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Abstract

Background: Wrist-worn activity trackers are popular, and an increasing number of these devices are equipped with heart rate
(HR) measurement capabilities. However, the validity of HR data obtained from such trackers has not been thoroughly assessed
outside the laboratory setting.

Objective: This study aimed to investigate the validity of HR measures of a high-cost consumer-based tracker (Polar A370)
and a low-cost tracker (Tempo HR) in the laboratory and free-living settings.

Methods: Participants underwent a laboratory-based cycling protocol while wearing the two trackers and the chest-strapped
Polar H10, which acted as criterion. Participants also wore the devices throughout the waking hours of the following day during
which they were required to conduct at least one 10-min bout of moderate-to-vigorous physical activity (MVPA) to ensure
variability in the HR signal. We extracted 10-second values from all devices and time-matched HR data from the trackers with
those from the Polar H10. We calculated intraclass correlation coefficients (ICCs), mean absolute errors, and mean absolute
percentage errors (MAPEs) between the criterion and the trackers. We constructed decile plots that compared HR data from
Tempo HR and Polar A370 with criterion measures across intensity deciles. We investigated how many HR data points within
the MVPA zone (≥64% of maximum HR) were detected by the trackers.

Results: Of the 57 people screened, 55 joined the study (mean age 30.5 [SD 9.8] years). Tempo HR showed moderate agreement
and large errors (laboratory: ICC 0.51 and MAPE 13.00%; free-living: ICC 0.71 and MAPE 10.20%). Polar A370 showed
moderate-to-strong agreement and small errors (laboratory: ICC 0.73 and MAPE 6.40%; free-living: ICC 0.83 and MAPE 7.10%).
Decile plots indicated increasing differences between Tempo HR and the criterion as HRs increased. Such trend was less pronounced
when considering the Polar A370 HR data. Tempo HR identified 62.13% (1872/3013) and 54.27% (5717/10,535) of all MVPA
time points in the laboratory phase and free-living phase, respectively. Polar A370 detected 81.09% (2273/2803) and 83.55%
(9323/11,158) of all MVPA time points in the laboratory phase and free-living phase, respectively.
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Conclusions: HR data from the examined wrist-worn trackers were reasonably accurate in both the settings, with the Polar
A370 showing stronger agreement with the Polar H10 and smaller errors. Inaccuracies increased with increasing HRs; this was
pronounced for Tempo HR.

(JMIR Mhealth Uhealth 2019;7(10):e14120) doi: 10.2196/14120
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Introduction

The scientific evidence on the health and well-being benefits
of physical activity (PA) is overwhelming, and, as such,
increasing activity levels is a core public health target [1,2].
The greatest benefits are attained when engaging in regular
moderate-to-vigorous PA (MVPA). For example, positive effects
of MVPA have been shown in the domains of mortality risk
[3,4] as well as physical and psychological health and well-being
[1,5-7].

The PA research landscape could broadly be divided into 2 core
facets—PA surveillance and PA promotion [1,2]. Key to
progress in both is the accurate measurement of PA. In this
regard, questionnaires that are prone to recall and social
desirability bias [8] are increasingly being complemented by
instruments that measure PA objectively. Wearable
research-grade devices such as accelerometers are commonly
used, which have improved the validity of PA estimates [9,10].
Unfortunately, conducting population-wide studies with
accelerometers is difficult because of high costs and participant
burden.

To this end, the soaring availability and use of commercial
wrist-worn activity tracking devices are increasingly being
harnessed by PA researchers who are keen to use them for
large-scale surveillance and intervention studies [11-13]. Sensor
technologies inbuilt in these trackers allow for the convenient
collection of various types of data [14]. As such, observational
research and PA monitoring in intervention studies might soon
primarily rely on data collected through devices that were not
developed for research purposes. However, to make adequate
use of wrist-worn tracker data, the validity of such data needs
to be established [15]. There are numerous validation studies
that have been conducted in recent years, and most of the studies
focused on the accuracy of accelerometer-based metrics (eg,
step counts) that are available from generation 1 activity trackers
[16-18].

In addition to measurements of accelerometer-based metrics,
many newer wrist-worn trackers are equipped with capabilities
to collect data on physiological measures such as heart rate (HR)
[14]. Estimating HR is enabled through photoplethysmography
(PPG), a technology that consists of light-emitting diodes and
photodetectors. With this, volume changes in the pulsatile
component in the microvascular bed of arterial blood can be
captured through reflection of the emitted light through the
tissue [19]. Algorithms are then applied to estimate HR from
PPG information. The 2 key advantages to measuring HR
instead of, or in addition to, other metrics are the capture of
nonweight-bearing activities (eg, cycling) and the ability to

ascertain PA intensity, which is important for MVPA
monitoring.

Validating HR data from wrist-worn trackers in healthy
individuals is a recent endeavor [14]. Despite the increasing
research activity, there is currently little uniformity in the
technologies used and the conditions in which studies have been
conducted. For example, although most researchers assessed
the accuracy of tracker-based HR data during cycling or
treadmill exercises [20-36], protocols varied widely (eg,
different speeds and varying durations). Some of these studies
also examined tracker accuracy during chores [31], outdoor
activities [33], and resistance exercises [32,35,36], and 1
research team was solely interested in HR data accuracy during
sedentary time [37]. As such, drawing firm and generalizable
conclusions about tracker accuracy in terms of HR data is
difficult, and interested readers are advised to consult studies
that assessed the accuracy of specific trackers during specific
activities (eg, accuracy of the various Fitbit devices (Fitbit, Inc)
during cycling).

What the above-mentioned studies have in common is that they
were conducted in a controlled laboratory setting. However,
there are differences between a controlled and less controlled
environment, and collecting data in both environments is
warranted to disentangle such differences and increase
ecological relevance of findings. To our knowledge, there are
only 2 free-living studies. One research team merely collected
HR data during common daily activities over a few hours [38],
whereas the other included only 1 participant [39]. This is
unsatisfying because wrist-worn trackers are meant to accurately
capture HRs in different PA intensity zones (eg, light PA and
MVPA) throughout the day and in different people. In addition,
sample sizes were mostly small, with only few studies having
more than 50 participants [22,28,40]. Finally, HR validation
studies have so far only included devices that are rather
expensive (mainly devices from Fitbit; 40 of 61 validation
studies) [14]. With this, many people who might benefit from
trackers will not be able to afford them. Less expensive trackers
are readily available, but they are rarely tested. If these more
affordable devices are reasonably accurate, large-scale studies
and population-based health promotion campaigns using such
activity trackers could become commonplace.

This study aimed to examine the validity of HR data from 2
wrist-worn HR trackers, the Tempo HR, a low-cost device used
for a national PA promotion campaign in Singapore, and the
Polar A370, a consumer-based fitness and activity tracking
device, in laboratory and free-living settings. Both these trackers
have not been assessed previously.
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Methods

Design

We conducted a 2-phased validation study with all participants:
laboratory phase and free-living phase. The study procedures
were approved by the institutional review board of the National
University of Singapore (NUS IRB: S-18-026), and
written-informed consent was obtained from all participants
before study enrolment. Data collection took place between
March and May 2018.

Participants

We applied multiple recruitment strategies to ensure a sample
with varied characteristics. Students and staff were recruited
through a post on the university’s Web-based learning system
blackboard and word-of-mouth. Participants from the general
public were recruited through emails sent to participants of the
National Steps Challenge (NSC), a national PA promotion
campaign rolled out by the Health Promotion Board (HPB),
Singapore, yearly for 6 months (October to April).

Interested people were assessed for eligibility during an initial
screening call and during the laboratory visit. The following
inclusion criteria were applied: reasonably physically active
English-literate men and women aged between 21 and 50 years

with a body mass index (BMI) of at least 18.5 kg/m2; absence
of physical disabilities or illness that would restrict moderate
PA as assessed with the Physical Activity Readiness
Questionnaire [41]; ownership of a mobile phone that supports
HPB’s Healthy365 app, which was needed for data retrieval
from the Tempo HR tracker, and that is compatible with HPB’s
activity trackers; and willingness to use the personal mobile
phone. Participants were instructed to abstain from caffeine for
12 hours and from food for 2 hours before the first study center
visit.

Procedures: Laboratory Phase

During the first visit, we collected sociodemographic
information and measured height and weight with a SECA
stadiometer (SECA GmbH). Following this, participants were
fitted with 3 HR monitoring devices. We used the chest-strapped
Polar H10 HR monitor (Polar Electro Oy) as our criterion
device. Concurrent validity of similar Polar devices against
echocardiogram (ECG) is well established [42]. The device was
placed below the chest muscles. It transmitted real-time HR
data to a wristwatch via Bluetooth. Our 2 wrist-worn HR
trackers were the trackers used for the NSC (Tempo HR, J-style,
TEMPO) and the Polar A370 (Polar Electro Oy). The Tempo
HR is a low-cost activity tracker that measures steps, distance,
calories burnt, and HR. Data from this tracker were transferred
to the participants’ Healthy365 app, downloaded by HPB staff
at the backend before it was shared with the researchers. Those
recruited through HPB were already in possession of the Tempo
HR tracker. The Polar A370 is a commercial activity tracker
that allows monitoring of steps, distances, pace, global
positioning system location, calories burnt, and HR. Data were
transferred to the associated Polar Flow app and downloaded
to the computer. Devices were worn snugly on opposite wrists
(Tempo HR: left and Polar A370: right, during both the phases).

Resting HR following at least 5 min of continuous sitting was
measured before the cycling protocol.

Participants were requested to go through an incremental cycling
protocol of 20 min on a stationary exercise bicycle (Monark
894E). The protocol consisted of four 5-min stages, and
participants were required to cycle at an intensity corresponding
to their designated HR zones for each stage (45%, 55%, 65%,
and 75% of maximum HR [HRmax]; ±10 beats per minute [bpm])

[22]. HRmax was calculated according to the common formula

220−age in years [43]. During the cycling program, researchers
monitored adherence to the HR zones, provided verbal
encouragement if necessary, and recorded perceived exertion
at midpoint of each stage using the well-established 15-point
visual Borg scale [44]. Following the cycling program,
participants’ recovery HR was monitored for 5 min.

Procedures: Free-Living Phase

After completing the cycling protocol, participants were
introduced to the procedures of the free-living phase. In addition
to the devices used in the laboratory phase, we provided
participants with an ActiGraph wGT3X+BT accelerometer
(ActiGraph) to collect HR data from the Polar H10 chest strap
via Bluetooth. The small tamper-proof device was attached with
a belt to the right side of the hip. We also provided an instruction
sheet detailing adequate wear.

Participants were instructed to wear the devices during waking
hours of the following day (after getting up in the morning until
bedtime at night) and only remove them during water-based
activities. In addition, we requested that participants engage in
at least one 10-min bout of MVPA during the day to capture a
wide range of HR signals. Finally, participants were provided
with a device-wear log to record their wear and nonwear as well
as their MVPA session(s). Participants returned to the laboratory
a few days later to return the study devices and transfer HR data
of the Tempo HR to the Healthy365 app.

Data Acquisition and Synchronization

The sampling frequencies of the Tempo HR, Polar A370, and
Polar H10 chest strap were 0.1 Hz, 1 Hz, and 1 Hz, respectively.
As such, HR data were collected every second by the Polar
devices and every 10 seconds by the Tempo HR (a sample of
the raw data is provided in Multimedia Appendix 1). All devices
provided time-stamped HR data based on the Network Time
Protocol (GMT plus 8 hours). This allowed for time matching
of data. For our analyses, we extracted the 10-second values
from all 3 devices and time matched the nonzero HR data from
Tempo HR and Polar A370 with those from Polar H10. The
following data inclusion criteria were applied for the 2 phases
separately: availability of at least 10 min of time-matched data
for the laboratory phase and availability of at least 180 min of
time-matched data for the free-living phase.

Statistical Analysis

We summarized participants’characteristics descriptively using
mean and SD for continuous variables and number and
percentage for categorical variables.

We calculated the intraclass correlation coefficients (ICCs)
using mixed effects models to assess the absolute agreement
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between the criterion (Polar H10) and the other trackers (Tempo
HR and Polar A370) in the laboratory phase and free-living
phase. The strength of the ICC was interpreted as weak (<0.50),
moderate (≥0.50 to 0.74), strong (≥0.75 to 0.89), and very strong
(≥0.90) [45]. To facilitate visual inspection, we created
scatterplots of HRs between devices with all participants and
similarly for each participant (not shown).

We then calculated mean absolute errors (MAEs) and mean
absolute percentage errors (MAPE; absolute error/criterion×100)
between the criterion (Polar H10) and, both, the Tempo HR and
the Polar A370 trackers, to gauge overall measurement error.
As highlighted in a recent study, there is no clear cutoff for what
level of error would indicate adequate validity between measures
[32]. After considering the available options and similar to the
authors of a previous study, we adopted a cutoff of 10% to judge
validity [46], a cutoff that also coincides with the one suggested
by the Association for the Advancement of Medical
Instrumentation in their document on the validity of HR
measurement devices [47]. Bland-Altman (BA) plots with limits
of agreement (LoA) set at 95% were used to visualize agreement
and proportional bias.

Moreover, we ranked the 10-second HR time points derived
from the Polar H10 and divided them into deciles. As such,
decile 1 contained the lowest 10% of all HR and decile 10
contained the highest 10% of all HR. We then time matched
these HR deciles with HR data from the Tempo HR and Polar

A370. We constructed the box plots to compare the HR data
from the Tempo HR and the Polar A370 with the Polar H10
measures across the deciles.

Finally, we constructed 2×2 tables to estimate the sensitivity
and specificity of the 2 trackers for identifying the different HR
zones based on the Polar H10 (<64% HRmax and ≥64% HRmax).

The cutoff of 64% HRmax was chosen because it is the updated

cutoff [48] of the earlier 50% HRmax cutoff [49]. The more

recent cutoff has since been endorsed by the American College
of Sports Medicine [50]. All statistical analyses were conducted
using R (version 3.4.2).

Results

Study Participants

Of the 57 people screened, 55 were eligible and joined the study
(mean age 30.5 [SD 9.8] years), with 26 being female (47%),

36 with normal weight (65%; BMI <23 kg/m2), and 39 with
Chinese ethnicity (71%). Due to the unavailability of some HR
data, few participants were excluded from some analyses. Figure
1 depicts the analysis flow, which also indicates data availability.
During the free-living phase, and after excluding data points
with zero measures, mean wear time of the Tempo HR, Polar
A370, and Polar H10 was 12.2 (SD 2.6) hours, 12.8 (SD 2.7)
hours, and 11.7 (SD 3.1) hours, respectively.

Figure 1. Data analysis flow showing participants in analysis (n) and number of matched heart rate time points. BMI: body mass index; HR: heart rate.
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Overall Agreement

Laboratory Phase

In the laboratory phase, the HR data from the Tempo HR
showed a moderate ICC (0.51; 95% CI 0.38 to 0.60) with the
data from Polar H10. With a MAE of 15.1 bpm (95% CI 14.6
to 15.5 bpm) and an MAPE of 13.0%, the measurement error
was somewhat large. Polar A370 data also had a moderate but
stronger ICC with the Polar H10 (0.73; 95% CI 0.66 to 0.78).
Measurement errors were small with a MAE of 7.3 bpm (95%
CI 7.0 to 7.7 bpm) and an MAPE of 6.4%. On average, both
the devices underestimated HR: Tempo HR by 9.7 bpm (95%

CI −10.2 to −9.2 bpm) and Polar A370 by 5.7 bpm (95% CI
−6.1 to −5.3 bpm).

Figure 2 shows the BA plot, and Figure 3 shows the HR decile
plot between the Tempo HR and the Polar H10. These plots
showcase 3 trends: HR tends to be underestimated by the Tempo
HR across the range of HR values; the increase in HR is
accompanied by an increasing difference between the Tempo
HR and Polar H10 HR data; and the variability of the HR data
from the Tempo HR increases with increasing HR and the
variability is especially pronounced at the higher HR deciles
(Figure 3).

Figure 2. Laboratory phase: Bland-Altman plot between the heart rate data from the Polar H10 and the Tempo HR. Light blue dotted lines show the
limits of agreement, and the dark blue dotted line shows the mean of the difference. HR: heart rate.
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Figure 3. Laboratory phase: box plot providing by-decile comparisons of mean Polar H10 (white) and Tempo HR HR data (gray). HR: heart rate; bpm:
beats per minute.

As can be seen in Figures 4 and 5, the trends described above
are less pronounced when considering HR data from the Polar
A370 tracker. First, it can be seen that the underestimation of
HR is occurring across HR values (Figure 4). Second, the decile

plot does not indicate a marked change in the difference between
the data from the Polar A370 and the Polar H10 across HRs.
Third, the variability of Polar A370 does not increase markedly
with increasing HR (Figure 5).
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Figure 4. Laboratory phase: Bland-Altman plot between the heart rate data from the Polar H10 and the Polar A370. Light blue dotted lines show the
limits of agreement, and the dark blue dotted line shows the mean of the difference. HR: heart rate.
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Figure 5. Laboratory phase: box plot providing by-decile comparisons of mean Polar H10 (white) and Polar A370 HR data (gray). HR: heart rate; bpm:
beats per minute.

Free-Living Phase

The ICC between the Polar H10 and the Tempo HR data was
moderate in the free-living phase (0.71; 95% CI 0.70 to 0.71).
Errors were smaller compared with the laboratory phase with
a MAE of 8.7 bpm (95% CI 8.7 to 8.8 bpm) and an MAPE of
10.2%. For the Polar A370, the ICC between the Polar H10 and
the Polar A370 tracker data was strong (0.83; 95% CI 0.79 to
0.87). Errors were similar compared with the ones in the
laboratory phase with a MAE of 5.9 bpm (95% CI 5.8 to 5.9
bpm) and an MAPE of 7.1%. In contrast to the results from the
laboratory phase, both the devices overestimated HR slightly
(Tempo HR 0.4 bpm; 95% CI 0.3 to 0.5 bpm and Polar A370
3.4 bpm; 95% CI 3.3 to 3.4 bpm).

The BA plot in Figure 6 depicts the potential occurrences of
overestimation and underestimation of HR measures from the

Tempo HR across HR values. Although no clear trend can be
established, it appears that HR overestimation is more common.
As shown in Figure 7, overestimation tends to occur at lower
HRs, whereas underestimation happens more frequently at
higher HRs. In addition, the decile plot shows that the HR
difference between the Polar H10 and the Tempo HR is minimal
until decile 8 where it begins to increase markedly. At decile
10, the difference is substantial. In addition, Tempo HR data
vary to a similar degree until decile 10, where the variability is
high.

Figure 8 shows the BA plot, and Figure 9 shows the HR decile
plot between the Polar A370 and the Polar H10. Both plots
indicate that the Polar A370 appears to overestimate HR at
lower HRs (below decile 9). However, the decile plot shows
that the overall difference between the criterion and the Polar
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A370 is not substantial throughout. As for the Tempo HR, data variability is high only in decile 10.

Figure 6. Free-living phase: Bland-Altman plot between the heart rate data from the Polar H10 and the Tempo HR. Light blue dotted lines show the
limits of agreement, and the dark blue dotted line shows the mean of the difference. HR: heart rate.
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Figure 7. Free-living phase: box plot providing by-decile comparisons of mean Polar H10 (white) and Tempo HR HR data (gray). HR: heart rate; bpm:
beats per minute.
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Figure 8. Free-living phase: Bland-Altman plot between the heart rate data from the Polar H10 and the Polar A370. Light blue dotted lines show the
limits of agreement, and the dark blue dotted line shows the mean of the difference. HR: heart rate.
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Figure 9. Free-living phase: box plot providing by-decile comparisons of mean Polar H10 (white) and Polar A370 HR data (gray). HR; heart rate; bpm:
beats per minute.

Sensitivity and Specificity

When analyzing how many MVPA time points were identified
by the Tempo HR and the Polar A370, we set the MVPA cutoff
at 64% HRmax. In the laboratory phase, of the total aggregate

time points in the MVPA HR zone that were detected by the
Polar H10, 62.13% (1872/3013) were also identified by the
Tempo HR, whereas the Polar A370 identified 81.09%
(2273/2803). The remaining time was spent below the MVPA
HR zone, of which 91.52% (4267/4662) and 97.52%
(4637/4755) were also registered by the Tempo HR and the
Polar A370, respectively. Overall, the Tempo HR identified

79.99% (6139/7675) and the Polar A370 91.42% (6910/7558)
of data points accurately.

In the free-living phase, we found that the Tempo HR identified
54.27% (5717/10,535) and the Polar A370 identified 83.55%
(9323/11,158) of the MVPA time points that the Polar H10
registered. The Tempo HR picked up 97.22% (186,402/191,741)
and the Polar A370 picked up 96.72% (183,625/189,861) of
time points below the MVPA HR zone. Overall accuracy was
above 90% for both the trackers (Tempo HR: 94.98%,
192,119/202,276; Polar A370: 95.98%, 192,948/201,019). An
overview of the results is provided in Table 1.
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Table 1. Number of 10-second matched time points spent in heart rate zones as detected by the Polar A370 and the Tempo HR in the laboratory phase
and free-living phase.

<64% HRmax, n (%)≥64% HRmax
a, n (%)According to Polar H10

Laboratory phase

According to Polar A370

118 (2.48)2273 (81.09)≥64% HRmax

4637 (97.52)530 (18.91)<64% HRmax

4755 (62.91)2803 (37.09)Total

According to Tempo HR

395 (8.47)1872 (62.13)≥64% HRmax

4267 (91.53)1141 (37.87)<64% HRmax

4662 (60.74)3013 (39.26)Total

Free-living phase

According to Polar A370

6236 (3.28)9323 (83.55)≥64% HRmax

183,625 (96.72)1835 (16.45)<64% HRmax

189,861 (94.45)11,158 (5.55)Total

According to Tempo HR

5339 (2.78)5717 (54.27)≥64% HRmax

186,402 (97.22)4818 (45.73)<64% HRmax

191,741 (94.79)10,535 (5.21)Total

aHRmax: maximum heart rate.

Discussion

Principal Findings

From the present 2-phased tracker validation study involving
55 participants with varying characteristics, a few key findings
can be highlighted. First, HR data from the low-cost Tempo
HR tracker showed moderate agreement with the data from the
chest-strapped Polar H10 in both the laboratory phase and
free-living phase. Although the measurement errors of the
Tempo HR were above the 10% validity cutoff [46,47] in both
phases, indicating its limited validity when measuring HR, the
measurement error was markedly lower and close to the cutoff
in the free-living phase (10.2% error). Second, HR data from
the consumer-based Polar A370 showed strong agreement with
data from the Polar H10 and low measurement errors (below
the 10% validity cutoff) in both phases. Third, the differences
between the Tempo HR and the Polar H10 are highest at higher
HRs in both phases. This suggests that the measurement errors
highlighted above are mainly the result of errors at high HRs.
Further evidence for this conclusion can be derived from the
sensitivity and specificity analysis where the Tempo HR
identified only more than 50% of HRs above the MVPA
threshold in both phases, whereas the Polar A370 identified
more than 80% of HRs above the MVPA threshold in both
phases. Fourth, agreement was generally higher and errors were
smaller in the free-living phase compared with the laboratory
phase. Finally, both trackers underestimated HR in the

laboratory phase, whereas they overestimated it slightly in the
free-living phase.

To establish the stability of the study results, we conducted
sensitivity analyses. For this, we removed outliers and compared
Polar H10 with the 2 other trackers using the remaining matched
data points available. Outliers were defined as follows: a Pearson
correlation coefficient of less than 0.3 between the Polar H10
and the test trackers in the laboratory setting. In secondary
analyses, we only used data that were available from all 3
devices. Conducting these analyses did not change the results
markedly (data not shown). As such, the reported results are
not influenced by extreme cases or outliers.

Heart Rate Accuracy of the Polar A370 and Tempo

HR in Context

When contextualizing our laboratory findings with those
reported in the literature, the Polar A370 and the Tempo HR
appear to have comparable or better accuracy with the market
leader Fitbit, which has been studied extensively
[20-25,28-32,34,36,37]. For example, authors who also asked
participants to go through a cycling ergometer program reported
agreement coefficients for Fitbit devices of between 0.21 and
0.50 [30,32,34]. The ICCs for the Polar A370 and Tempo HR
in our study were 0.73 and 0.51, respectively. Similarly, other
studies reported Fitbit MAPEs of 15.9% [34] and 21.06% [32],
whereas the MAPE of the Polar A370 in our study was 6.4%;
the one for the Tempo HR was 13.0%.
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Comparing our results from the free-living phase with the results
reported in other studies is problematic as, to our knowledge,
there are only 2 studies that had a free-living element [38,39].
Gorny et al assessed data collected by the Fitbit Charge HR
against data from the Polar H6 chest strap and reported an ICC
of 0.83 and a mean difference between devices of −5.96 bpm.
The ICC is in line with what we found for the Polar A370 in
our study (ICC: 0.83). However, we observed overestimation
in the free-living setting (Polar A370: 3.4 bpm; Tempo HR: 0.4
bpm). The authors also conducted sensitivity and specificity
analysis and reported that the Fitbit Charge HR detected 52.9%
of episodes spent in MVPA HR zones. Although this appears
to be similar to what we found for the sensitivity of the Tempo
HR (54.27%), the MVPA cutoffs in both studies were different.
In our study, the more recent cutoff of 64% HRmax was used,

whereas Gorny et al used the older 50% HRmax cutoff. One

study by Nelson and Allen also provides some information on
the accuracy of a Fitbit device in a free-living setting (Fitbit
Charge 2). Over a 24-hour period, agreement measured by the
concordance correlation coefficient was 0.91; this is close to
what we found for the Polar A370 (although we used the ICC
that provides similar estimates). MAE (4.9 bpm) and MAPEs
(6.0%) for the Fitbit Charge 2 were also similar to that of the
Polar A370 in our study (5.9 bpm, 7.1%). From these results,
it appears that the Polar A370 is similarly accurate as the Fitbit
Charge in free-living settings, whereas the Tempo HR appears
to be less accurate.

The finding that the accuracy of wrist-worn trackers decreases
as intensity increases has been observed in previous laboratory
studies. For example, Boudreaux et al found that an increase in
cycling intensity was associated with increasing HR
underestimation in assessed activity trackers [32]. Dondzila et
al made a similar discovery during treadmill exercises [21].
Spierer et al suggested that the increased measurement error
with increasing movement intensity is because of increased
motion, which leads to more disturbances of the blood
flow-sensor interface [35].

It is difficult to draw firm conclusions about such trends in the
free-living phase, as there are no comparable studies available.
We observed smaller differences across activity intensities,
which might be related to the fact that the proportion of higher
HR values was rather small compared with the laboratory study.
This might also partially explain the generally higher accuracy
in the free-living phase versus the laboratory phase. Another
reason for the difference in accuracy between the free-living
phase and laboratory phase might be related to the temperature
difference between the laboratory and the free-living settings
[51]. The laboratory study was conducted in an air-conditioned
environment in which the temperature varied between 18°C and
20°C. This is significantly colder than the outside temperature
in Singapore (between 30°C and 32°C); hence, the free-living
study was executed under warmer conditions. The fact that
higher temperatures facilitate blood flow is well established.
The aforementioned factors could also partially explain why
the test devices underestimated HR in the laboratory phase and
not in the free-living phase.

Differences in Accuracy Between Devices

From the results of our study and the overall HR tracker
validation literature, it is obvious that there are marked
differences between devices in terms of accuracy that ought to
be explained. A review by Tamura et al provides some insights
into the factors that impact HR measurement through PPG in
different devices [19]. First, PPG-measured HR differences
between devices might be related to the algorithms used to
estimate HR. Different devices use different algorithms for
translating the detected blood flow into HR. A recent study
highlighted that sensor technologies to detect physiological
parameters are mostly identical between devices. However, the
algorithms applied to translate the collected data into a readable
HR measure vary from vendor to vendor and can be changed
without notice [14]. Similarly, algorithms used to correct for
movement artifacts during upper body movements vary between
devices [52]. As such, it is the algorithm and not the technology
itself that seems to primarily impact device accuracy. A second
reason for the observed differences in accuracy between devices
could be related to the contact force between the sensor and the
skin [53]. Insufficient contact pressure is related to less
sensitivity in detecting blood flow. Although both trackers were
fitted snuggly (this was tested), the Polar A370 had more
bracelet holes, which meant that its sensor might have had
slightly better contact with the skin.

Strengths and Limitations

A number of strengths of this study can be highlighted. To the
best of our knowledge, this is the first study that thoroughly
investigated the validity of HR measures of modern wrist-worn
activity trackers in 2 settings, the laboratory and daily life.
Research on the real-world performance of activity trackers can
advance the PA and exercise measurement field substantially
as these trackers are meant to be used as people go about their
normal lives. Second, our study sample size was relatively large
and diverse, which is rare in validation studies. Third, we were
able to collect temporally dense HR data from all devices
(approximately 12 hours per device in the free-living phase),
which allowed us to conduct in-depth analyses of tracker validity
across varying HRs. The richness of data we collected stands
in stark contrast to most previous studies that relied mainly on
few data points, for example, at the end or midpoint of a stage
in a cycling protocol [32]. Despite these strengths, a few
limitations ought to be mentioned. First, we opted for a cycling
protocol in our laboratory phase, which might not be optimal
as participants bent their wrists when holding on to the
handlebar. However, using other protocols, such as a treadmill
program, as in other studies, is not optimal either, as upper body
movements will lead to movement artifacts that are likely to
impact HR measures of the wrist-worn trackers [19]. Second,
compared with other researchers who investigated the validity
of up to 8 activity trackers [32], we only used 2 trackers in our
study. Although this might appear to be a significant
shortcoming, we limited the number of trackers intentionally.
We based our decision on a small internal pilot study during
which we established that wearing many trackers in addition to
a chest-strap HR monitor during a free-living study would be
too burdensome for participants; as such, we were concerned
about study compliance. Third, it was not possible to ensure
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participants wore the devices accurately during the free-living
phase. Although we explained how the devices should be fitted,
practiced the wear protocol with participants, and provided a
step-by-step instruction sheet, it is possible that participants did
not wear the devices appropriately. However, as the accuracy
was generally higher in the free-living phase versus the
laboratory phase, we believe that inappropriate wear did not
introduce significant errors. Fourth, we predetermined the
wearing side of the 2 trackers (Tempo HR: left and Polar A370:
right). There is some debate about whether the side at which
trackers are worn could influence the HR data collected. Some
researchers predetermined wear side [21,30,31,36-38,40],
whereas others used randomization procedures [20,22,24,29,32].
We believe our protocol did not introduce bias and base this
assumption on a 2017 study in which researchers found that the
wearing side (left or right) was not associated with differences
in HR measurement error in 6 commercial trackers; in 1 device,
there were some small differences [28]. Finally, we used a
chest-strapped HR monitor as our criterion device for measuring
HR. Although ECG might have been the more adequate
criterion, Polar chest straps are generally accepted reference
devices as they have adequate validity [42]. In addition, Polar
chest straps were used in many previous studies, and they were
the only feasible criterion in our free-living phase.

Future Directions

A recent review highlighted the strong increase in the
availability and use of wrist-worn activity trackers and identified

432 different activity trackers that belonged to 123 unique
brands [14]. As such, researchers will increasingly make use of
them [11,54]. A key promise of such wrist-worn trackers is that
they can facilitate PA behavior change through self-monitoring
and feedback, 2 well-established behavioral change techniques
that are supposed to enable individuals to bridge the gap between
current behavior and behavioral targets [55,56]. However,
research evidence on the effectiveness of tracker-based
self-monitoring and feedback in terms of PA is currently mixed
[13,57]. The effect of tracker use on PA behavior might be
moderated by actual wear time [58]. In addition to
self-monitoring, activity trackers are proposed to be important
for just-in-time adaptive interventions in which in-the-moment
behavioral support is delivered based on real-life data. Step
counts are most commonly used for this purpose, with HR data
as a basis for just-in-time support and feedback being a viable
option. Due to the ability of sensors to communicate
sensor-collected information on PA intensity to mobile phone
apps, real-time adaptations of feedback and support is possible.
Such dynamic interventions are suggested to increase sustainable
behavior change through effective engagement [54,59]. Research
in this field is in its infancy, but important gains are being made.
Finally, observational research is likely to be a great beneficiary
of tracker devices as they can be used to collect long-term PA
data in an unobtrusive and resource-effective way.
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BA: Bland-Altman
BMI: body mass index
bpm: beats per minute
ECG: echocardiogram
HPB: Health Promotion Board
HR: heart rate
HRmax: maximum heart rate

ICC: intraclass correlation coefficient
LoA: limits of agreement
MAE: mean absolute error
MAPE: mean absolute percentage error
MVPA: moderate-to-vigorous physical activity
NSC: National Steps Challenge
PA: physical activity
PPG: photoplethysmography
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