm iterates between the Expectation Step and the Maximization Step

until the estimated parameters converge.

3.4.2 HR Process Model Estimation Using the EM Algorithm

Based on the discussions above, the EM approach involves

(i) Construction of the complete data likelihood
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(ii) Deriving the expectation of the complete data likelihood given the observations along

with prior estimates of the parameters

(iii) Maximization of the expectation term with respect to the parameter terms.

In the next three subsections, we elaborate on these three steps.

3.4.3 Complete-Data Likelihood of Θ

The joint density of the complete data (i.e., assuming Xn is observed) is written as

p (Zn,Xn|Θ) = p(x0)
n
∏

k=1

p(xk|xk−1)
n
∏

k=1

p(zk|xk) (3.19)

where Θ = {σv, σw} and

p(x0) =
1√
2πσ0

exp

{

−(x0 − µ0)
2

2σ2
0

}

p(xk|xk−1) =
1√
2πσv

exp

{

−(xk − Fxk−1)
2

2σ2
v

}

p(zk|xk) =
1√
2πσw

exp

{

−(zk − xk)
2

2σ2
w

}

(3.20)

Now, the complete-data likelihood of Θ can be written as

− ln p(Xn,Yn|Θ) = c+ ln σ0 +
(x0 − µ0)

2

2σ2
0

+ n ln σv +
n
∑

k=1

(xk − Fxk−1)
2

2σ2
v

+ n ln σw +
n
∑

k=1

(zk − xk)
2

2σ2
w

(3.21)

where c is a constant.
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3.4.4 Expectation

The expectation step is written as

Q(Θ,Θi−1) = E
{

ln p(Z,X|Θ)|Z,Θi−1
}

= E {−2 ln p(Xn,Yn|Θ)}
(3.22)

which can be shown to be [66, page 343]

Q(Θ,Θi−1) = ln σ2
0 +

1

σ2
0

(

(x0|n − µ0)
2 + P0|n

)

+ n ln σ2
v +

1

σ2
v

(S11 − 2S10 + S00)

+ n ln σ2
w +

1

σ2
v

(

n
∑

k=1

(zk − xk|n)
2 + Pk|n

)

(3.23)

where

S11 =
n
∑

k=1

(

x2
k|n + Pk|n

)

(3.24)

S10 =
n
∑

k=1

(

xk|nxk−1|n + Pk|k−1

)

(3.25)

S00 =
n
∑

k=1

(

x2
k−1|n + Pk−1|n

)

(3.26)

3.4.5 Maximization

σ2
v =

1

n

(

S11 −
S2
10

S00

)

(3.27)

σ2
w =

1

n

(

n
∑

k=1

(

zk − xk|n

)2
+ Pk|n

)

(3.28)
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x0 = x0|n (3.29)

σ0 = P0|n (3.30)

and the initial values can be written as (3.29) and (3.30).

Figure 3.13 demonstrates the final algorithm implemented. The raw measurements are

passed to the KF as in [2] but the EM algorithm iteratively processes the data and updates

a new value for process noise covariance Q and measurement noise covariance R. These new

values are passed to the KF for better HR estimation. This approach is significant since Q

and R vary from user physiology, body temperature and step cadence, an assumption that

doesn’t occur in [2]. Therefore, the EM algorithm represents an innovation to the algorithm,

processing and assigning updated values regardless of manual tuning for exclusive datasets.

Figure 3.13: Proposed approach with KF from [2] and EM.

3.5 Results

In this section validation of the performance of the proposed method using computer sim-

ulations and publicly available data in [1] is performed. The EM algorithm works for the
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estimation of parameters σv and σw for measurements using (3.11). Following the same

state model presented in section 3.3 we show that the EM algorithm is capable of estimating

process and measurement noise better than user assigned parameters.

3.5.1 Computer Simulation Results

First, the data is simulated for k = 150 samples assuming σv = 4 and σw = 10. Then, the

EM algorithm summarized in section 3.2 and the simulated data zk, k = 1,2,...,150, are used

to estimate σv and σw. The EM algorithm used a fixed number of 10 iterations. At the

end of 10 iterations, the estimated parameters are obtained as: σv = 3.55 and σw = 9.55.

Figure 3.14 shows the simulated data zk, along with the true value xk. In addition, the KF

estimated values of xk assuming the true model parameters σv = 4 and σw = 10 are plotted

on the same axis. Finally, the KF estimated values of xk, assuming the EM estimated values

of σv and σw are also plotted on the same axis for comparison.

3.5.2 Real Data Results

In this section we validate the performance of the proposed method using traces publicly

available in [1] as mentioned in section 3.2.2. In [2], the algorithm performance relies on a few

user tuned parameters for this specific database. Following this approach, the parameters

chosen for the KF in [2] are carefully analyzed from experimental data. That means, param-

eters such as σ2
v and σ2

w are “hard-wired” for specific datasets, whereas in our approach, the

EM algorithm is capable of estimating them.

Figure 3.15 shows the raw HR measurements zppg1 and zppg2, along with the true value

(reference) and comparison between the algorithm proposed by [2] and our proposed method

using the EM algorithm.

The HR estimation by [2] follows the reference, while the same happens with our EM
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Figure 3.14: Comparison of KF and the EM algorithm for state model in (3.11) with N =
10 iterations.

approach. In this particular case, the EM algorithm estimates σv = 4.37 and σw = 11.35,

which is very close to the parameter tuned by [2]. Now, assuming that the parameter

estimation for σv was set incorrectly to this analyzed dataset, such as σv = 1. This means

that for the KF performance, the zero mean white Gaussian process noise with covariance Q

= σ2
v for a one state system as in 3.3 is set below than the previous known estimated value.

This implies that, since the KF from [2] assumes a “hard-wired” value, HR estimations are

inconclusive, whereas using the EM algorithm, Q and R are estimated, allowing for a better

HR measurement.

Figure 3.18 shows the comparison between [2] and EM algorithm. The assumption is that

parameters σv and σw were changed to σv = 1 and σw = 10. The estimation provided by [2]

is dependant on these parameters, while in our algorithm, these parameters are iteratively

estimated. In this case, the EM estimates σv = 3.28 and σw = 12.36.
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Figure 3.15: Comparison between estimated HR values of [2] with σv = 4 and σw = 10 and
the EM algorithm – Dataset #4

Figure 3.21 shows another case of this dependance in [2] for fixed values of σv and σw.

In this case, parameters are set to σv = 1 and σw = 1. Even though those parameters were

changed, the EM algorithm still provides better estimates than [2]. In this case, the EM

estimates σv = 5.74 and σw = 11.34.

As shown in Figures 3.15, 3.18 and 3.21, the EM algorithm is capable of estimating σv

and σw better than “hard-wired” values as in [2] regardless from the dataset used.

Now, we compare the performance of the proposed method using well known performance

metrics such as the average absolute deviation from reference values (E1) and the average

relative deviation (E2), analyzed for three different cases of process noise Q and measurement

noise R as shown in the following table. Xmeas is denoted as the estimated BPM value and

BPMref the true value of HR available for each dataset. Galli et al. are the performance
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values as in [2] and EM-KF is our developed approach. Iteration number was set to N = 3,

and σv estimated.

E1 =
1

n

n
∑

k=1

|Xmeas(k)− BPMref (k)| (3.31)

E2 =
1

n

n
∑

k=1

|Xmeas(k)− BPMref (k)|
BPMref (k)

(3.32)

σv = 4 , σw = 10 σv = 1 , σw = 10 σv = 1 , σw = 1

E∗
1 E∗

2 E∗∗
1 E∗∗

2 E∗
1 E∗

2 E∗∗
1 E∗∗

2 E∗
1 E∗

2 E∗∗
1 E∗∗

2

Galli et al. 1.85 1.00 3.18 1.89 6.66 3.40 5.99 2.05 8.73 4.88 11.59 7.05

EM-KF 2.06 1.24 4.56 3.39 6.26 9.33 3.81 1.93 5.70 8.54 10.66 5.60

* represents dataset from training set and ** represents dataset from extra training set [1] .

As shown in the table above, the EM algorithm out-performs [2] when the parameter

σv is estimated for each dataset. This happens because the physiology, activity level and

other characteristics of each individual are different; through EM it is possible to estimate

parameters such as σv and/or σw for an autonomous heart rate tracking providing a more

accurate HR measurement. In addition, Figures 3.17 to 3.23 depicts the correlation and

Bland-Altman plot of HR in the database. As in [61], the Bland-Altman plot indicates

that the largest errors (points outside the limit of agreement area) occur more frequently

in the high HR region, around 120 BPM. This implies that the true HR is corrupted by

the movement frequency presented while under physical activity. As shown in section 2.3,

the frequency of the movement and the HR frequency may overlap causing an incorrect

estimation for the HR measurement.
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3.6 Conclusions and Discussions

In this chapter, a methodology for HR estimation using PPG sensors is presented. As shown

in chapter 2, PPG sensors can provide a reliable HR reading if MA are greatly reduced.

Thus, in this chapter, a HR estimation method using PPG sensors is proposed using the op-

timal Kalman Filter and the EM algorithm. The Expectation and Maximization algorithm

is used to estimate certain parameters that may vary from individual. This estimation rep-

resents a more refined parameter selection to the KF, which in turn, provides more accurate

estimations of HR measurements. The evaluation and comparison of known algorithms such

as in [2] is presented, and comparison is made with published work [68]. Even though the

dataset publicly available in [1] comprises of a limited set, the EM algorithm out-performs

when parameters such as σv and σw are estimated, rather than tuned. This happens be-

cause the activity level and step cadence of each individual is different, and through the EM

algorithm those parameters can be estimated independently of the user physiology.
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Figure 3.16: Bland Altman plot in [2]
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Figure 3.17: Bland Altman plot of the EM algorithm with σv = 4 and σw = 10.
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Figure 3.18: Comparison between estimated HR values of [2] with σv = 1 and σw = 10 and
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Figure 3.19: Bland Altman plot in [2]
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Figure 3.20: Bland Altman plot of the EM algorithm with σv = 1 and σw = 10.
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the EM algorithm – Dataset #4
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Figure 3.22: Bland Altman plot in [2]
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Figure 3.23: Bland Altman plot of the EM algorithm with σv = 1 and σw = 1.
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Chapter 4

Fusion Method

Target tracking is a relatively common task for several applications. Most of the time,

tracking a target is accomplished by using a range of sensors. The decision process on how

to associate trackings belonging to the target is a correlation problem which was examined

in [69,70]. “Once the targets are correlated an algorithm is needed to provide a single target

track which has less uncertainty than of the individual tracks. This process is often referred

to as track fusion” [71]. Thus, in the environment of 2 photoplethysmography sensors, the

ability to fuse these two measurements will provide a more accurate HR estimation using

the Kalman Filter.

For example, considering the following linear state space model

x(k + 1) = Fx(k) + v(k) (4.33)

z(k) = Hx(k) +w(k) (4.34)
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where

F =





1 ∆T

0 1



 , H =
[

1 0
]

(4.35)

and the process noise v(k) and measurement noise w(k) are assumed to be Gaussian noise

zero mean (vector) and covariance matrices

Q = E
{

v(k)v(k)T
}

, R = E
{

w(k)w(k)T
}

(4.36)

Given the measurement z(k), the Kalman filter [72] gives the best estimate of x(k) as x̂(k|k)

and the associated estimation error covariance P(k|k).

Now, consider a case where there are two sensors instead of one. In this case, the

measurement model 4.33 can be re-written as

z1(k) = Hx(k) +w1(k) (4.37)

z2(k) = Hx(k) +w2(k) (4.38)

where

R1 = E
{

w1(k)w1(k)
T
}

, R2 = E
{

w2(k)w2(k)
T
}

(4.39)

The problem is then how to effectively fuse the data from two sensors in order to get the

best estimate of the true state x(k).

The above problem has been addressed in the literature and two possible fusion ap-

proaches known as state-vector fusion and measurement fusion were developed. Several other

types of sensor fusion approaches are found in the literature; some of them were intuitive
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approaches that might eventually cost in terms of performance. Thus, in the next section,

both fusion approaches are discussed and analyzed for choosing the best fusing method for

the proposed HR estimation method.

4.1 State Vector Fusion

Here, two Kalman filters [72] run in parallel and compute x̂1(k|k),P1(k|k) and x̂2(k|k),P2(k|k).

The fusion method can be accomplished by fusing the filtered state vectors (x̂1(k|k) and

x̂2(k|k)) into a new estimate of the state vector [73]. The new estimate of the state vector

x̂(k|k) is given by the following fusion equation as in [71].

x̂(k|k) = x̂1(k|k) +PxzP
−1
zz (x̂2(k|k)− x̂1(k|k)) (4.40)

Pxz = P1(k|k)−P12(k|k)) (4.41)

Pzz = P1(k|k) +P2(k|k)−P12(k|k)−P21(k|k) (4.42)

Where x̂1(k|k) is the first filtered state vector, P1(k|k) is the covariance matrix for x̂1(k|k),

and P12(k|k) is the cross covariance matrix between x̂1(k|k) and x̂2(k|k). The cross covari-

ance matrix is given by the recursive equation:

P12(k|k) = (I−K1(k)H1(k))FP12(k − 1|k − 1)FT

×(I−K2(k)H2)
T + (I −K1(k)H1)q(I−K2(k)H2)

T
(4.43)
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where K1(k) is the Kalman Filter gain matrix for sensor 1 at time k. The covariance matrix

of the fused estimate is then given by:

P(k|k) = P1(k|k)− (P1(k|k)−P12(k|k))(P1(k|k)

+P2(k|k)− P12(k|k)−P21(k|k))−1

×(P1(k|k)−P21(k|k))

(4.44)

4.2 Measurement Fusion

The second approach for fusion is to use measurements from both sensors and then track

those measurements to obtain an estimate of the state vector [71]. The measurement noise

is independent for both sensors and the equation for fusing both measurements can be

accomplished in recursive form by:

z̄(k) = z1(k) +R1(k)(R1(k) +R2(k))
−1(z2(k)− z1(k)) (4.45)

where R1(k) is the covariance matrix of the measurement vector z1(k). The filtered mea-

surement has a covariance matrix given by:

R̄(k) = [(R1(k))
−1 + (R2(k))

−1]−1 (4.46)

These filtered measurements can be tracked to obtain the estimate of the state vector x̂(k|k).
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4.3 Performance Analysis

To illustrate the improvement achieved using the measurement fusion over the state vector

fusion method, an example is performed as in [71].

x(k + 1) =





1 1

0 1



 x(k) +





0.5

1



 v(k) (4.47)

with sampling time T = 1 and noise variance q. The measurement equation of the two

sensors is

z(k) =
[

1 0
]

x(k) + v(k) (4.48)

where the measurement noise is independent with variance r = 1. The steady state cross

covariance matrix P12 can be calculated by substituting the steady state gain into 4.43,

letting P12(k|k) = P12(k − 1|k − 1) and solving for the components of the cross covariance

matrix as in [71]. Figure 4.24a) represents the reduction in the components of P(k|k) where

P(k|k) =





p1 p2

p2 p3



 (4.49)

for the two sensor fusion over the single sensor case for a range of process noise q. Now,

applying a one state model such as 3.10 and comparing both fusion methods with [2]:

The method chosen by [2], as seen by the cross covariance matrix comparison in Figure

4.24b), it is not optimal for fusing both measurements of PPG sensors for estimation using

the Kalman Filter. Thus, in the proposed approach, another innovation is the use of the

measurement fusion method for fusing both raw PPG measurements zppg1 and zppg2 .
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4.4 Final Proposed Algorithm

It was demonstrated in chapter 3 the use of the EM algorithm for estimating variance

noises independently of user physiology. This method provided a better estimation of noise

parameters for the Kalman filter and its application was demonstrated as well. In chapter 4

it was shown that the fusion method previously used would hamper the covariance matrix,

prompting an unreliable HR estimation by the Kalman filter. Thus, it was proved that

the best fusion method for tracking a target, in this case, the HR frequency, with two

measurements, zppg1 and zppg2 is by using the measurement fusion approach. As such, the

final HR estimation algorithm comprises these two innovations, providing a more accurate

HR estimation measurement. The final flowchart and algorithm implementation is shown in

Figure 4.25 and Figure 4.26.
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Figure 4.25: Flowchart of final HR estimation system.

Figure 4.26: Final Algorithm proposed for HR estimation.
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Chapter 5

Synthetic signals

During intense physical exercise, the cardiovascular system increases the delivery of blood

and oxygen to muscles and the metabolic activity increases, which intensifies HR and vol-

ume stroke [74]. Obtaining a model that describes the cardiovascular system during such

intensive exercise using photoplethysmography sensors, would improve the understanding

of exercise physiology and support the extensive use of wearable devices for physical and

medical applications. Understanding the HR response after or prior to exercise may be also

beneficial to prevent cardiovascular mortality [75]. The core idea of this work is to be able

to accurately produce synthesized signals for HR algorithm evaluation using photoplethys-

mography (PPG) sensors. This comes from the fact that usually, it is very difficult to have

access to real data since the data is restricted to the user and/or the collector or demands

proprietary hardware. Moreover, sensitivity data is bounded by copyright and justification

is mandatory of its use, share, and analysis. Thus, the ability to produce synthesized data

provides the researcher with an easier way for algorithm evaluation. Data comprising of

PPG and accelerometers are usually captured when the user/patient is performing common

physical activities, such as resting, walking, running, or even more complex activities as
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boxing and arm movements. This scenario displays a complex task since there is no control

over the movements and repetitions. The possibility of standardizing the physical activity

for research purposes enables a deeper analysis of the signal that is being acquired. For this

reason, a simulation tool is of great innovation, providing a precise simulation environment

for the researcher/developer for evaluation of HR algorithm estimators with control of the

activity pattern, intended for wearable devices.

5.1 Physical Activity model (PAM)

The present study focuses on activities that are common for the user while performing the

repetitive activity while on a treadmill. Assuming that a resting period is included, walking,

jogging and running are the most common activities performed while in this environment.

Other activities may be performed for physical expenditure for example, but since they are

complex movements and will demand more complex models for accurate sensoring synthe-

sized implementation, they are disregarded in this study. According to the activity that

is being performed, the user pattern is formulated as follows, and several assumptions are

considered:

The model is produced by three main activities named as resting, walking and running. Each

activity that is created is performed by a certain amount of time and each block of activity

has the following parameters:

• Frequency of HR fHR and noise related σHR

• Frequency related to the movement of the user fmov and noise related σmov

• PPG synthesized signals ppg1 and ppg2

• Tri-dimensional accelerometer synthesized signals accx, accy, accz
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• Speed of the treadmill vt

The Physical Activity Model (PAM), is produced regarding the speed and movement

the user is submitted in the model. For example: At resting position, the speed vt is assumed

zero; if walking, the speed vt is within a set speed range and at running vt is set to a value

higher than these limits. This assumption is needed since the model is bounded by the speed

of vt being used in the running activity. Also, the speed pattern is a step function, that is,

after a block of activity is finished, the speed is set to the value of the next block.

The Physical Activity Model PAM is characterized by:

PAM = ([Activity Level, T ime Duration]) (5.50)

Figure 5.27 illustrates a case where the pattern is set to various running activities level and

time durations, where: rt = resting, w = walking and ru = running.
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Figure 5.27: Illustration of PAM for various running activities level and time durations.

For example, the implementation of the example model (5.51) can be described by the

user starting the activity at a resting position for a duration of 60 seconds, then changing

to the walking activity for 120 seconds and so on. As shown in Figure 5.27, the speed vt
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assigns the model related to the activity that is being performed. Also, the speed of vt is

taken as constant for each block of activity.

PAM = ([rt, 60], [w, 120], [ru, 60], [w, 60], [ru, 120], [rt, 240]) (5.51)

Moreover, assumptions are taken for a better model representation. Maximum and/or

minimum values for HR, fHR, σHR, fmov, σmov and τ are assumed as parameters that depend

on the physical activity. Thus, assumptions are assigned for each activity model for correct

simulation.

The assumptions are presented in Table 5.6.

Parameters Resting Walking Running
HR (BPM) 72 108 156
fHR (Hz) 1.2 1.8 2.6
σHR (Hz) 0.2 2.0 3.0

fmovmax
(Hz) 1.0 2.3 2.8

σmov (Hz) ≃ 0 2.0 3.0
τ 5 5 5

Table 5.6: Assumptions for each activity level

5.1.1 Heart Rate Pattern

Following the same idea of the PAM model, the synthesized HR pattern (HRP ) is formed.

However, the pattern is accomplished via an exponential approach as in [74]. Several HR

models are available in the literature, varying from linear to nonlinear models. The pro-

posed model follows a novel representation of charging and discharging effect, such as a

capacitor. Since HR has a slow recovery time, the exponential response seems to be a rea-

sonable response curve to this model. A time constant (τ) related to the rate of charging and
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discharging such as in the capacitor is also used. This approach allows the modeling of HR

with an exponential perspective resembling the models exposed by [74]. This configuration

provides a varying curve of HR frequencies that can be simulated in the HR model. Since

the HR frequency changes during physical activity, the HR model frequency will as well,

providing a more realistic response to the simulation. Thus, the HR model has the charac-

teristic curve response of the capacitor voltage while charging and discharging. This is set

and accomplished by the next activity level change. By increasing the activity level, the HR

response is modeled as a positive exponential curve as the effect of the charging phase of a

capacitor. On the other hand, when the activity level decreases, the HR response is modeled

as a decreasing exponential curve, as the effect of the discharging phase of a capacitor. The

HR model is characterized by

HRk = HRk−1 +∆fHR −∆fHRe
−m/τ + σHR,

m = {0, ..., n− 1}
(5.52)

where:

HRk is the current HR,

HRk−1 is the previous HR,

∆fHR = fHRk
−fHRk−1

is the difference of current HR frequency and previous HR frequency,

n is the time span related to the duration of the activity,

τ is the time constant that characterizes the rate of charging and discharging when the

activity level changes,

σHR corresponds to the noise according to the activity level.

The exponential feature of the HRP provides a range of HR frequencies that vary over

time. These frequencies are then calculated by dividing the value of HR to obtain the cardiac
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frequency measured in beats per minute (BPM). Also, the noise σHR is added as a form of

compensation for the Heart Rate Variability (HRV) for the synthesized signal.

Figure 5.28 provides an example of the HRP model. For the example model (5.51),

the HR changes according to the activity of movement that is being performed. Also, the

HR value is modeled as an exponential curve, providing a more realistic response for HR

recovery that depends on the physical activity. The parameter τ can vary for different

activity changes, providing a faster or slower HR recovery rate for the simulated signal.
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Figure 5.28: Illustration of HR pattern for various running activities level and time durations.
For this particular case the pattern was obtained from example model as in (5.51).

5.2 Synthetic Signal Simulation

In this section, simulated signals are decomposed in their principal characteristics allowing

a very accurate resemblance to their real world response. Here synthesized signals and key

features extraction for simulation of photoplethysmographic sensors, a tri-axial accelerometer

and a heart rate response driven by the user activity is detailed.
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5.2.1 Synthetic PPG

The PPG signal then was modeled as in [76]. A periodic signal having a fundamental

frequency fHR that corresponds to the HR beat frequency, together with second and third

harmonic components. The amplitudes of the fundamental and its harmonics are given by

A, B, and C respectively. Also, the phase difference is presented between its components,

given by θ2 and θ3, while the initial phase is given by θ1. The set of parameters, together

with its DC component characterized by D, can be used to describe the signal:

PPG(n) =Acos(2πfHRn+ θ1)

+Bcos(4πfHRn+ θ2 + 2θ1)

+ Ccos(6πfHR + θ3 + 3θ1) +D + v(n)

(5.53)

where:

A , B and C are amplitudes of fundamental and harmonics,

fHR is the current HR frequency,

θ1, θ2 and θ3 are the phase difference between the fundamental and harmonic components,

D is the DC value of the PPG signal,

(ni≤n<N) and v(n) represents white Gaussian noise,

N is the number of observed samples and ni represents the last iterative value of the previous

cosine sequence; this is done in order to maintain a smooth pattern for the the signal once

the frequency related to movement is changed.

Figure 5.29 represents both time domain and frequency domain characteristics of the

synthetic PPG signal. On the left side, the synthetic PPG signal resembles the characteristic

PPG wave with both two phases implemented. Also, the dicrotic notch can be seen for

different physical activities. On the right side, the periodogram of each signal for each

70



physical activity is shown. The main frequency of each plot confirms the assumptions made

in Table 5.6. The signal is considered “clean” since the movement interference is not being

exploited at this moment. The movement that will be modeled as the accelerometer signal,

will be explained in Section 5.2.2.

In addition, in order to account for different activity pace levels, a random walk function

(RW ) is implemented in the PPG pattern signal.
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Figure 5.29: Synthesized PPG signal for different physical activities.

5.2.2 Synthetic tri-axil accelerometer

Accelerometers are sensors that detect a force that is directed in the opposite direction

from the acceleration vector. This force is called Inertial Force, that means, accelerometers

measure acceleration indirectly through a force that is applied to one of its planes [77]. For

simplicity and assumption of movement, the accelerometer signal will be simulated, following

the same principle as the PPG waveform, with a specific constrain that when there is no
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movement, the frequency of movement is almost null, providing a constant signal while the

user is in the resting position. Also, the assumption here is that the accelerometer is being

used in a wearable device, with its z component normal to the wrist, assigning a value of

-1g (gravitational force), being x and y coordinates a constant value of 0g. While these are

the constrainsts due to rest, once in movement, the accelerometer signal simulates a specific

frequency related to movement (which was assigned based on real data) for each individual

axis as well a phase difference that occurs between each axis while in movement.

The frequency related to the movement is assigned following the same idea as in the

model in (5.52). Here, the maximum momevement frequency fmovmax
is taking for limiting

the exponential frequency curve for the movement pattern. The movement pattern can then

be formulated as:

fmovk = fmovk−1 +∆fmov −∆fmove
−m/τ + σmov,

m = {0, ..., n− 1}
(5.54)

where:

fmovk is the current movement frequency,

fmovk−1 is the previous movement frequency,

∆fmov = facck − facck−1
is the difference of current ACC frequency and previous ACC fre-

quency,

n is the time span related to the duration of the activity,

τ is the time constant that characterizes the rate of charging and discharging when the ac-

tivity level changes,

σmov corresponds to the noise according to the activity level.
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Figure 5.30: Illustration of ACC pattern for various running activities level and time dura-
tions. For this particular case the pattern was obtained from example model as in (5.51).

With the movement pattern implementantion, the movement frequency is passed on to

the ACC model, in order to create a tri-axial accelerometer signal corresponding to the

moment frequency. The ACC signal can be formulated as:

Accaxis =Aaxiscos(2πfaxisn+ θaxis)

+ aaxisv(n) +
Aaxis

h
cos(4πfaxisn+ θaxis)

(5.55)

where: Aaxis is the amplitude for each axis,

faxis is the current accelerometer frequency related to the activity,

θaxis is the phase difference between adjacent axis,

aaxis is the amplitude of noise related to the activity,

(ni≤n<fs), v(n) represents white Gaussian noise.

Figure 5.31 represents both time domain and frequency domain characteristics of the

synthetic ACC signal. On the left side, the synthetic ACC signal resembles the characteristic

response of a tri-axial accelerometer. Components x, y, z and its vector magnitude (VM) are

73



presented and VM = 2
√

x2 + y2 + z2. On the right side, the periodogram of each signal for

each physical activity is shown. The main frequency of each plot confirms the assumptions

made in Table 5.6. The movement is modeled by the accelerometer data and the combination

of signals is represented by VM. This vector is taken and added to the PPG signal data in

order to fuse the activity related to movement and with the synthesized PPG signal. The

final PPG signal can be expressed as the noiseless PPG signal added to the VM in the

frequency domain:

PPGsynt =PPG+ VM (5.56)
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Figure 5.31: Synthesized ACC signal for different physical activities. X, Y and Z corresponds
to signal of each individual axis and VM is the vector magnitude.

Figure 5.32 represents the final synthesized PPG signal, which comprehends the HR

data combined with the activity of the movement. As can be seen, when the level of activity

increases, the spectrum of the PPG signal overlaps the ACC signal. This happens since the
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frequency of movement falls within the same range as the HR frequency. This assumption

allows us to model the movement related to the activity level and the simulated HR signal

providing an accurate simulator model for PPG sensors during physical activities as well an

environment to simulate and evaluate HR estimation methods for wearable devices.
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Figure 5.32: Synthesized PPG signal for different physical activities related to the movement
that is being performed. There is a spectrum overlap of clean PPG signal as in Figure 5.29
and ACC signal in Figure 5.31, which difficults the correct estimation of HR using PPG
sensors.

5.2.3 EM Approach

In previous work [68] the EM algorithm was used to estimate the noise variances, allowing an

autonomous HR estimation independently of the user physiology. However, this estimation

was performed for each individual dataset but was composed of the entire data sample. In

this present work, this approach is redefined by 2 different methods: EM using batch and

EM using a trigger. The previous approach [68] utilizes a batch of data for the noise variance
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estimation. This means that there is a delay and memory consumption for applications “on

the fly” with this method. On the other hand, this simulation tool provides control regarding

the activity change. This means that it’s possible to trigger the EM algorithm when the

activity change happens. This is important since once the synthesized HR steadies, the

noise variances do not vary, allowing a refined EM estimation of these parameters. This,

in contrast, resembles in a more accurate estimation of σv and σw by the EM algorithm,

allowing a more accurate HR estimation by the present method.

5.3 PAM Evaluation

5.3.1 Linear Model

The model provides a very realistic approximation to the ensemble of PPG and ACC signals

when performing various activities with the use of wearable devices. Due to this fact, the

model represents an evaluation method that can be applied in different scenarios for HR

optimization of known HR estimators. In this section, several well-known HR estimators

are evaluated and reproduced using the proposed PAM simulation tool. First, for signal

evaluation of synthesized signals for each photoplethysmography sensor and the tri-axial

accelerometer, both PPG and accelerometer models are taken as linear models. That means

that the frequency related to HR fHR and movement fmov do not follow the exponential

model, but a linear model for simplicity. This indicates that both signals do not vary their

assumed frequency within the activity block range. That being the case, the evaluation of 5

algorithms are presented. Assigning now a model of:

PAM = ([rt, 30], [w, 60], [ru, 60], [w, 60], [ru, 60], [rt, 30]) (5.57)
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the output of synthesized signals are presented in Figure 5.34. Since the frequency is linear,

it’s expected to have a very clean signal for both PPG and ACC signals. This implies

that known algorithms for HR estimation would track the ground truth value of HR very

accurately.

For model simulation comparison, the same pattern as in the publicly available database

[1] is assigned. Figure 5.36 shows the comparison of known algorithms in the literature for

HR estimation using PPG sensors. As seen, the ground truth is being tracked by most

of algorithms, representing that while in the assumption of constant HR frequency values

fHR and movement fmov, represented by the accelerometer signal, are well distinguished and

can easily be interpreted by the algorithms for an accurate HR estimation. For algorithm

evaluation, a set of performance metrics such as the average absolute deviation from reference

values (E1) and the average relative deviation (E2) are analyzed. Xmeas is denoted as the

estimated BPM value and BPMref the ground truth value.

E1 =
1

n

n
∑

k=1

|Xmeas(k)− BPMref (k)| (5.58)

E2 =
1

n

n
∑

k=1

|Xmeas(k)− BPMref (k)|
BPMref (k)

(5.59)

Figure 5.36 represents the comparison between known algorithms in the literature with

the implementation of PAM using the linear model. As expencted, since there is not much

interference of HR estimation through the use of PPG signals zppg1 and zppg2, the estimation

is very accurate compared to the ground true value HR GT . Performance metrics are

presented in Table 5.7.
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Method [61] [2] [68] B T PA [14]
E1 12.86 11.81 10.68 4.48 4.51 2.04 35.82
E2 22.25 19.75 19.75 11.21 11.19 5.59 26.48

Table 5.7: Metrics comparison for different HR estimation methods with a linear PAMmodel.
B = EM Batch, T = EM Trigger, PA = Proposed Algorithm.

5.3.2 Exponential Model

Now, evaluation of proposed simulation tool using the exponential model is presented. This

gives a more realistic response for HR and consequently, this makes it difficult for the algo-

rithms to estimate accurate HR measurements using PPG sensors. Assigning now a model:

PAM = ([w, 60], [ru, 120], [rt, 30], [w, 120], [rt, 30], [ru, 60], [w, 120], [rt, 30]) (5.60)

Figure 5.35 represents the simulated model for PAM following example model (5.60).

The simulated HR response follows the exponential model as explained in section 5.1.1. The

exponential response is modulated by the movement and its duration; since the period for

resting is set in this example with 30 s duration, the exponential curve is limited to this time

range. On the other side, when the activity duration increases, HR is modulated only by

its own HRV. Estimation in this environment becomes very challenging comparing to PPG

signal values.

Figure 5.37 shows the evaluation of known HR estimation methods using the Exponential

model of PAM. Since now the model is more realistic, PPG synthetic frequency estimations

do not provide a clean raw signal of zppg1 and zppg2 for estimation stage. These raw mea-

surements are corrupted by severe MA and their separation using SVD is not very accurate.

Moreover, the step cadence and HRV that varies with the model makes it even more difficult

to estimate correct HR measurements. Even though the environment produces very noisy

estimates, the proposed algorithm still converges faster and more accurate than published
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algorithms. Performance metrics are presented in Table 5.8.

Method [61] [2] [68] B T PA
E1 17.73 12.03 8.90 7.82 7.23 6.49
E2 15.17 8.71 8.71 7.01 5.60 4.78

Table 5.8: Metrics comparison for different HR estimation methods with an exponential
PAM model.B = EM Batch, T = EM Trigger, PA = Proposed Algorithm.

In addition, Figure 5.33 demonstrates when the EM algorithm is being triggered, and

estimated for σv and σw. As can be seen, once there is a steady period of activity, both

Q and R converge for a steady value. This implies that since there is not much noise in

the environment, the noise variances converge. Here, it’s needed to say that the triggered

event happens since it’s known when the activity changes. Finally, it is shown that the PAM

model, independently of Linear and Exponential achieves expected simulated parameters

for algorithm evaluation. As shown in Figure 5.36 using PAM Linear model, majority of

published HR estimation methods can track true HR when the signal is not corrupted by MA

and the simulated HR response is almost constant after physical activity transition. On the

other hand, when the model is more complex, represented in Figure 5.37 with the Exponential

PAM, known HR estimation methods fail to present accurate HR frequency. The proposed

algorithm for HR estimation still can manage such a complex simulated environment and

still produces reliable HR measurements.

5.4 Results and Discussions

The hability to generate synthetic data provides an easy comparison of published algorithms

for evaluation of HR estimation methods. By using available sensors, such as PPG and ACC,

it’s possible to model the environment parameters for a broader range of specifications. In

this case, PPG and ACC signals are modeled following the characteristics presented in real
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Figure 5.33: EM algorithm estimates the noise variances over the period of estimation.
Switching point represents the acknowledgement that a activity changed, and the EM is
calculated after the movement related to the activity is decreased.

sensors while in physical activity. This represents a simulation environment capable of pro-

ducing data independently of equipment and time constraints. On the other hand, the model

resembles only three physical patterns, which may not reproduce reliable synthetic signals

for more complex physical activities. Model limitations such as minimum and maximum

values of parameters as in Table 5.6, might differ under other situations. Another factor is

that the trigger to the EM algorithm is assumed know, since it’s known when the activity

changed. Under a realistic case, an algorithm capable of sensing when the activity is changed

should be implemented, allowing the EM algorithm to be triggered.
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Figure 5.34: Illustration of PAM for various running activities level and time durations
following the example model in (5.57).
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Figure 5.35: Illustration of PAM for various running activities level and time durations
following the example model in (5.60).
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Figure 5.36: Comparison between known algorithms for HR estimation using PPG sensors
with a linear PAM model.

Figure 5.37: Comparison between known algorithms for HR estimation using PPG sensors
with a exponential PAM model.
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Chapter 6

Hardware Implementation

When designing a wearable system to be used for physiological and biomechanical monitor-

ing, sensor localization, comfort, and portability are important features to be addressed [78].

As explained in chapter 2, determining what type of wearable device and its localization can

influence entirely under signal acquisition. Also, comfort and portability display a very im-

portant demand, allowing freedom of movement and continuous monitoring. Thus, wearable

systems can be often characterized by the integration of a variety of sensors for detect-

ing physiological signs placed on the body without discomfort and continuous feedback of

relevant information to the user and/or clinical professionals [20]. Thus, there are three

main work areas that need to be implemented in order to design a fully wearable system.

First, the system needs to be unobtrusive in order to record physiological and kinesiolog-

ical data reliably. Secondly, these sensors need to be implemented in a single material,

allowing a multisensory integration. Lastly, acquisition and communication structures need

to be implemented, facilitating signal acquisition, enhancing mobility and continuous user

monitoring [20]. Figure 6.38 depicts an architectural layer for a wearable health system.

Therefore, the hardware implementation in this work follows these mandatory design
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Figure 6.38: Architectural layer of an ideal wearable system.

Source: [20]

parameters. Figure 6.39 shows the proposed hardware implementation accomplished in this

work. Detailed functionality will be presented in the next section 6.1.

6.1 Hardware development

The proposed HR monitoring device was analyzed for correct utilization of storage, pro-

cessing, communication and data transmission. Components were chosen according to the

following criteria:

• Data acquisition

For correct HR estimation and comparison with available HR estimation methods, a

set of two PPG sensors were used. The MAXREFDES117# is an optical heart rate
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module used for wearable devices since it contains a low power design with integrated

LEDs and power supply. The board also utilizes the heart rate sensor MAX30102

and accurate level translator, providing an interface between the HR sensor and the

controller board. In addition, it includes an ambient light rejection module decreasing

the ambient light interference for HR signal acquisition. Communication is done with

a I2C protocol, which is generally found in any microcontroller. For modulating the

user movement, a tri-axial accelerometer is used. The ADXL335 features a low power

consumption module with a complete 3 axis accelerometer with signal conditioned

voltage outputs. It measures an acceleration full range of ± 3g and static acceleration

of gravity in tilt-sensing applications.

• Data transmission

The proposed device represents a stage of an ongoing local project. This project

has been developed in the Hotel Dieu Grace Healthcare Hospital in Windsor, ON

and incorporates a Radio Frequency Identification (RFID) localization and tracking

system capable of tracking and monitoring patients using active RFID bracelets. Since

the system utilizes 433 MHz RFID tags, data transmission on the device is also set

to 433 MHz. For this reason, a low cost, high-performance radio module is used.

The RFM69 provides a transceiver/receiver module capable of operating over a wide

frequency range including license-free ISM (Industry, Scientific and Medical) bands.

In addition, it requires a low current and permits 256 modules to be connected in the

same network, more than enough for medical monitoring in closed spaces. As shown in

Figure 6.39, communication is performed by two radios. Radio “server” is designated

to the module that comprehends the HR monitoring device. The “server” sends data

to the “client” radio module, which finally outputs data to the computer using a serial

protocol communication.
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• Storage and Processing

Since the device comprises a fully functional HR monitoring, that depends on complex

algorithm implementation and power management, it also requires a high performance

microcontroller and data storage. For this reason, the ARM Cortex M0 Processor

ATSAMD21G18 was chosen. It demands low supply voltage of 3.3V with enough

clock rate for algorithm implementation and enough memory storage.

The final device is composed as a “sandwich” of boards. This configuration allowed con-

nection with all periferals in a compact monitoring unit. The final hardware implementation

is shown in Figure 6.40 and Figure 6.41.

Figure 6.39: Hardware diagram implementation
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Figure 6.40: Detailed client and server. Figure 6.41: Hardware implemented.

6.2 Algorithm Implementation

As it was presented in Figure 4.26, the algorithm implementation is developed by stages.

First, out of the bound frequencies are filtered using a 4th order Butterworth with bandwidth

of 0.67Hz-3.67Hz. This represents the possible range of HR measurements that an individual

can experience while in physical activity and comprehends the boundaries of minimum and

maximum HR values an individual can respond as presented in section 3.2.2. For de-noising

and MA reference, SVD should be implemented. Even though this method provides a very

reliable MA reduction, it represents a complex and high performance algorithm to be em-

bedded into a microprocessor. For matrix calculation and the inverse iteration, assuming

only 100 samples, instead of 1000 samples (8-s of data), memory usage would be drastically

demanding, preventing memory allocation for forthcoming stages. Thus, after the signal is

cleansed by the filter, MA reduction is performed by a faster algorithm which is explained

bellow. The FFT is applied in both PPGs and ACC sensors, in order to find the high-

est frequency peaks on the spectrum. This assumption works fairly well while there is no

movement interference. But, as shown in section 2.3, once movement is present, spectrum

estimation by highest peak location becomes very difficult, since the correct HR frequency
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may overlap, or even disappear. For this reason, the algorithm accounts not only for the

fundamental frequency, but also for its second harmonic for both PPG signals. This is done

by a novel approach composed of the addition and subtraction of PPG and ACC signals.

Since the subtraction represents a way of finding when movement interfers with the spectrum

estimation, the addition enhances the spectrum for other specific cases. For the harmonic

search, the algorithm works as follows: Assuming that the fundamental frequency is found,

the algorithm searches for the highest peak in a selection window corresponding to the esti-

mated second harmonic of the signal. This allows a finer search of the estimated harmonic,

which represents a probable HR frequency when compared to the fundamental frequency. If

this acknowledgement is accepted, than the estimated HR frequency is passed to the final

estage. If this assumption is not accepted a flag is raised and the algorithm compares the

available estimated HR frequency and the harmonic, with the available and estimated move-

ment frequencies acquired by the VM from the tri-axial accelerometer. Next, a comparison

is performed between these available estimated frequencies. If the estimated HR frequency is

retrieved from the comparison and spectrum subtraction(D)/addition(A) of PPG and ACC

signals, then the estimated frequency is passed on to the next stage. If not, the estimated HR

frequency is compared to the previous three estimates, and if still not remains in a range of

± 0.34 Hz ≡ 20BPM (assuming that the HR won’t change drastically between estimations),

then the estimated frequency is assigned to its previous probable value. Figure 6.42 shows

the algorithm’s selection for the fundamental and second harmonic. Once the highest peak

is found, which could possibly correspond to the true HR frequency, a selection window is as-

signed to each second probable harmonic. In addition, Figure 6.43 represents the case when

the highest peak is chosen for HR estimation. As seen, the highest peak of the PPG signals

zppg1 and zppg2 are used to estimated the HR, in comparison with the proposed algorithm

using the harmonic window selection method (HWSM) . Once the movement intensifies, MA
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interferes with PPG signals, overlaping both spectrums, complicating reliable HR estimation

by the highest peak spectrum selection. This is resolved with the proposed method, which

accounts not only for the fundamental frequency, but also its harmonic and other parameter

effects under an intensive physical activity.
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Figure 6.42: Peak selection taking in account the difference (D) and addition (A) of the
spectrum estimation. The estimated peak from (D) produces a peak that is very close to
the GT value – Dataset #6.

Figure 6.44 shows a PPG signal acquired on the wrist and Figure 6.45 represents the

HWSM algorithm implemented in the hardware. As explained, the algorithm looks for the

fundamental and the second harmonic of the PPG signal, both represented by the marks on

top of the respective peaks.

Since HWSM algorithm depends on several threshold values for frequency attribution,

several challenges were encountered during device implementation. PPG values had a higher
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Dataset #12.

magnitude than ACC values, making it challenging their comparison before passing to the

FFT. Also, for faster response, the FFT was implemented using integer values instead of

float values. This change reduced considerably the frequency resolution, although increased

algorithm performance. In addition, even though all developed functions were analyzed and

tested in different integrated programming environments, debugging was difficult due to

software constraints, such as variable visualization and pointer routines. Such observations

will be considered for the final monitoring device.
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Figure 6.44: PPG signal acquired on the wrist.

Figure 6.45: HWSM implemented in HW.

92



Chapter 7

Summary, Conclusions and Future

Work

The research described in this thesis has revealed several important pieces of information

regarding the reduction of MA using PPG sensors for HR measurement during in physical

exercise. In addition to work that could potentially be carried out in the near future, includ-

ing some progress with the software implementation in the prototype device, key outcomes

and necessary observations are summarized next, before the conclusion and results of this

work.

7.1 Summary and Conclusions

As it was explained in Chapter 2, PPG sensors are still not widely accepted as the pre-

ferred HR measurement system, mainly due to MA and other effects that influence its signal

acquisition. Once movement is present, PPG signal may overlap with the frequency of the

movement, resulting in signals that are complex to separate and resolve. Moreover, the move-

ment that results from physical exercise, may cause a displacement between the skin and the

93



sensor, altering the way the sensor responds to blood flow, culminating with an incorrect HR

measurement. For this reason, this thesis focused on ways to use PPG sensors, even though

corrupted by MA for a correct HR estimation. In Chapter 3 description of the flowchart

comprising the main stages for an accurate and reliable HR estimation using PPG sensors

is presented. Even though there are primarily three stages, each one is carefully analyzed

before implementation. For instance, filtering out the bound frequencies may distort or even

disregard a range of important frequencies that might be correlated with the desired signal

of the PPG and/or the ACC. Choosing the correct filter is important even for algorithm

implementation, as filter coefficients differ depending on the size of the filter, which is as an

important factor that need to be embedded into the wearable device. During denoising and

MA reference stage, there is a broad range of techniques that can be used to minimize MA

effects, but as propounded, there is always a trade-off between accuracy and performance.

The proposed algorithm uses SVD as a denoising stage, which contributes to de-referencing

the ACC signals from the PPG signals, while retaining the principal characteristic of the

PPG signal. This in fact, enhanced the way the raw data is passed on to the next stage,

since it provides better results than single spectrum subtraction as used in published al-

gorithms. The drawback is that by using such technique, it becomes very complicated for

embedding into a chip due to the complex calculations. Thus, an algorithm was developed

using the EM algorithm and KF, providing better parameter estimation independent of the

user’s physiology. The algorithm implemented shows desirable results in simulation and in

available datasets, resulting in better parameter estimation than user tuned parameters. In

Chapter 4, it was shown the correct approach to fuse sensors into one single measurement,

accounting for each individual signal and correspondent deviations, reducing the error in

the filtered state. This process resulted in error reduction when joining both measurement

sensors, as opposed to other approaches in published KF algorithms. Now, in Chapter 5 a
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tool for generating synthetic PPG and ACC signals was implemented, allowing evaluation

of the proposed HR algorithm and comparison with available HR estimation methods. A

synthetic exponential model was developed, resembling the characteristics of both PPG and

ACC signals during in physical exercise. This tool provides comparison and evaluation of

available HR methods regardless of the duration and database used. The final HR estima-

tion method was compared with other “state-of-the-art” methods and provided reliable HR

measurements when equated with the ground truth. In Chapter 6 a prototype hardware

was implemented, following design definitions for a wearable system; criteria such as data

acquisition, transmission and processing were analyzed producing a very robust yet simple

prototype. Software implementation is yet not concluded, since several problems arose from

data acquisition, storage, and library management. Data is acquired from the sensors, how-

ever, once functions are called, due to the complex arithmetic calculations, output rate is

decreased, which also could hamper data sent to the client. Moreover, the lack of avail-

able sensor libraries diminish accessibility to more complex fetching functionalities for each

peripheral. For instance, communication between PPG sensors and the microcontroller is

performed by I2C protocol, which demands that each peripheral maintain a specific address

for bus communication. Even though carried-off with other techniques, available PPG sen-

sors do not provide access to change such parameters, complicating expansion to other PPG

sensors, without using multiplexers, which would also increase the available area of circuit

implementation on the prototype board.

7.1.1 Concluding Remarks

In conclusion, this thesis presented how MA interfere with reliable PPG sensors during

physical exercise. Due to this fact, an algorithm was implemented using the EM algorithm

and Kalman filter using a measurement fusion approach, allowing a more refine parameter
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estimation, and consequently, a more accurate HR measurement. The algorithm was com-

pared with state-of-the-art methods and presented satisfactory results. Moreover, a synthetic

PPG and ACC signals generation tool was developed, allowing comparison and evaluation

of published algorithms, enabling researchers to compare algorithm results with a simple but

accurate model. Finally, a prototype device was designed allowing implementation of the

proposed algorithm. Even though it is under development, it already displayed obstacles

that need to be addressed, which will be accounted in the final device. It was shown that

photoplethysmography sensors have a strong space in the market for wearable devices, but

more importantly, it can become the preferred device for heart rate measurement, since it

is unobtrusive, lightweight and capable of continuous monitoring, providing an accurate HR

measurement, enhancing wellness and comfort to the end user.

7.2 Future work

As the intention of this research was not to create a marketable product, but to explore

techniques to correctly estimate HR enveloped with motion, the resulting prototype design

contains faults that should be addressed for a complete stand alone heart rate monitoring

device. Several problems were encountered once the final algorithm was being implemented

in the board such as compatibility of functions and accessibility to more complex calculations;

changing the microcontroller to a Digital Signal Processing (DSP) processor would enhance

performance allowing optmization to meet DSP operation needs. High performance would

represent a faster communication between client and server, which would increase data traffic

when more clients are added to the system. A final schematic, circuit design and fabrication,

would provide a broader insight for the necessary refinements for a future HR monitoring

system. In addition, deployment of such system combined with RFID tags would provide

96



doctors and nurses the ability to monitor patients continuosly and unbobtrusively, allowing

detection and diagnosis of cardiovascular diseases, thereby offering greater insight into a

patient’s health [7].
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Appendix A

Table of Methods

This table represents the comparison of studied methods for HR estimation using PPG

sensors. The table depicts a range of methods and it’s divided by the different methods for

pre-processing, post-processing and algorithm implementation. Database used to evaluate

each of the presented methods is also cited. Since there are methods that date differently,

a full method comparison between methods is not possible. This is related to the database

used, or if the method is accessible for results’ replication.
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[32] A. R. Kavsaoğlu, K. Polat, and M. Hariharan, “Non-invasive prediction of hemoglobin

level using machine learning techniques with the ppg signal’s characteristics features,”

Applied Soft Computing, vol. 37, pp. 983–991, 2015.

[33] S.-S. Oak and P. Aroul, “How to design peripheral oxygen saturation (spo2) and optical

heart rate monitoring (ohrm) systems using the afe4403,” Texas Instruments, 2015.

[34] J. F. Horton, P. Stergiou, T. S. Fung, and L. Katz, “Comparison of polar m600 optical

heart rate and ecg heart rate during exercise.,” Medicine and science in sports and

exercise, vol. 49, no. 12, pp. 2600–2607, 2017.

[35] Y. Maeda, M. Sekine, and T. Tamura, “Relationship between measurement site and mo-

tion artifacts in wearable reflected photoplethysmography,” Journal of medical systems,

vol. 35, no. 5, pp. 969–976, 2011.

[36] L. Kong, Y. Zhao, L. Dong, Y. Jian, X. Jin, B. Li, Y. Feng, M. Liu, X. Liu, and H. Wu,

“Non-contact detection of oxygen saturation based on visible light imaging device using

ambient light,” Optics express, vol. 21, no. 15, pp. 17464–17471, 2013.

[37] D. K. Spierer, Z. Rosen, L. L. Litman, and K. Fujii, “Validation of photoplethysmog-

raphy as a method to detect heart rate during rest and exercise,” Journal of medical

engineering & technology, vol. 39, no. 5, pp. 264–271, 2015.

104



[38] S. LeBoeuf, “Optical heart-rate measurement’s top 5 challenges, 2015.” https://www.

edn.com. Accessed: 2018-03-11.

[39] E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam, and M. K. Hasan, “A robust heart rate

monitoring scheme using photoplethysmographic signals corrupted by intense motion

artifacts,” IEEE Transactions on Biomedical engineering, vol. 63, no. 3, pp. 550–562,

2015.

[40] A. N. Bashkatov, E. A. Genina, and V. V. Tuchin, “Optical properties of skin, subcu-

taneous, and muscle tissues: a review,” Journal of Innovative Optical Health Sciences,

vol. 4, no. 01, pp. 9–38, 2011.

[41] S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine

& Biology, vol. 58, no. 11, p. R37, 2013.

[42] J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian, T. Pan, R. Li, M. Khine, J. Kim,

and J. Wang, “Wearable sensors: modalities, challenges, and prospects,” Lab on a Chip,

vol. 18, no. 2, pp. 217–248, 2018.

[43] R. R. Anderson and J. A. Parrish, “The optics of human skin,” Journal of investigative

dermatology, vol. 77, no. 1, pp. 13–19, 1981.

[44] R. Anderson and J. Parrish, “Optical properties of human skin,” in The science of

photomedicine, pp. 147–194, Springer, 1982.

[45] V. H. Orellana, “The apple watch series 4 takes heart monitoring to next level, 2018.”

https://www.cnet.com. Accessed: 2019-01-23.

105

https://www.edn.com
https://www.edn.com
https://www.cnet.com


[46] Y. Maeda, M. Sekine, and T. Tamura, “Relationship between measurement site and mo-

tion artifacts in wearable reflected photoplethysmography,” Journal of medical systems,

vol. 35, no. 5, pp. 969–976, 2011.

[47] I. Kim, P.-H. Lai, R. Lobo, and B. J. Gluckman, “Challenges in wearable personal

health monitoring systems,” in 2014 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, pp. 5264–5267, IEEE, 2014.

[48] J. Y. A. Foo and S. J. Wilson, “A computational system to optimise noise rejection

in photoplethysmography signals during motion or poor perfusion states,” Medical and

Biological Engineering and Computing, vol. 44, no. 1-2, pp. 140–145, 2006.

[49] Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-L. Zhou, G.-Z.

Yang, N. Zhao, and Y.-T. Zhang, “Unobtrusive sensing and wearable devices for health

informatics,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1538–

1554, 2014.

[50] T. J. Sullivan, S. R. Deiss, and G. Cauwenberghs, “A low-noise, non-contact eeg/ecg

sensor,” in 2007 IEEE Biomedical Circuits and Systems Conference, pp. 154–157, IEEE,

2007.

[51] V. (Producer), “Building a wearable with accurate biometrics: Lessons learned from

40+ product development cycles. [video webinar,” 2017.

[52] K. Li and S. Warren, “A wireless reflectance pulse oximeter with digital baseline con-

trol for unfiltered photoplethysmograms,” IEEE transactions on biomedical circuits and

systems, vol. 6, no. 3, pp. 269–278, 2011.

[53] E. Grisan, G. Cantisani, G. Tarroni, S. K. Yoon, and M. Rossi, “A supervised learning

approach for the robust detection of heart beat in plethysmographic data,” in 2015

106



37th Annual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), pp. 5825–5828, IEEE, 2015.

[54] V. Jindal, J. Birjandtalab, M. B. Pouyan, and M. Nourani, “An adaptive deep learning

approach for ppg-based identification,” in 2016 38th Annual international conference of

the IEEE engineering in medicine and biology society (EMBC), pp. 6401–6404, IEEE,

2016.

[55] K. Chan and Y. Zhang, “Adaptive reduction of motion artifact from photoplethysmo-

graphic recordings using a variable step-size lms filter,” in SENSORS, 2002 IEEE, vol. 2,

pp. 1343–1346, IEEE, 2002.

[56] M. A. Motin, C. K. Karmakar, and M. Palaniswami, “Robust heart rate estimation

during physical exercise using photoplethysmographic signals,” in 2018 40th Annual

International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pp. 494–497, IEEE, 2018.

[57] H. Han, M.-J. Kim, and J. Kim, “Development of real-time motion artifact reduction

algorithm for a wearable photoplethysmography,” in 2007 29th Annual international

conference of the IEEE engineering in medicine and biology society, pp. 1538–1541,

IEEE, 2007.

[58] B. S. Kim and S. K. Yoo, “Motion artifact reduction in photoplethysmography using

independent component analysis,” IEEE transactions on biomedical engineering, vol. 53,

no. 3, pp. 566–568, 2006.

[59] K. A. Reddy and V. J. Kumar, “Motion artifact reduction in photoplethysmographic

signals using singular value decomposition,” in 2007 IEEE Instrumentation & Measure-

ment Technology Conference IMTC 2007, pp. 1–4, IEEE, 2007.

107



[60] Y. Fujita, M. Hiromoto, and T. Sato, “Parhelia: Particle filter-based heart rate estima-

tion from photoplethysmographic signals during physical exercise,” IEEE Transactions

on Biomedical Engineering, vol. 65, no. 1, pp. 189–198, 2017.

[61] A. Temko, “Accurate heart rate monitoring during physical exercises using ppg,” IEEE

Transactions on Biomedical Engineering, vol. 64, no. 9, pp. 2016–2024, 2017.

[62] H. Fukushima, H. Kawanaka, M. S. Bhuiyan, and K. Oguri, “Estimating heart rate

using wrist-type photoplethysmography and acceleration sensor while running,” in 2012

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, pp. 2901–2904, IEEE, 2012.

[63] Z. Zhang, “Photoplethysmography-based heart rate monitoring in physical activities via

joint sparse spectrum reconstruction,” IEEE transactions on biomedical engineering,

vol. 62, no. 8, pp. 1902–1910, 2015.

[64] A. Galli, G. Frigo, C. Narduzzi, and G. Giorgi, “Robust estimation and tracking of

heart rate by ppg signal analysis,” in 2017 IEEE International Instrumentation and

Measurement Technology Conference (I2MTC), pp. 1–6, IEEE, 2017.

[65] G. McLachlan and T. Krishnan, The EM algorithm and extensions, vol. 382. John Wiley

& Sons, 2007.

[66] R. H. Shumway and D. S. Stoffer, “Time series regression and exploratory data analysis,”

pp. 48–83, Springer, 2006.

[67] J. A. Bilmes et al., “A gentle tutorial of the em algorithm and its application to pa-

rameter estimation for gaussian mixture and hidden markov models,” International

Computer Science Institute, vol. 4, no. 510, p. 126, 1998.

108



[68] T. T. Souza, B. Balasingam, and R. G. Maev, “Autonomous heart rate tracking method-

ology using kalman filter and the EM algorithm,” in 2019 22nd International Conference

on Information Fusion, 2019.

[69] R. A. Singer and A. Kanyuck, “Computer control of multiple site track correlation,”

Automatica, vol. 7, no. 4, pp. 455–463, 1971.

[70] W. Bath, “Association of multisite radar data in the presence of large navigation and

sensor alignment errors,” in Radar-82, pp. 169–173, 1982.

[71] J. Roecker and C. McGillem, “Comparison of two-sensor tracking methods based on

state vector fusion and measurement fusion,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 24, no. 4, pp. 447–449, 1988.

[72] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications to tracking

and navigation: theory algorithms and software. John Wiley & Sons, 2004.

[73] Y. Bar-Shalom and L. Campo, “The effect of the common process noise on the two-

sensor fused-track covariance,” IEEE Transactions on Aerospace and Electronic Sys-

tems, no. 6, pp. 803–805, 1986.

[74] T. M. Cheng, A. V. Savkin, B. G. Celler, S. W. Su, L. Wang, et al., “Nonlinear modeling

and control of human heart rate response during exercise with various work load inten-

sities,” IEEE Transactions on biomedical engineering, vol. 55, no. 11, pp. 2499–2508,

2008.

[75] C. R. Cole, E. H. Blackstone, F. J. Pashkow, C. E. Snader, and M. S. Lauer, “Heart-rate

recovery immediately after exercise as a predictor of mortality,” New England journal

of medicine, vol. 341, no. 18, pp. 1351–1357, 1999.

109



[76] S. S. Abeysekera, “Photoplethysmographic signal analysis via beat-to-beat periodicity

estimation,” in 2016 IEEE Region 10 Conference (TENCON), pp. 1733–1736, IEEE,

2016.

[77] S. Electronics, “A guide to using imu (accelerometer and gyroscope devices) in embedded

applications., 2009.” http://www.starlino.com. Accessed: 2019-01-17.

[78] A. Bonfiglio and D. De Rossi,Wearable monitoring systems. Springer Science & Business

Media, 2010.

[79] R. W. Wijshoff, M. Mischi, and R. M. Aarts, “Reduction of periodic motion artifacts in

photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 1,

pp. 196–207, 2016.

[80] H. Fukushima, H. Kawanaka, M. S. Bhuiyan, and K. Oguri, “Estimating heart rate

using wrist-type photoplethysmography and acceleration sensor while running,” in 2012

Annual International Conference of the IEEE Engineering in Medicine and Biology

Society, pp. 2901–2904, IEEE, 2012.

[81] H. Han and J. Kim, “Artifacts in wearable photoplethysmographs during daily life

motions and their reduction with least mean square based active noise cancellation

method,” Computers in biology and medicine, vol. 42, no. 4, pp. 387–393, 2012.

[82] A. J. Casson, A. V. Galvez, and D. Jarchi, “Gyroscope vs. accelerometer measurements

of motion from wrist ppg during physical exercise,” ICT Express, vol. 2, no. 4, pp. 175–

179, 2016.

[83] S. Salehizadeh, D. Dao, J. Bolkhovsky, C. Cho, Y. Mendelson, and K. Chon, “A novel

time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted

110

http://www.starlino.com


heart rate signals during intense physical activities using a wearable photoplethysmo-

gram sensor,” Sensors, vol. 16, no. 1, p. 10, 2015.

[84] M. T. Islam, I. Zabir, S. T. Ahamed, M. T. Yasar, C. Shahnaz, and S. A. Fattah, “A

time-frequency domain approach of heart rate estimation from photoplethysmographic

(ppg) signal,” Biomedical Signal Processing and Control, vol. 36, pp. 146–154, 2017.

[85] K. Vandecasteele, J. Lázaro, E. Cleeren, K. Claes, W. Van Paesschen, S. Van Huf-

fel, and B. Hunyadi, “Artifact detection of wrist photoplethysmograph signals.,” in

BIOSIGNALS, pp. 182–189, 2018.

[86] S. Rajala, H. Lindholm, and T. Taipalus, “Comparison of photoplethysmogram mea-

sured from wrist and finger and the effect of measurement location on pulse arrival

time,” Physiological measurement, vol. 39, no. 7, p. 075010, 2018.

[87] M. B. Mashhadi, M. Farhadi, M. Essalat, and F. Marvasti, “Low complexity heart

rate measurement from wearable wrist-type photoplethysmographic sensors robust to

motion artifacts,” in 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pp. 921–924, IEEE, 2018.

[88] H. Lee, H. Chung, and J. Lee, “Motion artifact cancellation in wearable photoplethys-

mography using gyroscope,” IEEE Sensors Journal, vol. 19, no. 3, pp. 1166–1175, 2018.

111



Vita Auctoris

NAME: Thiago Toledo Souza

PLACE OF BIRTH: Curitiba, Parana, Brazil

YEAR OF BIRTH: 1991

EDUCATION: UTFPR, Curitiba, Brazil
2007-2010, Diploma
Integrated Electronic Technician

UTFPR, Curitiba, Brazil
2011-2013, Bachelor of Science
Control and Automation Engineering

University of Windsor, Windsor, Ontario
2013-2014, Bachelor of Science - Exchange Program
Electrical and Computer Engineering

UTFPR, Curitiba, Brazil
2014-2017, Diploma
Control and Automation Engineering

University of Windsor, Windsor, Ontario
2017-2019, Master of Applied Science
Electrical Engineering

112


	Heart Rate Estimation During Physical Exercise Using Wrist-Type Ppg Sensors
	Recommended Citation

	Declaration of Co-Authorship / Previous Publication
	Abstract
	Acknowledgements
	Nomenclature
	List of Tables
	List of Figures
	Introduction
	Literature Search and Motivation
	Organization of the Thesis
	Problem Statement

	Background to the Study
	Wearable Sensor and Systems
	Photoplethysmography
	Brief History
	Functionality

	Motion Artifacts
	Tissue Optical Characteristics
	Sensor Location
	Perfusion
	Crossover Problem
	Advantages
	Challenges
	Existing Research

	Methodology
	HR Estimation Methods
	Dataset
	Comparison Between Methods

	Proposed Algorithm
	Framework
	Processing of input signals
	De-noising and MA reference
	Post processing and HR estimation

	Problem Definition
	Review of the EM Algorithm
	The EM Algorithm
	HR Process Model Estimation Using the EM Algorithm
	Complete-Data Likelihood of 
	Expectation
	Maximization

	Results
	Computer Simulation Results
	Real Data Results

	Conclusions and Discussions

	Fusion Method
	State Vector Fusion
	Measurement Fusion
	Performance Analysis
	Final Proposed Algorithm

	Synthetic signals
	Physical Activity model (PAM)
	Heart Rate Pattern

	Synthetic Signal Simulation
	Synthetic PPG
	Synthetic tri-axil accelerometer
	EM Approach

	PAM Evaluation
	Linear Model
	Exponential Model

	Results and Discussions

	Hardware Implementation
	Hardware development
	Algorithm Implementation

	Summary, Conclusions and Future Work
	Summary and Conclusions
	Concluding Remarks

	Future work

	Appendix Table of Methods
	Bibliography
	Vita Auctoris

