
SLEEP, Vol. 35, No. 3, 2012 325 Heart Rate Variability Correlates with Vigilance—Chua et al

with only 6 hours of time in bed per night.6 Of particular con-
cern, self-rated sleepiness and performance can become disso-
ciated during sleep deprivation. Hence, a person’s perceived 
level of alertness often does not correspond with his or her 
actual decline in vigilance during sleep loss.

Given that sleepiness increases a person’s risk for attentional 
failure, errors, and accidents, many technologies have been 
developed to assess vigilance and performance levels in real 
time.7 Such technologies aim to warn the user when a lapse in 
performance is likely to occur and, if coupled with an appro-
priate intervention, could potentially prevent an accident from 
taking place. Technologies that seek to monitor online an indi-
vidual’s physiologic state have primarily focused on features 
of the eyes, face, and head. Several ocular measures have been 
examined as indicators of fatigue, including eye blinks, pupil 
responses, saccadic eye movements, and percentage of eyelid 
closure over the pupil over time (PERCLOS). Of these mea-
sures, PERCLOS has been shown to correlate with lapses in 
visual attention and measures of simulated driving performance 
during sleep loss.8,9 Although PERCLOS data can be collected 
noninvasively from dashboard-mounted cameras, it can be dif-
ficult to obtain quality retinal reflections from some users’ eyes, 
and PERCLOS does not always work well during the daytime 
when sunlight is being reflected inside the vehicle.10 Similar 
to ocular measures, electroencephalogram (EEG) monitoring 
can be used to track changes in drowsiness and fatigue.11,12 At 
present, however, such monitors are not very practical for am-
bulatory or in-vehicle use.Given that each fatigue-monitoring 
technology has its limitations, an integrated system that assess-

INTRODUCTION
Sleepiness is a major cause of vehicular and occupational ac-

cidents, resulting in a large societal and economic burden.1,2 In-
sufficient sleep results in a broad range of performance deficits, 
including decreased vigilance, slower response times, increased 
errors, and impaired decision making.3 These performance deficits 
and the inability to resist falling asleep contribute to automobile 
crashes and industrial accidents (e.g., the Exxon Valdez oil spill 
and nuclear accidents in Chernobyl and on Three Mile Island).4

Sleep loss can result from acute sleep deprivation, daily 
sleep restriction (e.g., ≤ 6 h of sleep per night), or when sleep 
is disrupted as part of a sleep disorder. The effects of sleepi-
ness on performance have been compared with the effects of 
being intoxicated with alcohol. After 24 hours of sustained 
wakefulness, performance decrements on some tasks are 
similar to those observed at a blood alcohol concentration of 
0.10%, beyond the legal limit for driving.5 A similar negative 
impact of sleep loss on performance has been demonstrated 
when individuals are tested after a week of sleep restriction 
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horizontally at the level of the subjects’ eyes was approximate-
ly 0.6 lux (range = 0.59 to 0.63 lux; 1.1 to 2.4 μW/cm2). After 
completing the CR procedure, participants were given a 12-hour 
sleep opportunity before being discharged from the study. Re-
searchers were present at all times during the 4-day study to carry 
out research procedures and to ensure protocol compliance.

Subjective Sleepiness and Performance Testing
Every 2 hours during the CR procedure, subjects completed 

the Karolinska Sleepiness Scale (KSS),16 which is a 9-point 
scale for assessing sleepiness with responses ranging from 
“very alert (1)” to “very sleepy, great effort to keep awake, fight-
ing sleep (9).” Subjects also completed a visual analogue scale 
(VAS),17 which asked participants to rate how they feel on a line 
labeled with the word pair “sleepy” and “alert” at opposite ends. 
Sustained visual attention was assessed using a 10-minute PVT. 
During the PVT, participants were required to maintain their 
fastest possible reaction time (RT) to a simple visual stimulus 
with random interstimulus intervals between 2 and 10 seconds.18 
PVT lapses were defined as RTs that exceeded 0.5 seconds. The 
first test battery was given 4.5 hours after wake time, resulting in 
a total of 18 PVT test sessions during the CR procedure.

Physiologic Measurements and Signal Processing
The ECG, EEG, and EOG were recorded continuously dur-

ing the CR procedure. Signals were bandpass-filtered at 0.3 to 
35 Hz and recorded at 200 Hz using a Comet Portable EEG sys-
tem from Grass Technologies (Astro-Med, Inc., West Warwick, 
RI). Subjects were asked to press an event marker to mark the 
onset and offset of PVT testing in the EEG recording. Occasion-
ally, participants forgot to press the event marker, in which case 
a research technician made an annotation manually in the EEG 
record using a separate event marker. Given that the timing of 
pressing the event marker did not always coincide exactly with 
the onset or offset of the PVT, performance and physiologic 
signals (see below) were assessed during the middle 8 minutes 
between marked events, to ensure that physiologic data were 
analyzed only during the PVT.

The ECG
The ECG was recorded with a single-channel modified V5 

lead. QRS peaks were detected using a Hilbert transform-based 
method,19 and the RR-interval time series was determined. 
Spectral analysis was performed on each RR-interval series 
using the Lomb-Scargle periodogram method.20 We examined 
conventional HRV spectral analysis metrics defined by the Task 
Force for Heart Rate Variability Analysis.21 These metrics in-
clude RR-interval spectral power in very-low-frequency (VLF, 
≤ 0.04 Hz), low-frequency (LF, 0.04 – 0.15 Hz) and high-fre-
quency (HF, 0.15 – 0.40 Hz) bands, normalized LF and HF 
power, and the ratio of LF to HF power. In separate analyses, 
RR-interval power density was determined in 0.02-Hz bins 
from 0.0 to 0.4 Hz.

The EEG
The EEG was recorded from the z-line using the International 

10-20 System for electrode placement, with frontal (Fz), central 
(Cz), parietal (Pz) and occipital (Oz) derivations and 2 mastoid 
references (A1 and A2). Each derivation was averaged online 

es multiple bio-signals simultaneously may perform better than 
any one measure taken alone. Here, we examined heart rate 
variability (HRV) as a potential adjunct to existing measures 
of sleepiness derived from the eyes, face, and head. As dem-
onstrated by routine clinical use of 24-hour Holter monitoring, 
electrocardiogram (ECG) signals can be collected continuously 
in diverse operational settings. In addition, new technologies 
allow for noncontact recording of heart-beat measurements.13 
Recently, it was shown that some measures of HRV can be used 
to predict daytime performance levels.14 In the present study, 
we extend these findings by examining whether HRV can be 
used to estimate changes in sustained visual attention during 
total sleep deprivation. We show that, similar to EEG and PER-
CLOS measures, RR-interval power density in the 0.02- to 
0.08-Hz frequency range correlates strongly with lapses on the 
Psychomotor Vigilance Task (PVT) and can be used to estimate 
decrements in PVT performance caused by sleepiness.

METHODS

Subjects
Young healthy Chinese men (n = 24) (mean age ± SD = 25.9 

± 2.8 years) were enrolled in a 4-day study at the Chronobiol-
ogy and Sleep Laboratory (CSL), Duke-NUS Graduate Medical 
School Singapore. Health was assessed by screening question-
naires and self-reported medical history. Participants had an 
average body-mass index of 22.3 ± 2.7 kg/m2 and reported no 
use of medications or nicotine products. Individuals with an 
extreme chronotype (< 31 or > 69 on the Horne-Östberg ques-
tionnaire) or Pittsburgh Sleep Quality Index score of greater 
than 7 were excluded (mean ± SD = 3.5 ± 1.6). Subjects were 
ineligible if they had a history of shift work or if they trav-
elled across time zones within 3 weeks prior to the start of the 
study. For at least 1 week before being admitted to the CSL, 
participants were required to maintain a fixed sleep-wake cycle 
of their choice (8 hours sleep, 16 hours wake), which was veri-
fied by actigraphy monitoring (Actiwatch-L, MiniMitter, Inc., 
Bend, OR). During prestudy screening, subjects were asked to 
avoid caffeine, alcohol, and over-the-counter medications. In-
formed consent was obtained from all participants, and research 
procedures were approved by the SingHealth Centralized Insti-
tutional Review Board. Procedures were in compliance with the 
Health Insurance Portability and Accountability Act regulations 
and the Declaration of Helsinki.

Protocol
Subjects lived individually for 4 days at the CSL in a sound-

attenuated and windowless environment that was shielded from 
external time cues. Participants arrived in the evening and went 
to bed at their regular prestudy sleep time. After an 8-hour sleep 
opportunity, subjects underwent a 40-hour constant routine (CR) 
procedure consisting of wakefulness enforced by research staff, 
semi-recumbent position in bed, and consumption of hourly equi-
caloric snacks.15 Ambient light was provided by ceiling-mounted 
light-emitting diode lamps that were dimmed to less than 5 lux 
(1.9 μW/cm2). Illuminance was measured at a height of 187 cm 
with an ILT1400 radiometer that was fitted with an SEL-033/
Y/W detector (International Light Technologies, Inc., Peabody, 
MA) aimed directly at the ceiling lamps. Illuminance measured 
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Data Analysis and Statistics

Correlation between PVT lapses and physiologic measures
We performed Pearson correlation analysis to determine the 

strength of the linear relationship between PVT lapses and each 
physiologic measure. After applying a z-transformation to nor-
malize PVT performance and physiologic data within subjects, 
we determined the Pearson correlation coefficient (r) in each 
participant and then averaged between subjects. We also per-
formed group correlation analyses, in which data from all sub-
jects were combined prior to determining the Pearson correlation 
coefficient. Since all analyses were performed using normalized 
data, the group correlation coefficient for any given pairwise 
comparison was identical to the average of individual r values. 
Within subjects, statistical comparisons between r values for 
different physiologic measures vs PVT lapses were performed 
using the method described by Steiger, in which a Z statistic 
is calculated.24 The critical significance level was corrected for 
multiple comparisons using the Bonferroni correction (0.05 / n).

Receiver operating characteristic analysis
Receiver operating characteristic (ROC) analysis was used 

to compare the relative performance of PERCLOS, RR-interval 
PSD (0.02-0.08 Hz), frontal EEG PSD (1.0-4.5 Hz), and sub-
jective sleepiness (VAS) at predicting an increase in PVT lapses 
above threshold.25 The binary classification task was to identify 
a threshold increase (> 25%, > 50%, or > 75%) in the number 
of PVT lapses, measured relative to each subject’s performance 
during baseline (see below). These arbitrary thresholds were 
chosen to span different degrees of performance impairment. In 
most individuals, PVT lapses exceeded the 25% threshold with-
in 2 hours after habitual bedtime; at this threshold, participants 
began to show an unambiguous decline in PVT performance 
and an increase in subjective sleepiness. Thereafter, PVT lapses 
increased monotonically and, in most participants, exceeded 
the 50% threshold during the middle of the night. The 75% 
threshold occurred close to habitual wake time, when most sub-
jects were struggling to keep awake. PVT performance usually 
improved within the next few hours, with PVT lapses dropping 
below the 50% and 25% thresholds in some but not all partici-
pants. Baseline performance in individuals was determined as 
the median number of PVT lapses per session during the first 
16 hours of wakefulness. For each subject, the range of PVT 
lapses was then taken as the difference of the session with the 
maximum number of lapses during the CR procedure and the 
median number of lapses during baseline. Hence, the threshold 
for a 25% increase in PVT lapses was computed as 0.25 times 
the range plus baseline.

For each physiologic measure, data were z-transformed 
within subjects and then pooled to construct an ROC curve. 
The optimal classification threshold was one that maximized 
the function: Sensitivity – m(1–Specificity). Specifically, a slope 
of the tangent to the ROC curve m was defined as

where FP is false positive, FN is false negative, and p is the 
pretest probability.26 Cost ratios were selected using SigmaPlot 

to obtain a single mastoid-referenced channel (e.g., Fz-AVG = 
[Fz-A1 + Fz-A2] / 2). Each EEG signal (i.e., Fz, Cz, Pz, Oz) 
was visually inspected for eye blinks, slow eye movements, and 
artifacts caused by body movements or cardiac activity. Two-
second non-overlapping epochs containing eye blinks, slow eye 
movements, muscle activity, or cardiac activity were excluded. 
On average, 23.2% ± 2.9% of epochs were free of artifacts, cor-
responding to 55.7 ± 6.9 epochs per PVT session. There was a 
small but significant decline in artifact-free epochs within each 
PVT session, ranging from 24.8% ± 3.3% during the first min-
ute, to 21.7% ± 2.8% during the last minute of each 8-minute 
EEG segment (1-way repeated-measures analysis of variance; 
F22,7 = 5.37, P < 0.001). Data from 1 subject could not be used 
due to technical problems in the EEG recording. Artifact-free 
epochs during each PVT were subjected to spectral analysis us-
ing the modified periodogram method (200-Hz sampling rate, 
Hamming window, 512-point fast Fourier transform, 0.39-Hz 
bin resolution). For each PVT session, EEG power spectral den-
sity (PSD) was determined by averaging PSD in artifact-free ep-
ochs in 0.5-Hz bins from 0.5 to 16 Hz. In separate analyses, EEG 
PSD was averaged across delta (1.0-4.5 Hz), theta (4.5-8.5 Hz), 
alpha (8.5-12.5 Hz), and beta (12.5-15.5 Hz) frequency bands.22 
To generate group plots, the EEG PSD in each frequency band 
was log transformed and averaged between subjects.

The EOG
The EOG electrodes were placed lateral to the outer canthus 

of each eye, with leads located slightly above (right eye) and 
below (left eye) the bicanthal plane. Each EOG electrode was 
referenced to the contralateral mastoid electrode (A1 or A2). 
EOG data were manually scored for eye blinks by a single scor-
er. For each PVT session, the middle 8-minute EOG segment 
was divided into 240 two-second, non-overlapping epochs. The 
number of epochs containing at least 1 eye blink was deter-
mined for each PVT session.

Eye-tracking
To assess PERCLOS, eye-tracking data were collected dur-

ing the PVT in a subset of subjects (n = 15). Pupil diameter 
of the left eye was recorded at 120 Hz using an ISCAN eye-
tracker (ISCAN, Inc., Woburn, MA). PERCLOS was defined 
as the percentage of time that the pupil was at least 80% cov-
ered by the eyelid.8 Given that PERCLOS assesses slow eyelid 
closures, rather than blinks, we excluded eye-closure events 
shorter than 400 ms; this threshold for eye-blink duration falls 
within the range recommended for determining PERCLOS 
(300 to 500 ms).23

Core body temperature
Core body temperature was collected wirelessly using an 

ingestible VitalSense temperature transmitter (Minimitter, Inc., 
Bend, OR). Subjects swallowed the telemetric sensor just prior 
to bedtime on the first day of the study. Core temperature was 
transmitted to a VitalSense Integrated Physiologic Monitor 
placed near the subject. Five subjects who passed the sensor 
during the CR procedure were given a second telemetry trans-
mitter, and data from 3 subjects were lost due to equipment 
failure. Temperature data were collected every minute and aver-
aged during each PVT session.
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11 software (ROC Curves Module; Systat Software Inc., San 
Jose, CA) and were set at 1.0, 0.5, and 0.25 for 25%, 50%, and 
75% PVT lapse thresholds. Pretest probability was estimated 
empirically from the data, giving p equal to 0.41 for a greater 
than 25% increase in PVT lapses, p equal to 0.25 for a greater 
than 50% increase in PVT lapses, and p equal to 0.13 for a 
greater than 75% increase in PVT lapses.

To assess the relative performance of different physiologic 
measures at classifying whether a subject had performance 
above threshold vs performance below threshold on the PVT, 
we compared the area under ROC curves (AUC) using a non-
parametric approach, as previously described.25,27 The χ2 statis-
tic and associated P value for pairwise AUC comparisons were 
determined using SigmaPlot 11 software.

RESULTS

Time Course of PVT Performance and Physiologic Measures
Subjects were kept awake continuously for 40 hours, during 

which they completed a 10-minute PVT every 2 hours to as-
sess their ability to sustain visual attention (Figure 1A). During 
the usual hours of sleep, RT and the number of PVT lapses per 
session (RT > 0.5 s) increased sharply, reaching their highest 
levels at about 24 hours after wake (Figure 1B and Figure S1A). 
Thereafter, PVT performance improved but did not recover fully 
to baseline levels when subjects were rested (i.e., performance 
during the first 16 h of wake). This partial improvement in PVT 
performance after 24 hours of wakefulness was presumably due 
to increased circadian drive for alertness, which closely tracks 
the circadian rhythm of body temperature (Figure S1B).22 The 
profile of subjective sleepiness was similar to that observed for 
PVT lapses (r = 0.59 ± 0.04, P < 0.001), with highest levels of 
sleepiness reported between 20 and 26 hours after wake time 
(Figure 1C and Figure S1C).

To determine whether HRV can be used to track changes 
in PVT performance during sleep deprivation, we exam-
ined the RR-interval time series during each PVT session 
(Figure 2A-B). Heart rate (i.e., 60 divided by the average of 
RR intervals) showed a strong circadian rhythm similar to the 
body-temperature profile, whereas the standard deviation of 
RR intervals (SDNN) showed a time course that more closely 
resembled the profile for PVT lapses (Figure S2). Next, we ex-
amined conventional HRV spectral analysis metrics, including 
spectral power in VLF, LF, and HF bands of the RR-interval 
time series. The profiles of VLF spectral power and PVT laps-
es were similar, suggesting that some measures of RR-interval 
PSD track a person’s ability to sustain visual attention (Figure 
S2). To examine this possibility in greater detail, we assessed 
the time course of RR-interval PSD in 0.02-Hz bins from 0.0 
to 0.4 Hz. PSD in the 0.02- to 0.08-Hz frequency range, which 
spans the upper part of the VLF band and the lower part of the 
LF band, correlated most strongly with PVT lapses (r = 0.68 
± 0.03, P < 0.001; Table 1 and Figure 2C). In this frequency 
range, the correlation coefficient (r ) for RR-interval PSD ver-
sus PVT lapses was significantly greater than the r value for 
either VLF or LF PSD vs PVT lapses (Z = 4.66, P < 0.001; 
Z = 5.66, P < 0.001). Similar to the profile for PVT lapses, 
RR-interval PSD in the 0.02- to 0.08-Hz frequency range in-
creased during the habitual hours of sleep and then showed 

Figure 1—Protocol for measuring sleepiness-related changes in 
physiology and performance. (A) Subjects participated in a 4-day 
laboratory protocol that included a 40-h constant routine procedure in 
dim light (< 5 lux). The protocol shown is for a representative subject 
with habitual bedtime at midnight. Black bars show scheduled sleep 
episodes in darkness. Every 2 hours, subjects completed the Karolinska 
Sleepiness Scale, a visual analogue scale for sleepiness, and a 10-minute 
Psychomotor Vigilance Task (PVT; asterisks). (B) Lapses on the PVT 
increased during the usual hours of sleep and reached their highest 
levels at about 24 h after wake. Thereafter, performance showed partial 
recovery toward the baseline rested state. (C) Subjective sleepiness 
measured with the visual analogue scale (VAS) showed a similar profile 
to PVT lapses, with highest levels of sleepiness reported between 20 
and 26 h after wake. Vertical reference lines in B and C indicate habitual 
bedtime and wake time. Error bars show SEM.
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Figure 2—Time course of heart rate variability, electroencephalographic (EEG) spectral power, and ocular measures during sleep deprivation. (A) The 
RR-interval time series during each Psychomotor Vigilance Task (PVT) was determined from the peak of consecutive QRS complexes (open circles) in the 
electrocardiogram (ECG). (B) As shown in a representative subject, variability in the RR-interval time series was low during the habitual hours of wakefulness, 
and increased during sleep deprivation. (C) RR-interval power spectral density (PSD) in the 0.02- to 0.08-Hz frequency band correlated most strongly with 
PVT lapses. (D) The time course of RR-interval PSD in this frequency range increased during the usual hours of sleep, and then decreased after 24 h of 
wake, similar to the profile of PVT lapses shown in Figure 1B. (E) For EEG PSD-derived measures, delta power (1.0-4.5 Hz) measured in the frontal derivation 
correlated most strongly with PVT performance. (F) The time course of delta power tracked the profile of PVT lapses and subjective sleepiness. (G) Eye blinks 
showed an inverted profile relative to PVT lapses, whereas (H) the time course of PERCLOS matched the profile of PVT performance during 40 h of sustained 
wakefulness. Vertical reference lines in D, F, G, and H indicate habitual bedtime and wake time. Error bars show SEM.
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PSD, delta activity was relatively stable during the 
first 16 hours of wakefulness, followed by a sharp 
increase during the usual hours of sleep. After a 
peak in delta activity 22 to 26 hours after wake, 
delta power decreased but remained higher than 
levels measured 24 hours earlier at the same rela-
tive clock times (Figure 2F). By comparison, theta 
(4.5-8.5 Hz) activity increased during the night 
but remained elevated after 24 hours of wake, al-
pha power (8.5-12.5 Hz) was lowest during the 
usual hours of sleep, and power in the beta band 
increased monotonically shortly after habitual 
bedtime (Figure S4).

PERCLOS correlated positively with PVT per-
formance (r = 0.77 ± 0.04, P < 0.001), whereas eye 
blinks showed an inverted profile relative to PVT 
lapses (r = -0.51 ± 0.07, P < 0.001; Figure 2G-H). 
Hence, as PVT performance became increasingly 
impaired from 16 to 24 hours after wake, subjects 
blinked less frequently, but the percentage of time 
that their eyes were closed increased.22 Of all physi-
ologic measures examined, PERCLOS correlated 
most strongly with PVT lapses (Table 1), with an 
r value that was significantly greater than that ob-
served for RR-interval PSD (0.02-0.08 Hz), frontal 
EEG delta power, and self-rated sleepiness (Z > 3.28 
and P < 0.001 for all pairwise comparisons).

ROC Curves for Estimating PVT Lapses
To compare the relative performance of HRV at 

predicting an increase in PVT lapses vs other mea-
sures of sleepiness, we constructed ROC curves 
for RR-interval PSD (0.02-0.08 Hz), frontal EEG 
PSD (1.0-4.5 Hz), PERCLOS, and self-reported 
sleepiness (Table 2 and Figure 3A). For each PVT 
session, the binary classification task was to deter-
mine whether a subject would show a greater than 
25% increase in lapses from baseline, measured 
relative to each individual’s range of PVT perfor-
mance during 40 hours of wakefulness.

ROC curves for RR-interval PSD (0.02-0.08 
Hz) and PERCLOS were similar, with mean AUC 
values of 0.87 ± 0.02 and 0.89 ± 0.02, respectively 
(χ2 = 0.56, P = 0.45; Table 2). At their respective 
optimal thresholds, RR-interval PSD classified 
subject performance with 76% sensitivity and 89% 

specificity, and PERCLOS classified subject performance with 
78% sensitivity and 88% specificity. By comparison, self-report-
ed sleepiness and frontal EEG delta power performed worse at 
determining a greater than 25% increase in PVT lapses; AUC 
values for these measures were 0.83 ± 0.02 and 0.82 ± 0.02, re-
spectively (Table 2).

To address the possibility that the relative performance of 
RR-interval PSD at classifying subject performance would 
change at different thresholds for PVT lapses, we also compared 
AUC for greater than 50% and greater than 75% increases in 
PVT lapses (Table 2). Across different thresholds, RR-interval 
PSD provided the closest performance relative to PERCLOS 
at correctly identifying an increase in the number of PVT laps-

partial recovery toward the baseline rested state after 24 hours 
of wakefulness (Figure 2D).

Next, we compared our findings for HRV with validated 
measures of sleepiness derived from EEG PSD and ocular mea-
sures (Table 1). We examined EEG PSD in 0.5-Hz bins from 
0.5 to 16 Hz (Fz, Cz, Pz, and Oz; Figure 2E and Figure S3). The 
EEG frequency band that correlated most strongly with PVT 
lapses was delta (1.0-4.5 Hz) measured from the frontal deriva-
tion (r = 0.65 ± 0.04, P < 0.001). Although the correlation coef-
ficient for RR-interval PSD (0.02-0.08 Hz) vs PVT lapses was 
higher than that observed for frontal EEG delta power (0.68 and 
0.65, respectively), the difference in r values was not significant 
(Z = 1.05, P = 0.29). Similar to PVT lapses and RR-interval 

Table 1—Correlation of different physiologic measures with PVT lapses during 40 hours of 
sustained wakefulness

Measure Signal type

Correlation 
coefficient 
(r ± SEM)

% of subjects 
with correlation 

P < 0.05
PERCLOS Eye-tracking 0.77 ± 0.04* 86.7
RR-interval PSD (0.02 - 0.08 Hz) ECG 0.68 ± 0.03* 90.0
RR-interval SDNN ECG 0.67 ± 0.04* 90.0
Delta power (Fz) EEG 0.65 ± 0.04* 87.0
VAS (Sleepiness) Self-report 0.59 ± 0.04* 66.7
RR-interval VLF power ECG 0.57 ± 0.05* 80.0
RR-interval LF power ECG 0.56 ± 0.05* 65.0
KSS Self-report 0.56 ± 0.04* 66.7
Delta power (Cz) EEG 0.54 ± 0.06* 60.9
Eye blinks EOG -0.51 ± 0.07* 60.9
Theta power (Pz) EEG 0.49 ± 0.06* 60.9
Theta power (Cz) EEG 0.46 ± 0.07* 52.2
Time since wake Time 0.45 ± 0.04* 50.0
Delta power (Oz) EEG 0.45 ± 0.06* 47.8
Theta power (Oz) EEG 0.45 ± 0.09* 65.2
Delta power (Pz) EEG 0.44 ± 0.08* 60.9
Theta power (Fz) EEG 0.37 ± 0.07* 47.8
Core body temperature Temperature -0.30 ± 0.06* 20.0
Heart rate ECG -0.26 ± 0.07* 25.0
Alpha power (Oz) EEG -0.21 ± 0.11* 56.5
RR-interval HF power ECG 0.19 ± 0.06* 20.0
Alpha power (Pz) EEG -0.11 ± 0.10 39.1
Alpha power (Fz) EEG -0.09 ± 0.10 39.1
Alpha power (Cz) EEG -0.09 ± 0.10 43.5
Beta power (Fz) EEG -0.05 ± 0.09 30.4
Beta power (Oz) EEG -0.02 ± 0.08 30.4
Beta power (Cz) EEG -0.02 ± 0.09 26.1
Beta power (Pz) EEG 0.02 ± 0.10 26.1

The Pearson correlation coefficient (r ) was determined for each physiologic measure 
vs Psychomotor Vigilance Task (PVT) lapses. Here, the mean r ± SEM is shown across 
subjects, with r values ranked in descending order of magnitude. Asterisks indicate significant 
group correlations (P < 0.001). The percentage of subjects with a significant correlation 
between each physiologic measure and PVT lapses is shown in the far right column. ECG, 
electrocardiogram; EEG, electroencephalogram; EOG, electrooculogram; PERCLOS, 
percentage of eyelid closure over the pupil over time; PSD, power spectral density; SDNN: 
standard deviation of RR intervals; VLF, very low frequency; LF, low frequency; HF, high 
frequency; VAS, visual analogue scale; KSS, Karolinska sleepiness scale.
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results indicate that it is possible to estimate whether a subject 
will show an increase in PVT lapses above threshold by com-
paring his RR-interval PSD (0.02-0.08 Hz) at any point in time 
with his RR-interval PSD when he is well rested.

DISCUSSION
Our results demonstrate that HRV can be used to estimate 

sleepiness-related lapses in psychomotor vigilance. During 40 
hours of sustained wakefulness, RR-interval PSD in the 0.02- 
to 0.08-Hz range performed nearly as well as PERCLOS at 
classifying subject performance on the PVT. These laboratory 
findings suggest that ECG-derived measures could potentially 
be used to assess an individual’s sleepiness level, similar to ex-
isting technologies that derive fatigue or sleepiness estimates 
from ocular measures or the EEG.

Estimating Performance Using ECG-Derived Measures
In humans, sleepiness is regulated by the interaction of ho-

meostatic and circadian processes.28 Hence, physiologic sig-
nals that are used to estimate sleepiness-related decrements in 
performance should be sensitive to homeostatic and circadian 
modulation. Similar to the profile of PVT lapses, we found 
that RR-interval PSD (0.02-0.08 Hz) increased monotoni-
cally during the usual hours of sleep, as subjects became in-
creasingly sleep deprived. After about 24 hours of sustained 
wakefulness, however, RR-interval PSD and PVT lapses 
decreased, as the circadian rhythm of alertness opposed the 
build-up of homeostatic sleep pressure. These results indicate 
that RR-interval PSD tracks changes in PVT performance in-
duced by interaction of the homeostatic drive to sleep and the 

es. PERCLOS outperformed 
RR-interval PSD at the 50% 
threshold (χ2 = 6.71, P = 0.01), 
but not at the 75% threshold 
for PVT lapses (χ2 = 2.58, 
P = 0.11). By comparison, 
PERCLOS outperformed EEG 
PSD and self-rated sleepiness 
at all thresholds tested (χ2 > 7.3 
and P < 0.01 for all pairwise 
comparisons).

Given that PERCLOS was 
measured in a subset of par-
ticipants, we also compared 
AUC only in subjects in whom 
eye-tracking data were collect-
ed (n = 14 without any miss-
ing data). Consistent with our 
findings in the larger group, 
PERCLOS performed bet-
ter than RR-interval PSD at 
the 50% threshold (χ2 = 6.18, 
P = 0.01) but not at the 25% or 
75% thresholds for PVT lapses 
(χ2 = 1.70, P = 0.19; χ2 = 2.79, 
P = 0.10; Table S1). PERCLOS 
outperformed frontal EEG del-
ta power at all thresholds test-
ed (χ2 ≥ 6.03 and P ≤ 0.01), in 
addition to self-reported sleepiness at 50% and 75% thresholds 
for PVT lapses (χ2 ≥ 8.20 and P < 0.01). At the 25% threshold, 
however, the difference in AUC for PERCLOS vs self-rated 
sleepiness did not reach statistical significance (χ2 = 3.00 and 
P = 0.08).

In the analyses described above, physiologic measures that 
were collected during sleep deprivation were z-transformed 
within subjects prior to ROC analysis. In a real-world setting, 
a person’s physiologic response to sleep deprivation would not 
be known in advance; hence, it would be necessary to estimate 
a person’s normalization parameters using only his physiologic 
data at baseline. We therefore tested our HRV-based approach 
for estimating subject performance using leave-1-subject-out 
cross-validation to z-transform each individual’s RR-interval 
PSD data. In the training group, the normalization parameters μ 
and σ were regressed linearly on mean and standard deviation 
of RR-interval PSD (0.02-0.08 Hz) measured during the first 16 
hours of wakefulness. The resulting curves were then used to 
estimate μ and σ in each test subject, based on his RR-interval 
PSD measured during baseline. Transformed data were then 
pooled across subjects to generate ROC curves (Figure 3B). 
At the optimal classification threshold, RR-interval PSD in the 
0.02- to 0.08-Hz range classified a greater than 25% increase in 
PVT lapses with 81% sensitivity and 85% specificity. By com-
paring AUC of ROC curves, we found that RR-interval PSD 
and PERCLOS performed equally well at identifying a greater 
than 25% increase in PVT lapses relative to baseline (χ2 = 1.07, 
P = 0.30; Figure 3C). AUC was also similar for RR-interval 
PSD vs PERCLOS at 50% and 75% PVT performance thresh-
olds (χ2 = 1.07, P = 0.30; χ2 = 1.07, P = 0.30; Figure 3C). These 

Table 2—Relative performance of different physiologic measures at identifying an increase in PVT lapses above 
threshold

Measure AUC ± SE
Sensitivity (%)

(95% CI)
Specificity (%)

(95% CI) χ2 P value
25% PVT lapse threshold

PERCLOS 0.89 ± 0.02 78.0 (69.0 – 85.4) 87.6 (81.5 – 92.2) - -
RR-interval PSD 0.87 ± 0.02 75.8 (68.2 – 82.5) 89.1 (84.1 – 93.0) 0.56 0.45
Sleepiness (VAS) 0.83 ± 0.02 66.9 (59.4 – 73.7) 83.5 (78.3 – 87.8) 7.37 0.007
Delta power (Fz) 0.82 ± 0.02 76.3 (69.2 – 82.5) 76.3 (70.5 – 81.5) 8.74 0.003

50% PVT lapse threshold
PERCLOS 0.89 ± 0.02 76.9 (64.8 – 86.5) 87.3 (82.0 – 91.6) - -
RR-interval PSD 0.85 ± 0.02 73.4 (63.3 – 82.0) 84.6 (79.7 – 88.7) 6.71 0.01
Delta power (Fz) 0.82 ± 0.03 70.8 (61.1 – 79.2) 83.8 (79.2 – 87.7) 16.25 < 0.0001
Sleepiness (VAS) 0.78 ± 0.02 60.6 (50.7 – 69.8) 80.5 (75.8 – 84.7) 16.38 < 0.0001

75% PVT lapse threshold
PERCLOS 0.91 ± 0.02 81.3 (63.6 – 92.8) 87.4 (82.5 – 91.3) - -
RR-interval PSD 0.86 ± 0.02 87.5 (74.8 – 95.3) 78.5 (73.6 – 83.0) 2.58 0.11
Delta power (Fz) 0.82 ± 0.03 77.8 (64.4 – 88.0) 76.9 (72.2 – 81.2) 18.53 < 0.0001
Sleepiness (VAS) 0.79 ± 0.03 60.0 (45.9 – 73.0) 81.7 (77.4 – 85.5) 18.75 < 0.0001

Physiologic measures are ranked by area under the curve (AUC) of receiver operating characteristic (ROC) curves 
in descending order of magnitude at different Psychomotor Vigilance Task (PVT) lapse thresholds. Sensitivity 
and specificity values were determined at the optimal classification threshold, with 95% confidence intervals (CI) 
shown in parentheses. At each PVT lapse threshold tested, the AUC of ROC curves for RR-interval PSD (0.02-0.08 
Hz), self-reported sleepiness (visual-analog scale [VAS]), and electroencephalographic (EEG) delta power were 
compared to the AUC for percentage of eyelid closure over the pupil over time (PERCLOS). For each pairwise 
comparison, the χ2 statistic is shown.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
le

e
p
/a

rtic
le

/3
5
/3

/3
2
5
/2

5
5
8
8
4
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



SLEEP, Vol. 35, No. 3, 2012 332 Heart Rate Variability Correlates with Vigilance—Chua et al

circadian sleep-wake cycle. Our findings also extend those by 
Chua et al., in which it was shown that some measures of HRV 
correlate with PVT performance during the daytime, in the 
absence of sleep deprivation.14

We found that RR-interval PSD in the 0.02- to 0.08-Hz range 
correlated more strongly with PVT lapses compared to PSD in 
the VLF and LF bands (≤ 0.04 Hz and 0.04 to 0.15 Hz, respec-
tively).21 Our findings for heart rate, its overall variability, and 
PSD in the VLF, LF, and HF bands are consistent, however, 
with previous reports using similar methodology.29-31 For exam-
ple, the time course for PSD in the HF band, which is thought to 
reflect vagal activity, showed strong circadian variation during 
the first 24 hours of sustained wakefulness.31-33 By examining 
HRV over a longer CR procedure than in previous studies, how-
ever, we show that HF power was much lower during the second 
day of sleep deprivation compared with HF power measured 
24 hours earlier at the same relative clock times. Additionally, 
normalized LF power and the LF/HF power ratio remained el-
evated beyond 24 hours of continuous wakefulness, with little 
or no recovery toward the baseline rested state.34 These findings 
are consistent with previous reports that sleep deprivation in-
creases sympathetic tone.34-36

Taken together, our results demonstrate that various mea-
sures of HRV are differentially sensitive to the effects of total 
sleep deprivation. By examining PSD of the RR-interval time 
series across different frequency bands, we found that power in 
the 0.02- to 0.08-Hz range tracked PVT performance closely 
during sleep deprivation, suggesting that this measure of HRV 
could potentially be used to predict sleepiness-related decre-
ments in psychomotor vigilance.

Technical Considerations
The primary behavioral outcome in our study was PVT laps-

es, which is a measure of sustained visual attention. The PVT 
has been used extensively to assess the effects of sleep depri-
vation,22 sleep restriction,6 and sleep-disordered breathing37 on 
vigilance levels. We did not, however, test whether sleepiness-
related decrements in other cognitive functions can be estimat-
ed by RR-interval PSD, PERCLOS, or EEG PSD.

Similar to other studies, we observed large interindividual 
differences in PVT performance during sleep deprivation.38 
Based on cumulative distribution plots for PVT lapses per ses-
sion (Figure S5), 5 lapses represented roughly the 10th percen-
tile of performance in some participants, corresponding to low 
levels of sleepiness during the first 16 hours of wakefulness. In 
other subjects, the same number of lapses corresponded to the 
80th percentile of performance, when subjects were sleep de-
prived and fighting the urge to fall asleep. To account for these 
interindividual differences, we used a relative threshold for de-
fining performance that was based on each person’s range of 
PVT lapses during sustained wakefulness. A drawback of this 
approach is that our model does not predict absolute perfor-
mance levels. Rather, our method addresses the question: How 
much worse is this person’s performance right now, relative to 
his normal ‘rested’ performance level? As such, our approach 
requires individualized calibration with a baseline measure of 
RR-interval PSD when the subject is not deprived of sleep. 
This could prove difficult in a real-world setting, as many in-
dividuals are chronically sleep deprived. Additionally, for our 

Figure 3—RR-interval power spectral density (PSD) can be used to 
identify an increase in Psychomotor Vigilance Task (PVT) lapses above 
threshold. (A) Receiver operating characteristic (ROC) curves show the 
relative performance of different physiologic and subjective measures at 
identifying a > 25% increase in PVT lapses, measured relative to each 
individual’s range of PVT performance. (B) Using leave-1-out cross-
validation to normalize data for classification, ROC curves are shown for 
RR-interval PSD (0.02-0.08 Hz) versus percentage of eyelid closure over 
the pupil over time (PERCLOS) for classifying subject performance at 
the 25% PVT lapse threshold. (C) Based on area under the curve (AUC) 
for ROC curves at different PVT lapse thresholds, RR-interval PSD (red 
bars) and PERCLOS (black bars) were similar in their ability to predict 
a relative increase in PVT lapses. Error bars show the standard error of 
AUC values.
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appropriately time breaks, naps, or pharmacologic interven-
tions to reduce sleepiness levels.

In conclusion, our findings demonstrate that HRV can be used 
to estimate decrements in PVT performance resulting from total 
sleep deprivation. In a laboratory setting, RR-interval PSD in 
the 0.02- to 0.08-Hz frequency range performed nearly as well 
as PERCLOS at identifying a relative increase in PVT lapses 
caused by sleepiness. In future studies, it will be important 
to test whether our findings can be translated to a real-world 
environment. Given that ECG acquisition is minimally intru-
sive and potentially does not require contact with the body, our 
results suggest that HRV measures could be incorporated into 
fatigue-monitoring systems in diverse operational settings.

ABBREVIATIONS
ECG, electrocardiogram
EEG, electroencephalogram
EOG, electrooculogram
HF, high frequency
HRV, heart rate variability
KSS, Karolinska Sleepiness Scale
LF, low frequency
PSD, power spectral density
PERCLOS, percentage of eyelid closure over the pupil over time
PVT, psychomotor vigilance task
RT, reaction time
ROC, receiver operating characteristic
VAS, visual analogue scale
VLF, very low frequency
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Figure S1—Time course of performance and subjective sleepiness 
during 40 h of sustained wakefulness. (A) Mean log reaction time (RT) on 
the Psychomotor Vigilance Task (PVT) increased during the usual hours 
of sleep. RTs were slowest at about 24 h after wake and then improved 
over the next several hours. (B) This improvement in performance 
coincided with the rising phase of core body temperature (CBT) rhythm. 
(C) Subjective ratings of sleepiness on the Karolinska Sleepiness Scale 
(KSS) showed a time course that was similar to the profile for PVT 
performance. Vertical reference lines indicate habitual bedtime and wake 
time. Error bars show SEM.
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Figure S2—Time course of heart rate variability measures during 40 h of sustained wakefulness.  Heart rate variability was measured during a 10-min PVT 
given every two hours. From top to bottom: HR, heart rate; SDNN, standard deviation of RR intervals; VLF, spectral power in the very low frequency band 
of the RR-interval time series (≤ 0.04 Hz); LF(n), normalized power in the low frequency band (0.04-0.15 Hz); LF, spectral power in the low frequency band; 
HF(n), normalized power in the high frequency band (0.15-0.40 Hz); HF, spectral power in the high frequency band; LF/HF; ratio of LF to HF power. Vertical 
reference lines indicate habitual bedtime and wake time. Error bars show SEM.
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Figure S3—Correlation of electroencephalographic (EEG) spectral 
power with PVT lapses during 40 h of sustained wakefulness. EEG 
power was determined in 0.5 Hz bins during each Psychomotor Vigilance 
Task (PVT) session. Pearson correlation coefficients (r ) are shown for 
power measured in each frequency bin vs PVT lapses. The r values were 
averaged across subjects, and error bars show SEM. Correlations are 
shown for EEG power spectral density (PSD) versus PVT lapses in (A) 
central, (B) parietal, and (C) occipital derivations.
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Figure S4—Time course of electroencephalographic (EEG) power spectral density (PSD) during 40 h of sustained wakefulness. From left to right: EEG 
PSD measured in frontal (Fz), central (Cz), parietal (Pz) and occipital (Oz) derivations along the z-line. From top to bottom: delta (1.0-4.5 Hz), theta (4.5-8.5 
Hz), alpha (8.5-12.5 Hz), and beta (12.5-15.5 Hz) frequency bands. Vertical reference lines indicate habitual bedtime and wake time. Error bars show SEM. 
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Figure S5—Interindividual differences in Psychomotor Vigilance Task 
(PVT) performance. (A) The time course of PVT lapses is shown in 
all subjects (n = 24), demonstrating large intersubject variability in 
performance. (B) Cumulative distribution plots are shown for PVT lapses 
(18 sessions) measured during 40 h of sustained wakefulness. Each 
trace shows PVT performance in a different subject.
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Table S1—Relative performance of different physiologic measures at identifying an increase in PVT lapses above threshold (Sub-group analysis for subjects 
with PERCLOS measurements and no missing data for other physiological measurements; n = 14).

Measure AUC ± SE
Sensitivity (%)

(95% CI)
Specificity (%)

(95% CI) χ2 P value
25% PVT lapse threshold

PERCLOS 0.89 ± 0.02 79.2 (70.0 – 86.6) 87.4 (81.5 – 92.3) - -
RR-interval PSD 0.86 ± 0.02 81.2 (72.2 – 88.3) 82.8 (75.8 – 88.4) 1.70 0.19
Sleepiness (VAS) 0.84 ± 0.03 75.3 (65.7 – 83.3) 83.4 (76.5 – 89.0) 3.00 0.08
Delta power (Fz) 0.79 ± 0.03 65.2 (55.2 – 74.5) 86.6 (80.3 – 91.7) 6.59 0.01

50% PVT lapse threshold
PERCLOS 0.89 ± 0.02 79.0 (66.8 – 88.3) 86.3 (80.6 – 90.9) - -
RR-interval PSD 0.82 ± 0.03 72.6 (59.8 – 83.2) 84.7 (78.8 – 89.5) 6.18 0.01
Sleepiness (VAS) 0.79 ± 0.03 59.7 (46.5 – 72.0) 84.7 (78.8 – 89.5) 8.20 0.004
Delta power (Fz) 0.79 ± 0.03 81.4 (68.6 – 89.6) 82.3 (75.9 – 87.3) 6.03 0.01

75% PVT lapse threshold
PERCLOS 0.90 ± 0.02 80.7 (62.5 – 92.6) 86.4 (81.2 – 90.7) - -
RR-interval PSD 0.86 ± 0.03 87.1 (70.2 – 96.4) 79.2 (73.2 – 84.3) 2.79 0.10
Sleepiness (VAS) 0.77 ± 0.04 61.3 (42.2 – 78.2) 80.1 (74.2 – 85.2) 11.94 < 0.0001
Delta power (Fz) 0.72 ± 0.05 60.0 (42.2 – 78.2) 85.8 (80.1 – 90.3) 11.68 < 0.0001

Physiologic measures are ranked by area under the curve (AUC) of receiver operating characteristic (ROC) curves in descending order of magnitude at 
different PVT lapse thresholds.  Sensitivity and specificity values were determined at the optimal classification threshold, with 95% confidence intervals 
shown in parentheses.  At each PVT lapse threshold tested, the AUC of ROC curves for RR-interval PSD (0.02-0.08 Hz), self-reported sleepiness (visual-
analog scale [VAS]), and electroencephalographic (EEG) delta power were compared to the AUC for percentage of eyelid closure over the pupil over time 
(PERCLOS).  For each pairwise comparison, the χ2 statistic is shown in the far right column.
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