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Abstract

Non-invasive photoplethysmography (PPG) technology was developed to track heart

rate during motion. Automated analysis of PPG has made it useful in both clinical and

non-clinical applications. However, PPG-based heart rate tracking is a challenging

problem due to motion artifacts (MAs) which are main contributors towards signal

degradation as they mask the location of heart rate peak in the spectra. A practical

analysis system must have good performance in MA removal as well as in tracking. In

this article, we have presented state-of-art techniques in both areas of the automated

analysis, i.e., MA removal and heart rate tracking, and have concluded that adaptive

filtering and multi-resolution decomposition techniques are better for MA removal and

machine learning-based approaches are future perspective of heart rate tracking.

Hence, future systems will be composed of machine learning-based trackers fed with

either empirically decomposed signal or from output of adaptive filter.
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1 Introduction

In the last few decades, our world has been transformed into world of wearables [1]. This

transformation is due to the fact that these wearables are light in weight and are oper-

atable in real time. These equipment provide different functionalities that range from

clinical applications like heart and respiration rate monitoring to activity and location

recognition as discussed in research [2]. In these wearables, different types of sensors are

used but sensors which use electrode, accelerometer, oximeter, etc. are more common

and they sense different biosignals like sound, motion, heart rate, etc. [3]. Among sensors

for biosignals, the use of PPG-based systems is widespread and it appears in clinical appli-

cations like obstructive sleep apnea detection in children [4] and respiration influence

on arterial pressure etc. [5] and non-clinical applications like chewing rate [6], personal

authentication [7], and driver drowsiness [8], etc.

PPG is an emerging optical technology and is non-invasive in nature. It is also cheap as

it uses LED as a light source and photo detector (PD) as a receiver to measure volumetric
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changes in blood [9]. PPG is of either transmittance or reflectance type. In the transmit-

tance type, LED used as the light source is placed opposite to PD while LED and PD are

on same side in the reflectance type PPG. Figure 1a shows both types where LED and PD

are on same and opposite side of the finger for transmittance and reflectance type PPG,

respectively.

When light from LED is incident on living tissue, it is mainly absorbed by tissues and

arteries. Figure 1b shows light absorption from light source (LED) to receiver (PD) and

resultant PPG waveform which represents a quasiperiodic signal [11]. It is clear from

Fig. 1b that waveform is composed mainly of non-pulsatile or DC component and pul-

satile or AC component. The DC component corresponds to average or steady blood

volume of both arterial and venous blood. The AC component refers to changes in blood

volume during systole and diastole phase [10]. Changes in blood volume can be used to

calculate the average heart rate (HR) which is one of the major applications of PPG among

others as mentioned above. However, PPG has one distinct advantage over other HR cal-

culation modalities like phonocardiography (PCG), electrocardiography (ECG), etc. as

it does not require any specific technique to attach sensors at pre-defined positions in

the body [12]. In fact, PPG can be collected from the earlobe, finger, or wrist [13]. This

ease-of-use has made PPG attractive to calculate HR during exercise and other physical

activities.

During physical activity, PPG channels (channels which are used for HR calculation)

and motion channels (acceleration (ACC) channels) become correlated. Hence, PPG

channels are directly affected due to noise contents added due to ACC channels. How-

ever, these noise contents are different from other noises like environment noise as they

have high amplitude and are able to alter the signal morphology, hence changing its spec-

tral contents. These special types of noise contents which arise due to physical activity

are known as motion artifacts (MAs). Moreover, MAs can add contents in which spec-

tral contents may overlap or become too close to actual HR. Figures 2a, b and 3a, b show

the effect of MAs on a dual channel PPG signals. In Fig. 2a, the person is at rest or mov-

ing slowly. The peaks in both PPG channels represent the actual HR. But in Fig. 2b, the

person is either doing exercise or moving using some energy and the major spectral peak

Fig. 1 a Transmittance and reflectance type PPG [10]. b Absorption of light in tissue [10]
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Fig. 2 An example of clean PPG vs PPG affected by MAs

in PPG1 and a minor peak in PPG2 represent the actual heart rate. In Fig. 3a, one of the

minor peaks in PPG1 represents the actual heart rate. But PPG2 does not have a single

peak which could represent the actual heart rate. Moreover, MAs in ACC channels appear

directly in PPG channels. Finally, in Fig. 3b, both channels are devoid of peaks which

could represent the actual heart rate. Moreover, both PPG channels in Figs. 2b and 3a, b

are affected differently due to the intensity and type of exercise that the person was doing.

Due to high probability of proximity of HR andMA spectral peaks and spectral peak ran-

domness, removal of MAs is the single most important preprocessing step in classical

signal processing to calculate HR calculation from PPG.
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Fig. 3 An example showing PPG affected strongly by MAs
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In literature, PPG signals are not used to calculate HR directly but in fact, HR calcu-

lation is divided into phases like pre-filtering, MA removal, peak detection, and peak

tracking. However, we will address the problem in two distinct stages, i.e., pre-filtering

and peak tracking where pre-filtering is composed of noise and MA removal and peak

tracking is consisted of peak detection and tracking. A general system which can be used

to analyze the PPG for heart rate estimation and tracking is shown in Fig. 4. In the begin-

ning, PPG and ACC signals are passed through a MA removal and filtering stage which

cleans the signal to make it fit for processing in the tracking stage and we have the final

heart rates from tracking stage.

Adaptive filtering complemented by other preprocessing techniques and multi-

resolution decomposition are dominant approaches used to pre-filter the signal. After

the signal is made comparatively motion artifact (noise(s)) free, it is fed to the tracking

algorithm which uses signal properties to track HR.

The article consists of 5 sections. Given below in the “Datasets” section are

details of datasets used by researchers to develop and quantify their research find-

ings. After datasets, MA removal using pre-filtering techniques of adaptive filtering

and multi-resolution decomposition are discussed, followed by the trackers in the

“Methods” section. A detailed discussion about the findings of review is presented in the

“Discussion” section. The “Conclusion” section concludes the review.

2 Datasets

Datasets being used in the PPG research are both private as well as public in nature.

They have been recorded from healthy as well as critically ill persons using variety of

equipments. A brief introduction of more popular datasets is given below.

2.1 IEEE Signal Processing Cup (SPC)

IEEE SPC [14] is the first publicly available PPG HR dataset which is labeled as well. It

is divided into three parts. The first chunk is composed of 12 training signals uploaded

in August 2014. Another training signal and 10 test signals were uploaded in January

Fig. 4 A general system for heart rate estimation and tracking
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2015. The aim of uploading this dataset was a competition for HR calculation. All training

data (12+1) is composed of 6 channels. The first channel is an ECG reference, next two

are PPG-based signals, and the final three signals are acceleration (ACC) signals along x,

y, and z axes. Test data (10 signals) is composed of five channels in which the first two

channels are PPG and the three additional channels are ACC signals [14]. Reference ECG

and ground truth are provided separately. All signals whether ECG, PPG, and ACC are

sampled at 125 Hz using green LEDs which uses a wavelength of 515 nm. There are two

types of exercise patterns reported which are given below

TYPE01 : rest (30 s) − 8 km/h (1 min) − 15 km/h (1 min) − 8 km/h (1 min) −

15 km/h (1min) − rest (30 s)

TYPE02 : rest (30 s) − 6 km/h (1 min) − 12 km/h (1 min) − 6 km/h (1 min) −

12 km/h (1min) − rest (30 s)

Type01 exercise generally refers to whole body motion like running, jogging, etc. Type02

are exercises which usually involve forehand and wrist motion. Because of public avail-

ability, this dataset is used by researchers as a reference for HR estimation (MA removal

and peak tracking ) along side the private datasets.

2.2 Chon Lab dataset

Chon Lab dataset is a private dataset which was recorded in Chon Labs using equipment

(pulse oximeter and accelerometer) developed at the same lab [15]. It was gathered from

10 healthy persons using a forehead band. Both PPG and ACC signals were recorded

at red and infrared wavelengths using sampling frequency of 80 Hz. The reference ECG

was at much higher sampling frequency of 400 Hz recorded from the chest. Subjects

performed walking, jogging, and running for 9 min followed by 1-min random arbitrary

motion [15].

2.3 IEEE TBME Respiratory Rate Benchmark dataset

The IEEE TBME dataset is a dataset composed of capnometry (25 Hz) and PPG (100 Hz)

signals. Both capnometry and PPG signals were recorded using S/5 Collect software using

sampling frequency of 300 Hz [16]. It has 8 min, raw PPG signals for 42 persons. PPG

pulse and artifacts are labeled. This dataset is basically a respiration dataset, but it also

contains ECG and HR data. This dataset was first appeared in research work conducted

by Karlen et al. [16].

2.4 BIDMC PPG and Respiration dataset

The BIDMC PPG and Respiration dataset is different from usual datasets as it was

acquired from critically ill patients at the Beth Israel Deaconess Medical Centre, USA.

The 53 annotated recordings are each 8 min long. PPG, impedance respiratory signal, and

ECG are sampled at 125 Hz. HR, respiratory rate (RR), and blood oxygen saturation level

(SpO2) are all sampled at 1 Hz. This dataset is available in three different formats, i.e.,

WFDB (WaveForm DataBase), CSV (comma-separated-value), and Matlab (R) formats.

Pimentel et al. [17] used this dataset to estimate RR.

2.5 Synthetic dataset

Synthetic dataset is basically output of different computer algorithms which take baseline

wander (BW), amplitude modulation (AM), or frequency modulation (FM) as input.
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This dataset is a collection of ECG and PPG signals. In order to make the dataset more

realistic, it was implemented for a range of HRs and RRs. Charlton et al. [18] introduced

this dataset. The total number of ECG and PPG signals is 192.

Among the datasets discussed above, IEEE SPC and Chon Lab datasets are created

solely for purposes of HR tracking from PPG signals. While IEEE SPC is the most famous

public dataset for HR tracking and is usually used to quantify the performance of any

HR calculation technique, Chon Lab dataset on the other hand is private in nature. IEEE

TBME dataset and BIDMC PPG dataset are basically for RR calculation, and researchers

usually use it for RR only [16, 19]. However, as heart rates are also available, so they can be

used for quantification of technique for heart rate calculation as well. But a recent trend

is to use these datasets for other classifications like personal authentication as reported

in works [20, 21]. All the datasets mentioned till now are collected from real persons.

However, Synthetic dataset is a computer-generated dataset which was created for

purpose of algorithm testing.

3 Methods

As mentioned earlier, PPG analysis is divided into MA removal and HR tracking. The

details of both stages will be discussed separately.

3.1 Motion artifact (MA) removal

As many MA removal techniques are proposed over years, we would like to discuss the

findings by further categorizing techniques into adaptive filtering, multi-resolution, and

other techniques.

3.1.1 Adaptive filtering-based preprocessing

In signal processing applications, signals are pre-filtered to make them suitable for the

desired application. Usually, the noise we want to remove have spectral contents which

does not overlap with signal contents. In such cases, static filters (in which filter coeffi-

cients remain constant) can be used. However, if spectral contents of noise overlap with

signal or we have little or no information regarding the noise, then static filters cannot be

used and we have to consider the adaptive filters. Adaptive filters are of different types

but the configuration which is usually used in PPG is shown in Fig. 5.

These types of filters are known as least mean square (LMS) filters, and they are

named after the error they reduce. For these types of adaptive filters, we need a

Fig. 5 An example least mean square (LMS) filter
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reference signal. In PPG processing, we have ACC signals as noise reference. In com-

paratively earlier work, Chan and Zhang [22] used adaptive filtering to remove MAs.

The authors quantified the performance of adaptive filtering by comparing correlation

between unfiltered PPG and noise versus unfiltered PPG and output of LMS filter.

Results showed that correlation between PPG and uncorrelated output of adaptive fil-

ter was improved which showed effectiveness of using adaptive filtering to remove noise

from PPG.

Comtois and Mendelson in their work [23] proved that tri-axis ACC data can be used

an input for MA removal and HR calculation, aside from SpO2 calculation. For their

research, the authors collected PPG and ACC signals from the forehead. In similar work,

Kim et al. [24] put forward an idea that signal collected from the forehead had fewer MAs

than signals collected from other body parts and hence HR collected from the forehead

was more reliable. Pengfei et al. [25] designed a wrist band type PPG sensor in which tri-

axis Micro Electro-Mechanical Systems (MEMS) ACC sensors were used and put forth

the idea that two ACC axis can be used for the reduction of MAs using fast transversal

recursive least squares filter (FTRLSF) algorithm. Fast transversal filter (FTF) was used for

fast recovery of clean PPG. Fallet and Vesin [26, 27] made different combinations of PPG

and ACC signals to track HR. In these works [26, 27], they used normalized LMS (NLMS),

a variant of classical LMS, to remove the motion-related noise. Mashhadi et al. [28] used

all three ACC signals as reference to remove noise from two PPG signals. However, ACC

signals were not fed directly to adaptive filters but first, they were decomposed using sin-

gular value decomposition (SVD)-based technique to generate reference MA signals. The

approach used by Ahamed and Islam [29] is based on information from tri-acceleration

signals. However, only signal having the highest band power in frequency range 0.45–2Hz

was considered for reference generation. The authors observed that ACC signal with the

highest power in mentioned frequency range had peaks which were correlated with the

highest peak in PPG signal in the same range.

Wood and Asada [30] designed a jogger-specific MA removal system in which PPG was

sampled using a finger-worn ring ACC sensor. They modeled MA removal problem as

system identification problem usingWindrow adaptive noise canceler using finite impulse

response (FIR) filter [30]. They extended their work to design FIR filter using Laguerre

series and concluded that Laguerre-based FIR filter output closely resembled clean PPG

signal [31]. In a couple of recent studies [32–35], the authors have used different variants

of adaptive filters to suppress MAs. The authors in [32] removed artifacts using NLMS

filter as this filter has low computational complexity and complex NLMS (CNLMS) was

used in [34] to remove artifacts in cascaded format. Researchers in [33, 35] complemented

their adaptive filters with principal component analysis (PCA) and Newton adaptation.

The studies discussed so far have used the original ACC signals as noise reference in one

way or the other. Noise can be generated synthetically, and researchers like Ram et al.

[36–38] and Yousafi et al. [39, 40] have used synthetically generated noise in their

research. Yousefi et al. [39] first focused on the fundamental frequency present in the

PPG and used comb filter to generate reference. Ram et al. [36, 38] generated noise

reference by setting coefficients of cardiac and respiratory components to zero in FFT-

based spectrum. However, the approach used in both researches [37, 40] was similar

and based on generation of noise using SVD, independent component analysis (ICA),

and FFT.
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Another approach of MA removal is to model them using polynomials. In studies like

[41–43], the authors modeledMAs present in ACC signals using non-linear second-order

Volterra filters. In Eq. 1, signal x is modeled as non-linear second-order Volterra filter.

M−1
∑

i=0

ai (t)x (k − i)

︸ ︷︷ ︸

term 1

+

M−1
∑

i=0

M−1
∑

j=1

bi,j (t)x (k − 1)x (k − j)

︸ ︷︷ ︸

term 2

(1)

In Eq. 1, term 1 models signal x linearly while term 2 shows the non-linear part of the

equation.

The approach in [41] was different from the other researches in that first it used cross

bicoherence to detect MAs in PPG. A comparatively less used approach is to use Kalman

filtering (KF) to suppress or remove MAs. In [44], Frigo et al. used KF to suppress the

MAs but instead of using conventional KF only, they introduced the smoother version

with constant step.

As discussed above, adaptive filtering appears as a powerful technique to remove MAs

because of a variety of available implementations, ease of use, and compatibility with other

methods.

3.1.2 Signal decomposition-basedMA removal

As discussed earlier, MAs can change the morphology of PPG signals in such a way that

spectral contents related withMAs canmask the spectral contents representing the actual

HR contents as shown in Fig. 3b. Removing artifacts in such cases becomes a challenging

problem. Signal decomposition is another, yet useful methodology to remove the MAs

aside from adaptive filtering. In signal decomposition, the first signal is represented at

multiple time and frequency resolutions using any suitable technique. Then, signal resolu-

tions which are more related toMAs/noise(s) are removed and the signal is reconstructed

using the remaining resolutions. In essence, we have a new yet clean representation of

signal which can be used for further processing.

Wavelets are famous multi-resolution filters which are in use owing to functions, they

make available for use in different applications. In one of such works [45], Kasambe

and Rathor used very large-scale integration (VLSI)-based wavelet denoising to remove

MAs. In studies [46–50], the authors used wavelet transform for PPG denoising. The

use of wavelets was generally limited to denoising [46–50], and researches usually recon-

structed PPG signal again which was used for HR estimation. However, Rojano et al. [47]

went on to compare wavelet with Singular Value Decomposition of the Time Frequency

Distribution (SVDTFD) and Ensemble Empirical Mode Decomposition (EEMD). They

reported that DWT falls between SVDTFD and EEMD and is better than EEMD but lags

behind SVDTFD.

Empirical Mode Decomposition (EMD) is another signal decomposition technique

which is similar in working with wavelets with the difference that instead of using filters

at various cutoff, it operates in signal domain. It resolves signal into multiple resolutions

by considering minima and maxima in signal. Zhang et al. [51] and Emroz et al. [52] both

employed EEMD for HR detection. EEMD is an updated version of EMD which is known

to produce intrinsic mode functions (IMFs) which have better physical interpretation

[53, 54]. Tang et al. [55] combined EMD with wavelet to provide better denoising. The
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authors concluded that employment of EMD at the first stage enhanced the signal quality

which when de-noised by wavelet enhanced signal quality to extend that was much better

for noise removal.

The techniques discussed so far operate on signal itself, but there are techniques

which decompose signal using mathematical operations. Among these techniques are

techniques like SVD, singular spectrum analysis (SSA), variational mode decomposi-

tion (VMD), sparse signal recovery (SSR), etc. In this section, we have restricted our

discussion to SVD, PCA, ICA and SSR only.

SVD is a technique which converts a 1-D signal to matrix and decomposes it using

relation 2

Amxn = UmxrSrxrV
T
rxn (2)

In the above relation, both U and V are orthogonal matrices containing left and right

singular vectors. S is a diagonal matrix and its diagonal values contain singular values

S =

⎡

⎢
⎣

Ss 0 0

0 Ss,n 0

0 0 Sn

⎤

⎥
⎦

In the above matrix, Ss corresponds to singular values related to clean signal, Ss,n are

noisy singular value, and Sn are noise only values. But removing Sn and suppressing Ss,n

systematically, signal can be de-noised. In one of the earlier attempts, Reddy and Kumar

[56] and Lee et al. [57] de-noised the PPG signal using SVD. Biagetti et al. [58] comple-

mented SVDwith Hankel transform to removeMAs. Hankel transform is a closely related

transform of the Fourier transform especially in case of radially symmetric functions. The

relationship between Fourier and Hankel is given in Eq. 3

F (k) =

∫∫

f (r)eik.r dr = 2π

∞∫

0

f (r)J0 (kr)rdr (3)

where f (r) is radially symmetric function and J0 (kr) is zero-order Bessel’s function.

PCA and ICA are closely related techniques and also work similar to SVD to remove

MAs. Both ICA and PCA are similar as both try to remove correlation. While PCA keeps

higher order statistics but ICA tries to remove them as well. Kim and Yoo [59] made use

of ICA to remove MAs.

Ghosal et al. [60] compared ICA and PCA and found that both ICA and PCA have com-

parable performance in signal reconstruction but PCA is better for noise reduction for

SNR above 25 dB. Galli et al. [61, 62] used maximal incorrelation between PCAs gener-

ated from PPG and ACC. In [62], the authors used PCA which have minimal correlation

with ACC but they refined the criteria and used PCAs generated from all ACC signals

and had incorrelation less than the threshold.

Sparse signal recovery (SSR) is another decomposing technique which is gaining pop-

ularity in recent years in signal processing domain. In SSR, signal is reconstructed using

sparsity assumption, i.e., signal has limited number of non-zero components in its spec-

tra. SSR performance is degraded if the signal is not sparse. Sparsity can be achieved using

any signal decomposition technique like PCA, etc. Karna and Kumar used PCA for MA

reduction during SSR [63].
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In the following discussion, we have chosen research works which rely on SSA. In

SSA, the signal passes through stages namely embedding, SVD decomposition, group-

ing, and reconstruction [64]. During the embedding stage, each signal is converted into

a L-trajectory matrix which is then decomposed to linearly independent rank 1 matrices

using SVD. Rank 1 matrices are classified into groups having the same or harmonically

related oscillatory components. Groups which have frequency components inside spec-

ified range are chosen and signal is reconstructed again. The reconstructed signal after

SSA generally has low artifacts. Ziling Zhang utilized SSR in a number of works [64, 65]

where at first SSA was performed followed by taking temporal difference of signals. The

author observed that the first- and second-order difference maintained the fundamen-

tal frequency and harmonics. The difference signal was subsequently used to perform

SSR. In [64, 65], the authors utilized only the single ACC signal for reconstruction. How-

ever, researchers in [66, 67] included all ACC signals as they observed that additional

information from other channels was helpful in reducing MAs.

As signal decomposition-based techniques have been developed over a period of time

and as such are able to remove MAs both in stationary and quasiperiodic signals.

3.1.3 Other techniques

Aside from adaptive filtering- and signal decomposition-based MA removal, methods

based on signal statistics, spectrum subtraction, Wiener filtering, and heuristics, etc. are

in wide use as well. Hayashi and Ooi [68] converted tri-axis ACC into exercise intensity

and based on mean and standard deviation of exercise intensity detected and removed

MAs by scaling the spectrogram using Gaussian distribution. Dubey et al. [69] considered

PPG and ACC signals to be quasiperiodic and hence can be modeled by finite harmonic

sum model (HSUM). The joint HSUM was used to remove MA frequency from HR

frequency. Schack et al. [70] reduced the MAs by summing the squared spectra. This

summation enhanced the common spectral components in PPG and reduced the MA-

related components. Harmonically related components of MAs were further reduced by

Gaussian bandpass filtering.

A very simple, yet, useful approach is to subtract the spectra of ACC from PPG

spectra. However, subtracting ACC spectra from PPG spectra results in many nega-

tive peaks in resultant spectra. Moreover, at times, spectral components related to heart

rate may either be totally removed or suppressed significantly. Nonetheless, this subtrac-

tion approach was used in number of works like [66, 71–74]. Researcher used different

methodologies to deal with the abovementioned problems. While Zhu et al. [71] set all

negative peaks to zero after subtraction, [72] used heuristics to counter their negative

peaks. Nowak et al. [73] had applied non-negative matrix factorization before apply-

ing subtraction, and Sun et al. [74] introduced a new methodology named as Grid-less

Spectral Estimation (GRESS) which is basically a sparsity-based method for spectral esti-

mation. Mashhadi et al. [75] introduced a novel method of spectral division in which PPG

spectra are divided by ACC spectra. The author had opinion that this method is useful as

it automatically scales PPG spectra and has linear time complexity.

Wiener filter is another powerful technique to remove motion-related artifacts from

PPG which was employed by [76–78]. Wiener filter is a filtering technique used in digital

signal processing to enhance SNR. The formulation used by Temko et al. [76] is given

below
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W (f ) =
PXX (f )

PXX (f ) + PNN (f )
(4)

In Eq. 4, PXX (f ) is the power spectrum of noisy PPG and PNN (f ) is the spectrum of ACC

signals.

By studying the signal properties, one can introduce heuristics to remove motion-

related components. This heuristical approach has been used in studies like [79–81]. A

summary of the different MA removal techniques is given in Table 1. From Table 1, it

is apparent that the authors generally used both PPG and all ACC signals which were

first subsampled and passed through a bandpass filter [0.4–5]. Then, resultant subsam-

pled and filtered signals were cleansed using techniques discussed above. Sometimes, the

technique developed had specific requirements like ring type sensor in the case of Wood

and Harry [30] or it used some specific model like the exercise model as in the case of

Biagetti et al. [58].

From the discussion detailed above, it can be inferred that MAs introduce non-

stationarity in cyclo-stationary PPG signals. However, techniques based on adaptive

filtering, signal decomposition, heuristics, and other methods have been developed to the

extent that they can remove MAs with satisfactory results.

3.2 Heart rate tracking

In PPG-based HR tracking, detection and tracking of HR is the complementary part.

There are many approaches to track the HR and generally they use signal properties,

heuristics, and features extracted from signal. We have categorized these techniques into

signal decomposition, signal subspace, signal processing, and machine learning-based

methods. The trackers are named as signal decomposition-based tracker (SDT), signal

subspace-based trackers (SSTs), signal processing-based trackers (SPT), and machine

learning-based trackers (MLT) based on the properties they are using. These tracking

methods are discussed below starting with signal decomposition-based trackers.

3.2.1 SDT

SDT is a tracker which uses high-level signal decomposition inMA removal stage. Among

decomposition techniques, only trackers based on SSR, EMD, and short-term Fourier

transform (STFT) are discussed here. SSR was used by Zhang et al. in number of works

[64–66]. The ground work was conducted in [64] in which the author used a single ACC

signal as noise reference. TROIKA, as a full-fledge framework was presented in [65].

TROIKA is based on SSA, temporal difference of reconstructed signal, SSR, spectrum

estimation, and spectral peak tracking with verification. These processing steps were

grouped together in initialization, peak selection, and peak verification stages. Another

framework closely related to TROIKA is Joint Sparse Spectrum Reconstruction (JOSS)

[66]. Instead of utilizing single ACC signal as reference, it used all three ACC signals.

Moreover, the authors included Smoother algorithm [82] to predict the value of HR when

HR change was greater than 10 in the peak verification stage. It added peak discovery as

the final stage during which Smoother algorithm was again used with wider search area

to detect macro-trend. The authors reported the reduction of error from TROIKA [65]

to JOSS [66].

EMD is a technique which operates in signal domain to remove MAs for better HR

tracking. However, EEMD and Complex EEMD (CEEMD) are preferred over EMD
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because of producing IMFs with better physical interpretations. CEEMD was used in

research work [51] where authors concluded that after denoising (+MA removal) by

CEEMD, signal was made clean to extend that simple rules based on limited HR change

(≤ 10) between consecutive windows and two spectral peaks were enough to tracking

HR. Among both peaks which ever has HR change from previous peak less than a defined

reference was considered as final peak. If none of the peak had HR change less than the

reference, then the final HR was based on direction and magnitude of error. EEMD was

used by Emroz et al. [52], and they tracked HR changes from multiple sources including

EEMD decomposition, RLS filtering, time domain processing, and crude PPG using dif-

ferent sampling frequencies (25,125, 250, and 500 Hz). However, for tracking, technique

worked in progressive way and tested whether HR calculated from raw PPG was similar

to HR calculated from other sources. If yes, then PPG HR was considered as final. Other-

wise, HR from other sources (one at a time) was final. For different sampling frequencies,

the authors reported mean error of around 1 as shown in Table 2.

STFT is yet another powerful technique which decomposes the signals. However, it

does not generate new signals like EMD or SSA. It simply divides the given signal into

multiple time windows. By calculating FFT of each window, we can get useful informa-

tion regarding the change in frequency contents with time. STFT-based approaches were

adopted by [72, 83]. Work in [72] was composed of normalization, conditioning, and

masking of spectrogram to calculate the final HR. Spectrogram conditioning dealt with

the spectral subtraction of ACC from PPG and it used dynamic time warping. Final HRs

were based on the shortest path search problem. Insoo et al. [83] proposed a cost func-

tion to give score to PPG peaks based on normalized energy, closeness to motion, and

previous HR peaks. Finally, HRs are detected using a model based on previous peaks.

While work in Zhing and Jafari [72] evaluated their system performance on standard

TROIKA dataset [65], Insoo et al. created their own dataset and used it to report and eval-

uate their system performance. Wavelet and VMD are other decomposition techniques

which can remove MAs so that simple heuristics-based algorithm can be used to calcu-

late HR. These approaches were adopted in [46, 84] where authors concluded that HRs

were tracked robustly.

3.2.2 SST

SSTs are based on orthogonality condition which states that spectral space related to HR

is orthogonal to spectral space which contains MAs. Mathematically, this condition is

represented in form of Eq. 5

FHR.FMA = 0 (5)

where FHR and FMA are HR andMA spectra, respectively. The operator ‘.’ is dot product of

both spectra and it is zero when FHR and FMA spectra are normal to each other. Closest-

subspace algorithm for reducing motion artifact (CARMA) and spectral filter algorithm

for MAs and HR reconstruction (SpaMA) are two of the most famous SSTs. CARMA,

presented by Baca et al. [85], used Hankel transform to model heart and motion-related

spectra. Then, it removedmotion-related spectra from noisy PPG spectra employing SVD

decomposition as SVD gives output in terms of orthonormal components. Afterwards,

a tracking model was introduced which the authors claimed to track the HR even in the

cases when initially tracker was off track. Biagetti et al. [58] updated the original CARMA
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Table 2 An overview of HR tracking techniques

Tracker Classifier Tracking
method

HR Stages Specialty Error1 Error2

TROIKA [65],
2015 and
JOSS
[66],2015

– SDT Initialization,
peak selection,
peak verification,
and Smoother
algo. (JOSS)

Search areas for F0 and F1
in PPG spectra

2.42 and
1.28

1.82 and
1.01

CC [51], 2015 – SDT Heuristic Two spectral peaks in PPG
and considers direction
and direction of error

1.83 1.4

Emroz et al.
[52], 2016

– SDT Comparison of
heart rate from
multiple (4)
sources

Building of HR space,
comparison of two
sources for HRC at a time,
and fine tuning

1.02 –

SpaMa [80],
2015 and
SpaMa Plus
[86], 2018

CNN SST Heuristic and
trained CNN
using 4 channel
images
converted from
signals

Downsampling of PPG
and ACC. Three spectral
peaks in PPG and ACC and
iterative selection of
spectral peak and
end-to-end learning

1.93 and
3.56

2.07 and
–

CARMA [85],
2015

– SST Heart rate
modeling using
prior knowledge

Downsampling of PPG
and ACC. Three spectral
peaks in PPG and ACC and
iterative selection of
spectral peak

2.26 3.63

HSUM [69],
2018

– SST PPG and ACC
modeling using
HSUM

Automatic detection of
heart rate after motion
modeling

0.74 0.83

Schack et al.
[70], 2017

– SPT Maximization of
cost function

Downsampling of PPG
and ACC signals, cross
correlation, and Gaussian
filtering, cost
function-based tracking

1.32 –

Torres et al.
[87], 2016

– SPT HR selection,
verification, and
BW adjustment

Computationally less
expensive hence suited
for real-time application

1.36 1.05

Timko et al.
[76], 2015

– SPT Phase Vocoder &
HR history
tracking and
smoothing

A few parameters to tune
hence is useful in real time

1.05 2.23

Galli et al.
[61], 2018

– SPT Prediction,
estimation, and
update

Use of KF to calculate
heart rates from DFT

2.45 2.21

Rocha et al.
[96], 2020

DNN MLT Two layers of
binary CNN and
binary LSTM

FPGA implementation of
binary Cornet

3.75 –

Zhu et al.
[71], 2019

NN MLT NN modeling,
smoothing, and
linear regression

Polynomial approximation
of false heart rate

1.03 0.79

Roy et al.
[101], 2018

MLP-
ANN

MLT Trained NN using
features
generated by
auto encoder
from PCA

Generate HR template
using clean PPG

1.47 1.1

Biswas et al.
[20], 2019

DNN MLT CNN extracted
features used to
LSTM

Two layers of CNN and
LSTM

1.96 1.47

Sun et al.
[74], 2016

SVM MLT SVM trained on
peak amplitude
and peak-to-peak
separation

– 1.78 1.57
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technique in another work where they introduced the exercise models to further enhance

its capabilities to track HRs. SpaMA was developed by authors [80] who claimed that

clean PPG could be constructed using just four spectral peaks. Out of four peaks, three

peaks from PPG spectra and a major peak from acceleration spectrum are selected. The

reconstructed clean PPG signal can be used for HR tracking. During the technique, first,

both PPG and acceleration signals were downsampled and power spectral density was cal-

culated. Then, three peaks from PPG and a single peak from acceleration were chosen and

compared. If the output of the comparison was positive, then discard the first peak as it is

corrupted and HR is the frequency associated with the second peak. If both first and sec-

ond were corrupted, then HR was the third frequency. If all three peaks were corrupted,

HR was HR of the previous window for real-time application and HRwas calculated using

cubic spline interpolation for offline application. Aside from HR calculation, the authors

reconstructed the PPG using sample amplitude, phase, and frequency information which

was used for HR variability. Reiss et al. [86] extended the algorithm based on the fact that

HR from the last window was not so robust. The authors then tracked the HR using mean

of the last six windows whenHRwas uncertain. This new tracker is known as SpaMa plus.

Cross bicoherence test [41] and Harmonic sum (HSUM) [69] are two measures which

consider PPG and ACC signals occur in spaces which are normal to each other. In their

work [41], the authors observed that significant bicoherence was present for highly cor-

related PPG and ACC data segments. These contaminated signal segments were cleaned

using second-order Voltera filter. The cleansed segments were fed to Eigenvalue method

and finally HRs were calculated using a model. Dubey et al. [69] first employed HSUM

to model ACC signals from which frequencies related to MAs were calculated. Another

HSUM was developed for PPG which was basically a joint HSUM and contains frequen-

cies corresponding to both ACC andHR. Since frequencies related tomotionwere already

determined using ACC HSUM, the remaining frequencies corresponded to heart rate.

All SSTs except SpaMa reported their system performance on dataset of IEEE Sig-

nal Processing Cup containing training data of 12 subjects [65]. SpaMa used complete

TROIKA and Chon Lab datasets [15]. The authors concluded that SpaMa had reported

the least error among its competitors.

3.2.3 SPT

SPT are the ones which use classical signal processing techniques like filtering, corre-

lation, etc. Schack et al. [70] introduced a tracker which they claimed to be useful for

real-time applications as it used very less computational resources. During processing,

both PPG and ACC signals were filtered using FIR bandpass filter with 0.5–6 Hz and sub-

sequently downsampled to 25 Hz. The vectors composed of normalized autocorrelation

of both PPG channels and a vector of cross correlation of both PPG were calculated. The

squared spectra of these vectors were added together to enhance the common compo-

nents in PPG. The resultant squared spectrum was then filtered using a Gaussian band

stop filter. The parameters of bandstop were controlled using maximum energy values in

ACC signals. Finally, HR was tracked using a cost function dependent on least square fit

of the last three HRs.

Torres et al. [87] and Zhu and Du [67] both used bandwidth adjustment for HR calcu-

lation. Torres et al. [87] approach was basically a heuristically based approach composed

of peak selection and verification stages which iteratively changed the bandwidth of
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Blackman Harris window filter. Zhu and Du [67] selected two peaks from cleansed PPG

signal and constructed a 0.32 bandwidth filters around peaks. HR was calculated by con-

sidering weighted heart rate of both channels which was then passed through moving

average filter (average of last 4 and future 4 heart rates plus present) and smoother algo-

rithm ( for start (first five) and tail (last four)). Fallet and Vesin used adaptive notch

filtering in both of their studies to segregate the HR fromMAs [26, 27].

HR modeling is yet another approach to calculate and track HR which appeared in

number of research works. While [44, 61, 62] modeled HR using Kalman filtering which

passes through prediction, estimation, and update stages, Ahamed and Islam [29] devel-

oped an empirical model for estimation. The estimation was then passed through mean

filter and a smoother same as [67]. Phase coder is a technique to enhance the resolution

of FFT by transforming to Polar coordinates. Phase coder was used in works conducted

by [34, 76] where it was complemented by simple heuristics and TROIKA [65] for HR cal-

culation, respectively. Viterbi algorithm (VA) is a technique to explore the hidden states

in a sequence. It was exploited by [73] where it was used along side particle filtering [88].

Particle filtering is self appeared to calculate HR. Phase vocoder (PV) and VA appeared

together in a work [78] to calculate HR tracking, respectively.

Aside from classical signal processing techniques, adaptive filtering can also remove

artifacts to such an extent that HR tracking can be done directly. Adaptive filtering is

a powerful technique to remove noise/MAs from noisy PPG using ACC signal/signals.

Strong heuristics can be created to estimate the HR while these heuristics may be empiri-

cal/observation based. Heuristics may be simple/complex based on proceeding noise/MA

algorithm. A number of authors have used adaptive filtering to first clean the PPG sig-

nals from which HR were calculated using either modeling or heuristics. Heuristic-based

trackers appeared in number of studies like [33, 79, 89–95]. Pan et al. [89] employed

HR modeling along with heuristics to reduce the error. Mashhadi et al. [75], instead of

using heuristics, employed lazy tracker which was basically an averaging tracker. The

strongest motivation in the development of signal processing-based tracker is to develop

such a tracker which has low computational cost and as such can be used for real-

time processing. The trackers discussed above generally fulfill this criterion, but they

also have reported very small absolute errors and as such are very robust in nature

as well.

3.2.4 MLT

Machine learning is a comparatively new approach to solve signal and image processing-

related problems. During this approach, features are selected from signal. These features

show unique characteristics of the signal. Based on the selected features, classifiers are

trained using these features with known labels. Known labels are for positive (correct) and

negative (incorrect) examples. Classification accuracy generally depends on the number

of examples provided, and it increases as more examples are provided. Once a classifier

is trained, an unlabeled signal is input to classifier which gives the label to signal. How-

ever, in case of biomedical, examples are usually limited. Despite this limitation, machine

learning is gaining popularity in recent years. Among notable classifiers used for HR

estimation are artificial neural networks (ANN), convolutional neural networks (CNN),

long-short term memory (LSTM), support vector machine (SVM), random forest (RF),

etc. The notable studies which used these classifiers are [20, 42, 71, 86, 96–101].
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The system introduced by Roy et al. [101] was a personalized system, and it focused on

single PPG beat instead of the whole PPG signal. During the training phase, two multi-

layer perceptron-ANN (MLP-ANN) were trained. One of them accessed the quality of

PPG as being clean or noisy and this ANN also generated a reference beat template.

Input to other ANN are set of features and weight matrix. The features are generated

by auto encoder neural network (AE-NN) after PPG beat matrix is updated after PCA

reconstruction. The updated PPG beat matrix is optimized using Particle Swarm Opti-

mization (PSO) resulting in weight matrix which is used as second input to NN. This

second ANN uses PSO and AE-NN during the training phase but it deploys only AE-

NN during test. The output of this second ANN is another weight matrix which rectified

the noisy beats. Since beats vary in length, networks are trained in such a way that each

incoming beat is truncated or extrapolated based on template beats. Another work which

uses similar setting for processing is reported in MoDTRAP [100]. This system uses

EEMD and LSTM for reference beat generation. However, VMD is used for heart rate

tracking. The author suggests that VMD is able to extract heart rate even when heart rate

is totally suppressed in the spectrum. Both of these systems reported a very high clas-

sification for heart rate tracking and respiration rate both a private as well as on SPC11

dataset.

Reiss et al. [86] and Biswas et al. [20] both used CNN and CNN and LSTM, respec-

tively, for PPG-based heart rate tracking. CNN is basically a deep learning approach and

image as well as signal can be given as input to CNN. Generally, images are given as input

and network is trained. Since training period is usually extended, a number of CNN-

trained networks are available online like Densely Connected Convolutional Networks

[102], ImageNet [103], and Inception [104]. If, any of these off-the-shelf solutions is to

be used, then signal must be converted to image [105]. However, if it is required that sig-

nal must be retained in original form due to inherent signal properties, then CNN has

a unique capability that it can be used as feature extractor as well. In such a case, CNN

is complemented by another network like LSTM. Since heart rate tracking is basically a

regression problem, CNN and other classifier can be implemented in such a way that they

can handle regression problem. LSTM being a memory module can model HR changes

as a sequential process. Reiss et al. [86] introduced the use of CNN as an approach alter-

native to classical approaches for PPG-based HR tracking. Researchers concluded that it

could remove or at least reduce the parameters used in classical approaches. The authors

in Biswas [20], PPGnet [98], and PPnet [99] used PPG in its signal form unlike Reiss

where it was first converted to image using STFT. Here 1-D CNN was used as feature

extractor and the extracted feature were fed to LSTMwhich tracked the heart rate. While

PPGnet is only a heart rate tracker, PPnet also gives diastolic blood pressure (DBP) and

systolic blood pressure (SBP). Tracker introduced by Biswas was used for personal iden-

tification as well. All of these studies reported small average error. The main drawback

of using the machine learning is the computational load associated with this approach.

This computational load is especially very high during training phase. A number of recent

studies [96, 97] has focused on this problem, and instead of using real number for bias and

weight, they have trained and evaluated their system performance using binary weights

and biases. The resulting system is named as Binary Cornet (b-Cornet) which uses binary

CNN (b-CNN) and binary LSTM (b-LSTM). The studies showed that they had results

which are comparable to state-of-art.



Ismail et al. EURASIP Journal on Advances in Signal Processing          (2021) 2021:5 Page 19 of 27

SVM is a linear classifier which is used for linear/non-linear classification and is gen-

erally used in PPG-based HR tracking to classify the spectral peak, related with HR. Sun

et al. [74] and Xiang et al. [35] both trained their SVM empirically and did classification

based on spectral peak separation and spectral peak ratio. RF is yet another choice for

classification and was used by Yalan Ye et al. [42] and the author found it to be robust.

Zhu et al. [71] developed a model for variation but employed neural network and linear

regression for HR tracking.

Machine learning-based trackers suffer from limitation of input data for train-

ing purposes which is resource hungry phase. However, once a classifier is trained,

testing is generally fast. In case of PPG-based HR monitoring, data is more

scarce and TROIKA is one such publicly available downloadable source. However,

despite this scarcity, researchers have put forward systems which can track HR

robustly [35, 71].

From the discussion about trackers presented above, it can be inferred that different

trackers have been able to track heart rate both online and offline. A summary of all

trackers is presented in Table 3. Any trackers can be broadly categorized into machine

learning tracker (MLT) or non-machine leaning tracker (NMLT). While NMLT requires

preprocessing which limits the solution space to spectral range between 0.4 and 6 Hz,

these trackers generally use exercise model and ACC signals to decorrelate the heart rate

from MAs. The ability of NMLT to track in real time is dependent on model as SST can

be tailored to track in real time and SPT are designed to operate in real time. However,

all NMLT have been tailored for general solution and are not subject specific in nature.

On the other hand, MLT are dependent on training, and once trained, they are operated

in real time. These trackers do not limit the search space to general heart rate spectra

[0.4–6 Hz]. Moreover, they are subject specific and will track multiple biometric markers

simultaneously in future as shown [20].

From the detail discussion presented above in the “Methods” section, it is evident that

both preprocessing and HR tracking have become mature. One way is to heavily prepro-

cess the signal and track HR based on simple heuristics/modeling. The other way is to

shift the main work load in tracking phase. Both the tracks are producing results which

show their robustness and general trend towards error reduction.

Table 3 General properties of different HR tracking techniques

Tracker
type

Pre-
processing

Solution
space

Training Exercise model Decorrelation Real
time

Subject
specific

SDT Required 0.4–6 Hz No Required Spectral
subtraction, noise
modeling and
smoothing

Not Not

SST // // Parameter
training

Required Modeling of
exercise

Able to
track in
real time

//

SPT // // No Not specifically Spectral
resolution, filter
band width,
heuristics and
smoothing

Yes //

MLT Not
required

Not Yes Not required Not Yes Yes
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4 Discussion

From the discussion in the “Introduction” section, it can be inferred that PPG, a non-

invasive optical technology, can be used in different fields of life. The most important

clinical application of PPG being HR calculation and tracking. However, usage of PPG-

based HR tracking duringmotionmakes it attractive for persons duringmotion especially

athletes. But PPG signal changes itself significantly during motion which makes PPG

deems useless for direct HR calculation. However, a variety of methods have been devel-

oped over the years and the speed of development has accelerated especially after the

sharing of public dataset of IEEE SPC, 2015. After sharing, a significantly high number of

methods have been proposed for both domains of processing, i.e., MA removal and HR

tracking. The major contributions in both field are summarized in Tables 1 and 2.

Table 1 summarizes a selected portion of research works conducted to reduce theMAs.

An overview of Table 1 shows that PPG signals are usually filtered using bandpass filter

with cutoff frequencies in range of 0.4–5 Hz. This is due to fact that frequencies below

0.4 Hz in the PPG spectrum refer to energy contribution from DC or non-pulsatile com-

ponent of PPG signals. Also, frequencies above 5 Hz in spectrum related to heart rates

above 300 bpm. Usually heart rates rarely jump above 300 bpm even during high-intensity

exercises. Hence, PPG signals are usually processed in frequency range 0.4–5 Hz. Down-

sampling to lower frequency is often usedwith bandpass filtering to reduce computational

cost of algorithm and to make algorithm fit for real-time applications. Researchers have

used different combinations of PPG and ACC signals to detect and remove MAs. The

actual MA removal techniques include adaptive filtering; ACC modeling like Volterra,

etc.; multi-resolution signal decomposition like wavelet, etc.; matrix decomposition like

SVD, etc.; and others. All the techniques mentioned are able to remove MAs to the

extent that researcher deemed them fit for their tracking algorithm. However, some-

times, researchers have developed algorithms which needed additional requirements like

Pengefi et al. [25] which required additional reference or Levi [30] which was specifically

developed for Joggers. The dataset generally used for mentioned researches is IEEE SPC

2015, because it is a publicly available dataset and is labeled as well. The advantage of one

preprocessing technique over the other for MA removal cannot be established directly as

quantification measures are not available. Moreover, both PPG and acceleration signals

might be single channel or multi-channel inputs. However, techniques which use all the

information available, generally, have reduced errors (Error1 and Error2). This is due to

the fact that probability of a clean channel among the multi-channel PPG is high. How-

ever, processing multi-channel PPG and ACC takes time. A composite ACC signal can be

constructed directly from the relative intensities of ACC channels or it can be constructed

using major spectral peaks from all ACC channels. Finally, tracking is based on a single

yet relatively clean channel PPG and a composite ACC signal.

Table 2 shows the HR tracking techniques along with quantified results. The results

presented are for all types of trackers mentioned above, i.e., signal decomposition, signal

subspace, signal processing, andmachine learning based. The performance of these track-

ers is usually quantified using averaged absolute estimation errors, Error1 and Error2,

their standard deviation, Pearson’s correlation, and Bland-Altman’s (BA) plot. Error1 and

Error2 quantify overall performance of system including preprocessing and tracking as

there is no separate measure to quantify the performance of MA removal technique.

Error1 and Error2 are defined below
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Error1 =
1

W

W
∑

i=1

|BPMest (i) − BPMtrue (i)| (6)

Error2 =
1

W

W
∑

i=1

|BPMest (i) − BPMtrue (i)|

BPMtrue (i)
(7)

where BPMest (i),BPMtrue (i) represent estimated and ground truth in ith window,

respectively, andW is total number of time windows.

Pearson correlation (PC) and Bland-Altman both show how close the estimated heart

rate and ground truth are. PC is a well-known measure which varies between [0,1] where

high values show high correlation. Bland-Altman is a graphical representation which is

also used to show correlation. Figure 6 shows an example of PC graph and BA plot. The

results discussed in Table 2 are in terms of Error1 and Error2 as it is a general observation

that when Error1 and Error2 are reduced then other errors are reduced as well. Hence, the

following discussion will be focused only on Error1 and Error2. An overview of Table 2

shows that Error1 and Error2 are getting reduced with every new research for each cate-

gory. For example, TROIKA [65], published in 2015, one of major HR trackers, had errors

of 2.42 and 1.82 in comparison to Emroz et al. [52], 2016, which have 1.02 respectively.

Similarly, the error of 1.03 reported by Zhu et al. [71] is much less error reported by Biswas

et al. [20]. Moreover, the smallest error in each category is around 1 for the class type01

exercises [14]. But when the whole dataset is considered, then the error is relatively high

as shown by error of 1.93 and 3.56 by SpaMA [80] or 1.96 and 1.47 reported by [20]. This

is due to the fact that the whole dataset is composed of additional types of exercises. In

essence, techniques discussed above still need refinement to model types of exercise in

which the forehand and wrist are used extensively. Hence, applications can be built based

on additional hardware, if required, which are tailored to a specific type of motions.Meth-

ods mentioned in Table 2 can be directly compared in terms of mentioned errors, but they

lack comparison in terms of resources. Any method which is using any multi-resolution

decomposition/adaptive filtering will take more time than any heuristic method for MA

removal and HR tracking. Hence, all methods mentioned were generally developed for

offline processing except SPT and MLT. The development of real-time application poses

many challenges like computational load should be minimum and the tracker should not

be too much dependent on history and should be able to track even when it goes off-track

due to any reason. Reducing computational load is a challenge as low-resolution signal

will reduce useful information. But if signal is sampled at high frequency, then downsam-

pling to a very low frequency is challenging as design of such narrow band filters will be a

problem. Moreover, the advantage of sampling might be totally compromised if the signal

is downsampled to a very low frequency. Using tracking history is usually an advantage

but the tracker should be used to smooth the output rather then tune or control tracker

parameters.

A number of research works presented in the “Methods” section uses TROIKA dataset

[65]. These research works are based on an assumption that the signal at the beginning

is taken from person at rest. Hence, this patch of signal has very low noise and as such

can be used as reference for future processing. However, this assumption is very strong in

nature as a person might start tracking his/her heart rate when they are already in brisk

motion during high physical activity. Hence, methods independent of such assumption

should be focused for any application.
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Fig. 6 Pearson correlation calculation and plotting [43]. The figure shows how close the estimated heart rate

to the actual heart rate

Finally, the author would now like to propose a system which, in theory, could track

the heart rate in an online and offline application. One such system is shown in Fig. 7. In

online mode, Fig. 7a, a forehead-based PPG sensor samples the signal at 500 Hz which

is then sampled down to 25 Hz and bandpass filtered to 0.5–4 Hz. Downsampling and

filtering reduces the computational load as well as removes spectral contents outside nor-

mal heart rates. Twenty-five hertz is chosen as compromise between computational cost

and signal fidelity. The range of 0.5–4 Hz generally covers the average range of the heart

rate from rest to high work out. Next, the Schack algorithm is used to remove the motion

artifacts. Then, the filtered signal is fed to b-Cornet where b-CNN to extract features to
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Fig. 7 Proposed heart tracking system. a The online method. b The offline mode

access the fidelity of signal and identify the exercise type and b-LSTM is used to track the

heart rate changes. Based on the signal fidelity, exercise model, and LSTM output, the

spectral contents reflecting heart rate can be tracked. The b-Cornet mentioned above are

trained offline.

In the offline mode, the signal is just bandpassed through filter of cutoff frequency [0.5–

4] without downsampling. In this way, much of signal information will be retained. Then,

the signal is reconstructed using the EEMD algorithmwhile removing noise/MAs. Finally,

from b-Cornet, the heart rate would be tracked. One important difference from online

mode is continuous update of b-CNN and b-LSTM. Every new sample which is similar

to any old samples will be added to the training dataset. In this way, the system will be

trained continuously for future use. The use of head bound PPG sensor introduces less

MAs as the head is generally still even during high-intensity motions. Hence, more focus

should be on building these head-mounted sensors.

5 Conclusion

In this paper, we have presented an overview of techniques in two key areas of heart

rate tracking, i.e., motion artifact removal and hear rate tracking. The research works on

motion artifacts were grouped in terms of signal processing techniques that are mostly

used. However, heart rate tracking was categorized in four types: signal decomposition-

based trackers, signal subspace-based trackers, signal processing-based trackers, and

machine learning-based trackers. From the review, it can be summarized that both areas

of heart rate tracking are interlinked; hence, simultaneous work is needed for a good

tracking system. We would like to point out that two key areas of exploration in this

topic are real-time tracking system and creation of public and labeled datasets. The realm

of creating a system which could track heart rate in real time is a challenging problem

because of variance present in PPG signals. It is very difficult to capture this variance

even in systems working offline. However, to capture this variance in real time is chal-

lenging owing to high computational resources associated with it. Different systems have

been proposed in recent studies but a system which has passed clinical trials has not yet
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implemented. It is a very difficult to create and label a dataset which could capture heart

rates under different human activities. Even creating a dataset from rest to different high-

intensity exercise is resource-hungry job. To create a dataset which contains normal and

pathological conditions is still an open research area.
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