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Abstract—Objective: Driver drowsiness detection is a key
technology that can prevent fatal car accidents caused
by drowsy driving. The present work proposes a driver
drowsiness detection algorithm based on heart rate vari-
ability (HRV) analysis and validates the proposed method by
comparing with electroencephalography (EEG)-based sleep
scoring. Methods: Changes in sleep condition affect the au-
tonomic nervous system and then HRV, which is defined
as an RR interval (RRI) fluctuation on an electrocardio-
gram trace. Eight HRV features are monitored for detecting
changes in HRV by using multivariate statistical process
control, which is a well known anomaly detection method.
Result: The performance of the proposed algorithm was
evaluated through an experiment using a driving simula-
tor. In this experiment, RRI data were measured from 34
participants during driving, and their sleep onsets were de-
termined based on the EEG data by a sleep specialist. The
validation result of the experimental data with the EEG data
showed that drowsiness was detected in 12 out of 13 pre-
N1 episodes prior to the sleep onsets, and the false posi-
tive rate was 1.7 times per hour. Conclusion: The present
work also demonstrates the usefulness of the framework of
HRV-based anomaly detection that was originally proposed
for epileptic seizure prediction. Significance: The proposed
method can contribute to preventing accidents caused by
drowsy driving.

Index Terms—Drowsy driving detection, heart rate vari-
ability analysis, electroencephalography, anomaly detec-
tion, multivariate statistical process control.

I. INTRODUCTION

T
HE risk of traffic accidents in drowsy drivers is estimated

to be four to six times higher than in awake drivers [1].
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According to a study by Gottlieb et al., the risk of traffic acci-

dent occurrence increases regardless of the drivers’ subjective

sleepiness when they have sleep apnea or their sleep duration is

insufficient [2]. In order to prevent accidents caused by drowsy

driving, a driver-assistance system that detects drowsy driving

and provides a warning would be effective.

In sleep medicine, electroencephalography (EEG) recording

is necessary for sleep scoring because sleep onsets and sleep

stages are defined based on EEG [3]. Although EEG-based

drowsiness detection methods have been developed [4]–[7], it

is difficult to record EEG accurately during driving since EEG

recording is intolerant to motion artifacts and puts significant re-

strictions on the body. Thus, various types of driver drowsiness

detection systems that do not use EEG have been developed [8].

Driver face image analysis and vehicle travel data analysis are

used for detecting driver drowsiness [9]–[14]; however, these

methods require installing special devices in a vehicle, such as

a camera for face image acquisition or a data logging device for

accessing vehicle travel data.

Instead of installing devices in a vehicle, physiological infor-

mation other than EEG can be used for drowsiness detection if

drivers agree to wear a sensor that measures their physiolog-

ical signals. Changes in sleep condition affect the autonomic

nervous system (ANS) as well as cardiac activities [15], and

cardiac signals can be used for drowsiness detection. Chui et al.

proposed a drowsiness detection method based on an electro-

cardiogram (ECG) taken from drivers [16]. In addition, some

researchers have analyzed photoplethysmography (PPG) signals

for detecting drowsy driving [17]. Although they reported that

their proposed methods were able to achieve good performance,

it is difficult to obtain good ECG or PPG signals stably due to

motion artifacts. Besides, these methods would require a heavy

computational load because the sampling rate of ECG is usually

more than several hundred Hz.

Heart rate variability (HRV), which is the RR interval (RRI)

fluctuation in an ECG, is a well-known physiological phe-

nomenon which reflects activities of ANS [18]. Fujiwara et al.

proposed an epileptic seizure prediction algorithm utilizing

HRV analysis [19]. HRV changes before an epileptic seizure

because changes in cardiovascular regulation begin ten minutes

to several seconds before seizure onsets [20], [21]. In addition,

several studies have reported changes in HRV associated with

sleep stage transitions [22]–[24].
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In the present work, a new HRV-based driver drowsiness

detection algorithm is proposed by utilizing the framework of

HRV-based epileptic seizure prediction [19]. Abnormalities in

the HRV data of drivers are monitored by multivariate statis-

tical process control (MSPC), which is a well-known anomaly

detection algorithm used in manufacturing industries [25]–[27].

The proposed algorithm is simpler than previous HRV-based

methods [28]–[30] because the number of HRV features it uses

is just eight and MSPC is a linear method. Driving simulator

experiments were performed to validate the proposed method,

in which EEG-based sleep scoring by a sleep specialist was used

as a reference.

II. RELATED WORKS

HRV-based drowsiness detection methods have been pro-

posed. Vicente et al. proposed a drowsiness detection method

that uses HRV analysis and linear discriminant analysis

(LDA) [28]; however, the method uses ECG-derived respiratory

information in addition to HRV, and ECG signal analysis is still

needed. Although Li et al. proposed a drowsiness detection sys-

tem that utilizes the support vector machine (SVM), their system

utilizes driver face images as well as HRV [29]. A neural net-

work (NN)-based drowsiness detection model was developed

by Patel et al. which uses the power spectral density (PSD)

of RRI fluctuation as input variables of the NN model [30].

Their method would require a large amount of computational

resources because the NN model is complicated and its number

of input features is 900. A simple methodology for detecting

drowsy driving should be developed for realizing a wearable

drowsy driving detection system.

III. METHOD

Although EEG measurement is necessary for detecting sleep

onsets [3] in sleep medicine, it is difficult to measure EEG

during driving. The proposed algorithm adopts HRV instead of

EEG, and EEG-based sleep scoring is used as the reference for

the proposed algorithm. This section explains EEG-based sleep

scoring and HRV briefly and proposes an HRV-based drowsiness

detection algorithm.

A. EEG-Based Sleep Scoring

Sleep consists of REM (rapid eye movement sleep) and

NREM (non-REM sleep), which is categorized into three lev-

els: N1, N2, and N3 [3]. N1 is also called transitional sleep or

light sleep. According to the sleep scoring manual [31], sleep

stages are discriminated based on the 30-second epoch-based

EEG scoring method. The N1 onset (sleep onset) is defined by

the epoch in which α wave (8–13 Hz) activity is attenuated

and replaced by low-amplitude, mixed-frequency activities that

occupy more than 50% of the epoch.

Drivers may feel drowsiness shortly before N1, which causes

mild cognitive dysfunction, and some researchers have at-

tempted drowsy EEG identification [32]. On the other hand,

falling asleep directly contributes to traffic accidents. N1 usu-

ally occurs between wakefulness and deeper sleep stages.

During N1, the muscles are still active, the eyes open and close

moderately, and persons can be easily awakened by a sensory

stimulus. Thus, driver drowsiness should be detected prior to

the N1 onset (sleep onset), when a driver can be easily wakened

by a stimulus.

It is noteworthy that we cannot define a sleep onset with the

accuracy of less than 30 seconds because sleep scoring is based

on the 30-second EEG epoch-based method.

B. Heart Rate Variability Analysis

The R wave is the highest peak on an ECG, and the RR

interval (RRI) [ms] is defined as the interval between an R

wave and the next R wave. HRV is the fluctuation of RRI,

which is a physiological phenomenon reflecting ANS activities.

Thus, HRV analysis has been used for monitoring stress, and

cardiovascular disease [33], [34].

Although there are two types of HRV features–linear fea-

tures and nonlinear features–this work uses the former, simply

because the extraction of nonlinear features requires a long-

term RRI measurement for stable calculation [35], which is not

appropriate for real-time applications like drowsy driving de-

tection. The linear HRV features are classified into time domain

features and frequency domain features [18].

The following time domain features can be calculated from

the original RRI data [18].
� MeanNN: Mean of RRI.
� SDNN: Standard deviation of RRI.
� RMSSD: Root means square of the difference of adjacent

RRI.
� Total Power (TP): Variance of RRI.
� NN50: The number of pairs of adjacent RRI whose dif-

ference is more than 50 ms within a given length of mea-

surement time.

Frequency domain features cannot be extracted since the raw

RRI data are not sampled at equal intervals. Thus, the raw RRI

data are interpolated by using spline and resampled at equal

intervals. The following frequency domain features can be ob-

tained from the power spectrum density (PSD) of the resampled

RRI data, and the PSD can be calculated by using Fourier anal-

ysis or an autoregressive (AR) model [18].
� LF: Power of the low-frequency band (0.04 Hz–0.15 Hz)

in a PSD. LF reflects both the sympathetic and parasym-

pathetic nervous system activities.
� HF: Power of the high-frequency band (0.15 Hz–0.4 Hz)

in a PSD. HF reflects the parasympathetic nervous system

activity.
� LF/HF: Ratio of LF to HF. LF/HF expresses the balance

between the sympathetic nervous system activity with the

parasympathetic nervous system activity.

The guideline recommends that RRI is measured for two to

five minutes for HRV analysis, and the sampling rate of ECG

should be more than 200 Hz for precise R wave detection [18].

A precise RRI sensor is needed in order to realize an HRV-

based drowsy driving detection system. Although the Holter

monitor is generally used for measuring ECG outside hospi-

tals, its use in daily life is difficult since the Holter monitor
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requires operation skills. Many types of wearable devices such

as smartwatches have PPG sensors that can also be used for

pulse detection; however, it is notably difficult for PPG to de-

rive RRI precisely enough to carry out HRV analysis [36].

A wearable RRI sensor developed by Yamakawa et al. eas-

ily measures accurate RRI based on ECG. If an HRV-based

drowsy driving detection algorithm can be implemented in such

a device, a wearable drowsy driving detection system can be

realized.

Changes in HRV associated with sleep stage transitions have

been reported [22]–[24]. Bonnet and Arand reported that heart

rates vary depending on sleep latency [38]. Chua et al. showed

that there is a correlation between changes in subjective sleepi-

ness and HRV through sleep deprivation experiments [39]. Since

HRV alteration begins prior to a sleep onset [23], drowsy driving

may be detected by monitoring HRV.

C. Drowsy Driving Detection

In drowsy driving detection, the awake data and the drowsy

data are regarded as normal data and anomalous data, respec-

tively. To build an accurate discriminant model by using both

the awake data and the drowsy data, a sufficient amount of

drowsy data needs to be collected from drivers. However, in

practice, collecting such drowsy data is more difficult than the

awake data. Thus, drowsy driving detection is formulated as an

anomaly detection problem, in which a model is developed from

the awake data only.

Fujiwara et al. developed an epileptic seizure prediction algo-

rithm based on multivariate statistical process control (MSPC)

to detect abnormalities in HRV [19]. MSPC detects a sample

that does not follow the major trend in the modeling data as an

anomaly based on principal component analysis (PCA), which

has been widely used as fault detection and identification tech-

nique in multivariate processes [25]–[27]. Since drowsy driving

detection is a similar problem to epileptic seizure prediction, we

use MSPC.

The proposed algorithm discriminates between driver statuses

of ‘awake’ and ‘drowsy,’ where ‘drowsy’ means that the driver

is close to or in N1. In the proposed method, eight HRV features

described in Section III-B are used and their abnormalities by

sleepiness are monitored using MSPC. The detail of MSPC is

explained in the Appendix.

For HRV feature extraction, a rectangular moving window

whose window size is three minutes is used. Li et al. compared

the one-minute and the three-minutes windows in HRV extrac-

tion, and they reported that the latter was better for drowsiness

detection [29]. Time domain features are extracted from the raw

RRI data. For frequency domain feature extraction, the raw RRI

data need to be arranged at equal intervals. The raw RRI data are

interpolated by using the third-order spline, and the interpolated

RRI data are resampled at 4 Hz. An AR model of order 40 is

used to calculate the PSD [19].

The proposed drowsy driving detection algorithm is described

in Algorithm 1, in which y{i} is the awake RRI data recorded

from the ith driver and I is the number of drivers. First, awake

HRV features are extracted from y{i} in Steps 1–3. In the

Algorithm 1: Drowsy Detection Preparation.

1: for all i such that 1 ≤ i ≤ I do

2: Extract the ith driver awake HRV feature X̃
{i}

from

the ith driver awake RRI data y{i}.

3: end for

4: Merge matrixes X̃
{1}

, . . . , X̃
{I}

into one matrix X̃ .

5: Preprocess X̃ , which is referred to as X .

6: Derive ΣR and V R from X as Eq. (1)

7: for all i such that 1 ≤ i ≤ I do

8: Define the control limits of the T 2 and Q statistics for

the ith driver, T̄ 2{i} and Q̄{i}.

9: end for

proposed method, eight HRV features are adopted as input vari-

ables. The extracted HRV features are merged into one matrix

in Step 4. Then, in Step 5, the merged matrix X̃ is preprocessed

for model construction. There are various preprocessing meth-

ods, and thus an appropriate method should be chosen by taking

account of the characteristics of the problem and the data. In

this work, each column of X̃ is standardized so that each HRV

feature has zero mean and unit variance. In Step 6, the singular

value matrix ΣR and the loading matrix V R are derived from

the preprocessed HRV feature matrix X̃ . In other words, PCA

is applied to X̃ , and the correlations among eight HRV features

are modeled. In this step, the number of principal components

R has to be selected appropriately to realize precise drowsiness

detection. The next step is to calculate the T 2 and Q statistics

and to define their control limits.

There is considerable individual variability in HRV. Changes

in HRV are different for every person, which changes with age,

and the variation of the T 2 and Q statistics is also different for

every person. Hence, the control limits have to be determined for

each driver in Steps 7–9. The control limits can be determined

as the α% confidence of each driver.

Before driver drowsiness monitoring starts, the initial RRI

data of a driver have to be stored for more than the window

size W to calculate HRV features. After the initial RRI data

collection, driver drowsiness can be monitored by following

Algorithm 2. y[t] ∈ ℜ denotes the tth RRI and t is the number of

sampling from the monitoring start. τ is a time counter variable,

and C denotes the binary driver status C = {A,D} where A
and D are ‘awake’ and ‘drowsy,’ respectively. That is, ¬A =
D and vice versa. In Step 5, the extracted HRV feature x̃ is

preprocessed in the same manner in Algorithm 1.

To realize accurate drowsy driving detection, it is crucial to

decrease false positives. In drowsy driving detection, false pos-

itives are mainly caused by ECG artifacts, which significantly

affect the T 2 and Q statistics. Hence, the driver status is de-

termined as ‘drowsy’ only when either the T 2 or Q statistic

continuously exceeds its control limit for more than the prede-

fined period τ̄ . Conversely, to change the status from ‘drowsy’

to ‘awake,’ both statistics have to continuously stay below their

control limits for more than τ̄ . In Steps 7–14, the driver sta-

tus is discriminated. A warning is given to the driver when the

algorithm detects drowsiness, that is, C = D.
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Algorithm 2: Drowsy Driving Detection.

1: set τ [0] ←− 0, C[0] ←− A.

2: while do

3: Collect the newly measured tth RRI y[t].
4: Extract HRV feature x̃[t].
5: Preprocess x̃[t], which is denoted as x[t].
6: Calculate the tth T 2 and Q statistics, T 2 [t] and Q[t]

from x[t] by using (4) and (3).

7: if ((T 2 [t] > T̄ 2 ∨ Q[t] > Q̄) ∧ (C[t − 1] = A))
∨((T 2 [t] ≤ T̄ 2 ∧ Q[t] ≤ Q̄) ∧ (C[t − 1] = D))
then

8: τ [t] = τ [t − 1] + y[t].
9: else

10: τ [t] = 0.

11: end if

12: if τ [t] ≥ τ̄ then

13: C[t] = ¬ C[t − 1] and τ [t] = 0.

14: end if

15: Wait until the next RRI data y[t + 1] is measured.

16: end while

D. Participants

The inclusion criteria for the participants were non-

professional drivers, with a valid driving license. The exclusion

criterion was having a chronic illness that may affect HRV such

as cardiovascular disease, arrhythmia, epilepsy, or sleep disor-

ders. These experiments and analyses were approved by the Re-

search Ethics Committee of the Graduate School of Science and

Technology, Kumamoto University. Written informed consent

was obtained from each participant prior to the experiments.

IV. RESULT

This section evaluates the performance of the proposed

drowsy driving detection algorithm through an application of

real RRI data obtained from an experiment using a driving sim-

ulator.

A. Data Collection

The RRI data and the EEG data were collected from experi-

ment participants (drivers) while they drove a virtual vehicle on

a simulator. Participants A, . . ., Z, α, . . ., θ, 25 males and nine

females aged 18–36 years (mean 22.7 years) participated in this

experiment. In order to avoid effects on HRV, participants were

instructed not to take alcohol, caffeine or smoke for one night

before the experiments. Before the experiment, the participants’

driving careers, health statuses, mediations, and sleep habits

were checked by means of a questionnaire. The questionnaire

collects age, sex, weight, height, occupation, medical history

(hypertension, diabetes, cardiovascular disease, epilepsy, etc.),

meditation, and habits about breakfast, exercise, sleep, caffeine,

and smoke. In addition, we asked the sleep time of the previous

night. As a result, all participants were healthy and took enough

sleep (>6 hours), and there were no rejected participants.

Fig. 1. Electrode allocations for sleep scoring: EEG (left) and
EOG (left).

In this work, participants drove a driving simulator con-

structed based on a commercial racing simulator (GRAN

TURISMO 5, Sony Interactive Entertainment Inc.), which was

used in some researches of driving physiology [40]–[42]. The

simulator equips with an LCD display, a steering, an accelerator,

and a brake pedal. Thus, it can simulate driving operation.

Before experiments, we confirmed that EEG during driving

can be measured precisely enough for sleep scoring in this

simulator.

The participants drove twice on a course that simulated a

nighttime, monotonous highway loop line for 1.5 hours in a dark

room, resting and taking lunch for an hour between the two tri-

als. There were no other vehicles and it took about ten minutes

to cycle the loop line at 80 kilometers per hour. The first and

second trials started from around 11 am and after lunch, respec-

tively. This setting was determined in consideration of avoiding

participants’ excessive fatigue due to extended experiments as

well as with the expectation that the participants may become

drowsy.

The EEG data during driving were recorded for sleep scor-

ing using a digital EEG recording system (Grapevine, Ripple),

whose sampling frequency was 1,000 Hz. Although the Inter-

national 10–20 system is a standard scalp electrode allocation

of EEG recording, the number of electrodes was reduced in this

work with reference to polysomnography (PSG) tests performed

in sleep laboratories. Fig. 1 (left) shows the adopted electrode

allocation, in which Fp1, Fp2, C3, C4, O1, O2 were EEG elec-

trodes and earlobes A1 and A2 were for reference. This electrode

allocation is enough for sleep scoring. Electrooculogram (EOG)

was also recorded during driving for making sleep scoring easy.

The EOG electrode allocation is shown in Fig. 1 (right) and a left

earlobe A1 was for reference. The RRI data were obtained for

HRV analysis by using a wearable RRI sensor [37]. In addition,

participant video during driving was recorded for confirming

participant behaviors after the experiments.

Since artifacts were generated when participants moved dur-

ing driving, data in which either the RRI data or the EEG

data were contaminated with strong artifacts were eliminated

before analysis. A sleep specialist certified by the Japanese

Society of Sleep Research determined sleep onsets of partic-

ipants by visual check of the EEG data based on the 30-second

epoch-based scoring method recommended in the sleep scoring

manual [31].

As a result of sleep scoring, 12 participants were scored in

N1 during driving. The data 15 minutes before and 5 minutes
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TABLE I
PARTICIPANT DEMOGRAPHICS AND COLLECTED EPISODES

Fig. 2. RRI data of L2 (top) and Ld1 (bottom).

after sleep onset were stored as pre-N1 episodes, following the

report by Jurysta et al. on sleep stage transition that cardiac

activities precede 9–20 minutes (mean 12 minutes) before EEG

changes [23]. In addition, the data that were not scored as sleep

were clipped as awake episodes.

Consequently, we collected 13 pre-N1 episodes named Ad1,

Bd1, . . ., Zd1 and β d1, and 91 awake episodes named A1,

A2, . . ., θ 1, and θ 2, which are shown in Table I. Their total

lengths of awake and pre-N1 episodes were 66.8 and 4.3 hours,

respectively.

B. RRI Data and HRV Features

The raw RRI data of participants L and M in awake and

drowsy periods are shown in Figs. 2 and 3. In these figures, an

orange colored band denotes the N1 epoch. Eight HRV features

described in Section III-B were extracted. Figs. 4–7 are the

HRV features extracted from the RRI data shown in Figs. 2

and 3. Although frequency domain features seemed to change

before sleep onset in Figs. 5 and 7, a similar fluctuation is also

observed in the awake HRV features in Figs. 4 and 7.

These results show that it is difficult to detect drowsiness by

monitoring changes in respective HRV features, and suggest that

multiple HRV features should be monitored simultaneously.

Fig. 3. RRI data of N2 (top) and Nd2 (bottom).

Fig. 4. HRV features derived from L2.

C. Drowsy Detection Preparation

Driver drowsiness detection was prepared according to

Algorithm 1. Table II shows 34 awake episodes used for mod-

eling. The total recorded length of the analyzed episodes was

26.7 hours.

All HRV features calculated in Section IV-B were used as

inputs. In MSPC, the number of retained principal components

R was determined so that the cumulative proportion reached

more than 90%, and R = 3. The control limits of the T 2 and Q

statistics were defined for each participant so that they represent
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Fig. 5. HRV features derived from Ld1.

Fig. 6. HRV features derived from N2.

Fig. 7. HRV features derived from Nd2.

TABLE II
AWAKE EPISODES USED FOR MODELING

Fig. 8. Detection result of pre-N1 episode Ld1 (orange band: N1 epoch,
green band: detected drowsy period).

Fig. 9. Detection result of pre-N1 episode Nd2.

the 90% confidence limits. Although the 99% or the 95% confi-

dence limits are usually adopted in MSPC for suppressing false

positives, this research used the 90% confidence limits because

it is important to prevent erroneous drowsiness detection from

the viewpoint of safety. The parameter τ̄ was determined as ten

seconds according to [19].

D. Drowsy Driving Detection Results

All of the drowsy and awake episodes that were not used

for modeling were monitored by Algorithm 2. The numbers of

validated awake and pre-N1 episodes were 57 and 13, respec-

tively. The total length of the validated awake episodes was 40.1

hours. Here, drowsiness detection success means that drowsi-

ness is detected from 15 minutes before to just before a sleep

onset.

From the pre-N1 episode results, the Q statistic detected 12

out of 13 pre-N1 episodes excluding episode Bd1. On the other

hand, the T 2 statistic detected 8 out of 13 pre-N1 episodes

excluding episodes Ad1, Ld1, Nd2, Pd1, and Zd1. As a result,

the sensitivity of the T 2 and Q statistics are 62% and 92%,

and the mean and the standard deviation of the first drowsiness

detection time by the T 2 and Q statistics were 484 ± 383 and

642 ± 401 seconds before sleep onsets, respectively.

Detection results of pre-N1 episodes Ld1 and Nd2 are shown

in Figs. 8 and 9, in which horizontal dashed lines express the con-

trol limits of the T 2 and Q statistics. Orange and green colored

bands denote the N1 epochs scored by the sleep specialist and

drowsy periods detected by the proposed method, respectively.

According to Algorithm 2, driver drowsiness is detected only

when either T 2 or Q statistic exceeds its control limit continu-

ously for more than τ̄ = 10 seconds. Although the T 2 statistic
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Fig. 10. Detection result of awake episode L2.

Fig. 11. Detection result of awake episode N2.

around 900 seconds in Fig. 8 exceeded its control limit; it was

not detected as drowsiness because it did not exceed its control

limit for more than ten seconds continuously. Figs. 10 and 11

show detection results of awake episodes L2 and N2. There were

no false positives in episode L2 while a false positive occurred

according to the T 2 statistic in episode N2.

Table III summarizes the number of false positives (#FP) and

false positive (FP) rates, which are defined as #FP per hour. The

#FP in all awake periods (total 40.1 hours) by the T 2 and Q

statistics were 105 and 70, and the FP rates were 2.6 and 1.7

times per hour, respectively.

V. DISCUSSION

In the experiment, we collected HRV data from a total of 34

participants, and drowsiness detection was based on the T 2 and

Q statistics. In order to confirm the validity of these statistics,

sample powers were calculated. The sample powers of the T 2

and Q statistics were 0.09 and 0.71, respectively. Thus, the

sample size was not insufficient for the T 2 statistic; however,

the sample size was adequate when the Q statistic was used for

drowsiness detection. In fact, the drowsiness detection of the Q

statistics was higher than the T 2 statistic in the experiment.

The collected data in the experiment consist of a total of 66.8

hours of awake episodes and a total of 4.3 hours of pre-N1

episodes. This unbalanced ratio of awake to pre-N1 episodes

justifies the adoption of the anomaly detection framework of

MSPC, in which a drowsiness detection model is developed

from the awake episodes only.

One driving trial was limited to 1.5 hours, and there was

a one-hour rest including lunch between two trials, in consid-

eration of the burden of the participants. As a result, 12 out

of 34 participants were scored by N1 during driving. Ten out

of thirteen pre-N1 episodes were observed in the second trial,

TABLE III
FALSE POSITIVES

which was performed after lunch. Although all participants in

the experiment were healthy, sleep loss and daytime sleepiness

in the Japanese adult population are common [43]. Thus, 1.5

hours of driving after lunch may have been sufficient to induce

drowsiness for some participants.

α waves, which indicate sleep-related brain activities, were

observed in correspondence with the increase of the Q statistic.

Fig. 12 shows α waves recorded during the awake period, which

corresponded to a false positive by the Q statistic in episode

X6. According to EOG of this period, the participant repeatedly

blinked. Such awake α waves associated with the increase of the

Q statistic were observed in episodes J2, M2, P2, δ4 as well as

X6. These correspondences between changes in the Q statistic

and α wave appearance support the validity of the proposed

method.

Microsleep, which is sudden short sleep lasting for a fraction

of a second or up to 30 seconds, is a well-known phenomenon

in sleep science [44]. Persons with microsleep often remain un-

aware of it. Its causes are, for example, sleep apnea syndrome,

narcolepsy, mental fatigue, and insufficient sleep. Many mi-

crosleep identification methods have been proposed, and there

is little agreement on which is the best for use at this time [44].

It is possible that the awake α wave appearance associated with

an increase of the Q statistic was microsleep, although this is

difficult to confirm.
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Fig. 12. The awake α waves associated with a false positive by the Q statistic in episode X6.

The occurrence of microsleep may be dangerous particularly

in situations that demand constant alertness, such as driving

or working with heavy machinery. Microsleep decreases the

capability for task execution, which is equivalent to a mild cog-

nitive dysfunction; however, falling asleep directly contributes

to the occurrence of traffic accidents, since N1 sleep is equiv-

alent to complete cognitive dysfunction. In fact, the multiple

sleep latency test (MSLT), which measures the elapsed time

from wakefulness to N1 onset, is correlated to the risk of traffic

accidents [45], [46]. Thus, the target of the proposed algorithm

is the N1 onset instead of microsleep. Future studies are needed

to evaluate whether the proposed methodology for detecting the

N1 onset is also applicable to microsleep detection.

According to an evaluation of the EEG data and videos, most

false positives occurred in correspondence with participant’s

motion. The drowsy driving detection model was constructed by

using HRV data collected during driving in which participants

sat in a seat and rarely moved. Because few HRV data with

body motion were contained in the modeling data, fluctuations

of HRV caused by body motion in the validation data were

detected as false positives. For example, there were eight false

positives of the T 2 statistic in participant F, seven of which

occurred when his EEG was contaminated with electromyogram

(EMG) artifacts caused by body motion.

Xaio et al. developed an HRV-based sleep stage scoring

method using random forest (RF), which is an ensemble learn-

ing technique using multiple decision trees [47]. Their method

classifies sleep condition into awake, REM, and NREM and

the accuracy of their method was 72%–88%, even though it

uses a total of 41 HRV features consisting of nonlinear fea-

tures, time domain features, and frequency domain features as

input variables [48]. It is difficult to compare their sleep stage

scoring method with the proposed drowsiness detection algo-

rithm from the viewpoint of performance, because the purpose

of their method is to discriminate sleep stages, while that of the

proposed method is to detect drowsiness prior to the N1 onset;

however, the proposed drowsiness detection method is much

simpler than their method since the proposed algorithm uses

only eight HRV features and a linear model. This indicates that

the framework of HRV-based anomaly detection by MSPC is

useful for drowsiness detection, although it cannot be used for

sleep stage scoring.

The sensitivity of the proposed method achieved almost the

same level as conventional camera-based drowsiness detection

methods [8]; however, most of the latter use facial expression

evaluation by referees or subjective evaluation by questionnaires

instead of EEG-based sleep scoring for driver sleepiness eval-

uation. Because it is impossible to detect precise N1 onsets,

microsleep, and awake α waves by facial expression evalua-

tion and questionnaires, there is a possibility that previous re-

searchers overlooked such sleep-related phenomena.

It is concluded that the proposed HRV-based drowsy driving

detection algorithm is more promising than other conventional

methods with respect to accuracy as well as practical use.

VI. CONCLUSION AND FUTURE WORK

A driver drowsiness detection method was proposed utilizing

the framework of epileptic seizure prediction, by which multi-

ple HRV features are extracted from the RRI data and MSPC

monitors abnormalities in the extracted HRV features. The ex-

perimental result showed that 12 out of 13 pre-N1 episodes were

detected prior to sleep onsets, and the false positive rate was

about 1.7 times per hour. The experimental result was discussed

from the viewpoint of sleep science. This work demonstrated

the usefulness of the framework of HRV-based anomaly detec-

tion because it can be applied to driver drowsiness detection as

well as epileptic seizure prediction.

Limitations of the study include the properties of the col-

lected experimental data, such as a highly controlled laboratory

environment, the limited number of participants, and the fact

that all participants were young Japanese persons. Accordingly,

more studies are required to confirm our results by using well-

matched groups of participants in a real driving environment.

The proposed method requires drivers to put some elec-

trodes on the skin before driving, because precise RRI mea-

surement based on ECG is needed for HRV analysis. Since it

is burdensome for drivers to attach electrodes before driving, a

new type of electrode that is easy to use should be developed.

Tsukada et al. developed a new wearable textile electrode using a
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Fig. 13. Schematic diagram of MSPC.

conductive fiber [49], and a smart shirt woven with textile elec-

trodes has been developed for ECG measurement. Therefore, it

will be easy for drivers to use the proposed HRV-based drowsy

driving detection method when the smart shirt becomes avail-

able. In addition, the proposed algorithm can be easily imple-

mented into mobile computers, such as a smartphone, since the

computational load of the proposed method is much lighter than

the camera-based methods that use real-time video analysis.

In future works, additional experimental data must be col-

lected to improve the drowsiness detection performance, and

the system under development will be tested in a real driving

environment.

APPENDIX

MULTIVARIATE STATISTICAL PROCESS CONTROL (MSPC)

The appendix explains multivariate statistical process control

(MSPC) used in the drowsiness detection algorithm.

The proposed drowsiness detection algorithm described in

Section III-C detects driver drowsiness as anomalies in HRV.

The simplest way of detecting anomalies is to check whether

or not all variables are within their upper and lower bounds.

This simple method is called univariate statistical process con-

trol (USPC); it is also known as control charts and Shewhart

charts. When multiple variables are monitored simultaneously,

the nominal region of USPC becomes rectangular as shown in

Fig. 13(a). USPC is intuitive and easy-to-use, and therefore has

been widely used in various fields including the manufacturing

industry. However, it cannot detect an anomaly that does not

satisfy normal correlation among variables. In Fig. 13(a), for

example, USPC cannot detect the anomaly , which does not

follow a positive correlation between variables 1 and 2, because

it is located within the normal rectangular area of USPC. If the

normal ellipsoid area defined by the dashed line is used instead

of the normal rectangular area, the anomaly can be detected.

This example demonstrates that the correlation among variables

should be taken into account for detecting anomalies that do not

follow the major trend in the data.

In MSPC, the correlation among variables is modeled by

using principal component analysis (PCA) [50], which finds

linear combinations of variables that describe major trends in

a dataset as shown in Fig. 13(b). Let us assume a normal data

matrix X ∈ ℜN ×M whose nth row is the nth sample xn ∈ ℜM ,

wherein samples are mean-centered and scaled appropriately,

and M and N denote the number of variables and samples,

respectively. Such a matrix X can be factorized by singular

value decomposition (SVD) as follows:

X = UΣV T

=
[

UR U 0

]

[

ΣR 0

0 Σ0

]

[

V R V 0

]T
(1)

where U , Σ, and V are the left singular matrix, the diagonal

matrix whose diagonal elements are singular values, and the

right singular matrix, respectively. Using Eq. (1), the matrix

factorization of X by PCA is defined as:

X = T RV T
R + E (2)

where T R ∈ ℜN ×R is the score matrix and T R ≡ UΣ. E

∈ ℜN ×M is an error matrix. The column of V R spans the

subspace Π which expresses the correlation among variables

as shown in Fig. 13(c). R(≤ M) is the number of principal

components retained in the PCA model.

The T 2 statistic is used for monitoring anomalies in Π,

which is defined as follows:

T 2 =

R
∑

r=1

t2r
σ2

tr

= xT V RΣ
−2
R V T

Rx (3)

where σtr
denotes the standard deviation of the rth score tr and

x is a newly measured sample. Since the T 2 statistic is the Maha-

lanobis distance, which is defined as the distance normalized by

the standard deviations of the scores, it defines a circular nomi-

nal region as shown in Fig. 13(d). Hence, the sample is close to

the mean of the modeling data when the T 2 statistic is small.

The Q statistic is defined as the squared distance between the

sample and Π as

Q =

M
∑

m=1

e2
m =

M
∑

m=1

(xm − x̂m )2

= xT (I − V RV T
R )x. (4)

The normal operating condition (NOC) is defined using the

T 2 and the Q statistics [51]. Fig. 13(c) shows the image of NOC

in MSPC. Since the monitored subspaces by two statistics are

orthogonal to each other, NOC can be considered as a cylinder

and the control limits of the T 2 and Q statistics correspond to

its diameter and height, respectively. MSPC usually detects an

anomaly when either the T 2 or Q statistic exceeds the prede-

fined control limit. Thus, the control limits of the T 2 and Q

statistics have to be determined carefully, which can be set as
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α% confidence limits, and usually, the 99% or 95% confidence

limits are adopted.

In order to detect anomalies by MSPC, the number of prin-

cipal components R also has to be appropriately determined.

The number of principal components R can be determined so

that the cumulative proportion of principal components reaches

a predefined value, such as 80% or 90%.
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