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There has been significant progress in the field of heart transplantation over the last 45 years.
The 1-yr survival rates following heart transplantation have improved from 30% in the 1970s
to almost 90% in the 2000s. However, there has been little change in long-term outcomes.
This is mainly due to chronic rejection, malignancy, and the detrimental side effects of
chronic immunosuppression. In addition, over the last decade, new challenges have arisen
such as increasingly complicated recipients and antibody-mediated rejection. Most, if not
all, of these obstacles to long-term survival could be prevented or ameliorated by the induc-
tion of transplant tolerance wherein the recipient’s immune system is persuaded not to mount
a damaging immune response against donor antigens, thus eliminating the need for chronic
immunosuppression. However, the heart, as opposed to other allografts like kidneys, appears
to be a tolerance-resistant organ. Understanding why organs like kidneys and livers are prone
to tolerance induction, whereas others like hearts and lungs are tolerance-resistant, could aid
in our attempts to achieve long-term, immunosuppression-free survival in human heart trans-
plant recipients. It could also advance the field of pig-to-human xenotransplantation, which,
if successful, would eliminate the organ shortage problem. Of course, there are alternative
futures to the field of heart transplantation that may include the application of total mechan-
ical support, stem cells, or bioengineered whole organs. Which modality will be the first to
reach the ultimate goal of achieving unlimited, long-term, circulatory support with minimal
risk to longevity or lifestyle is unknown, but significant progress in being made in each of
these areas.

Although the first human-to-human heart
transplant was performed in 1967, heart

transplantation did not become the treatment
of choice for patients with end-stage heart failure

until the 1980s, when the use of cyclosporine
(CyA) was extended to heart transplant recipi-
ents, resulting in a dramatic improvement in pa-
tient survival. One-year survival following heart
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transplantation in the era 1967–1973 was 30%,
in the era 1974–1980, it was 60%, and in the
current era, it approaches a remarkable 90%
(Stehlik et al. 2012; Colvin-Adams et al. 2013).
Although progress has clearly been made over
the last 45 years, there are still serious challenges
facing the field, which limit the application and
the success of heart transplantation. Some bar-
riers are well known, such as (1) the shortage of
donor organs, which greatly limits the number
of patients able to receive a heart transplant;
(2) cardiac allograft vasculopathy (CAV) and
malignancy, which compromise the long-term
survival of heart transplant recipients; and
(3) drug-induced complications from chronic
immunosuppression including diabetes melli-
tus, kidney disease, hypertension, and obesity,
which contribute to patient morbidity and mor-
tality. Other challenges, such as increasingly
complicated recipients and antibody-mediated
rejection (AMR), have only become evident over
the last decade as the recipient demographics
have changed and the use of mechanical circu-
latory support (MSC) devices has increased
(Hunt and Haddad 2008; Kobashigawa 2012).
Together, these obstacles account for the fact
that there has been no increase in the number
of adult heart transplants performed over the last
decade (�4000 documented worldwide trans-
plants/year) despite almost a 20% increase in
the number of new adults on the waiting list
(Colvin-Adams et al. 2013) and the fact that
the 5-yr survival of patients lucky enough to
receive a heart is still only �70%, with a disap-
pointing median survival of 11 yr and an annual
attrition rate of 3%–4%, which has not changed
significantly in the last three decades (Stehlik
et al. 2012; Colvin-Adams et al. 2013).

Strategies that have been and are being de-
veloped to overcome these challenges have fo-
cused on either controlling the human immune
system more effectively and specifically with
newer immunosuppressive agents such as rapa-
mycin and rituximab or, alternatively, attempt-
ing to harness the immune system to achieve a
state of transplant tolerance in which the recip-
ient is induced not to mount a damaging im-
mune response against the donor heart and re-
mains free of chronic immunosuppression. In

this article, we review how the field has changed
over the last decade, focusing on the new and old
barriers facing heart transplant recipients. We
then discuss a particular avenue of research
that exemplifies the potential for immune tol-
erance in overcoming these barriers and achiev-
ing long-term, immunosuppression-free heart
allograft survival.

CHANGES AND CHALLENGES
IN THE FIELD

Recipient Demographics

Over the last decade, the demographics of heart
recipients have shifted in ways that have brought
new challenges to transplant clinicians. A great-
er proportion of patients in their sixties and
seventies along with their age-related comor-
bidities are being transplanted. These patients
tend to have higher risks of infection and CAV
(Kobashigawa 2012). At the other end of the
spectrum, advances in congenital heart surgery
have led to a greater proportion of younger pa-
tients with congenital heart disease (CHD)
surviving past childhood and developing heart
failure later in life. These patients can have com-
plex cardiopulmonary anatomy and usually
have undergone multiple previous median ster-
notomies, which increases the risk of postoper-
ative bleeding and mortality. Indeed, CHD is
one of the strongest risk factors for 1-yr mortal-
ity after heart transplantation in adults (Stehlik
et al. 2012).

Immunosuppression

The past decade has seen changes in what is
considered to be standard, triple-drug, mainte-
nance immunosuppression for the convention-
al heart transplant recipient. Corticosteroids
(usually prednisone) remain the backbone of
most immunosuppressive regimens. However,
mycophenolate mofetil (MMF) has replaced
azathioprine as the most commonly used anti-
proliferative agent, and tacrolimus (TAC) has
replaced CyA as the most commonly used calci-
neurin inhibitor (CNI). The MMF/TAC com-
bination seems to possess the optimum risk–
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benefit ratio in preventing acute rejection (AR)
and perhaps CAVeven though it does not appear
to improve long-term survival (Kobashigawa
et al. 2006; Guethoff et al. 2013).

There are several important unanswered
questions concerning immunosuppression for
heart transplant recipients that require further
study. For example, which recipients should re-
ceive induction therapy and using what agent?
Although a survival benefit has not been clearly
documented (Hershberger et al. 2005), half
of all transplant programs currently use induc-
tion therapy, most commonly a short course of
antithymocyte globulin (ATG) or anti-CD25
monoclonal antibody (basiliximab) (Stehlik
et al. 2012). The general consensus is that the
selective use of an induction agent is appropri-
ate in highly sensitized patients or in patients
with perioperative renal failure where delay-
ing CNI therapy is beneficial. However, clear
supporting data are lacking (Aliabadi et al.
2013).

The role for some of the newer immunosup-
pressive agents in heart transplantation is also
being investigated. Several clinical trials have
shown that inhibitors of the mammalian target
of rapamycin (mTOR), such as sirolimus and
everolimus, have been effective in preventing
acute rejection (AR) (Eisen et al. 2003), mitigat-
ing CAV (Mancini et al. 2003), and improving
outcomes in recipients with malignancies (Va-
lantine 2007). They may allow for CNI minimi-
zation or elimination, which could avoid the
progressive nephropathy associated with chron-
ic CNIuse (Zuckermann et al. 2012). Rituximab,
a chimeric anti-CD20 (anti-B-cell) monoclonal
antibody, has recently been shown to attenuate
CAV in CNI-treated nonhuman primates (Ke-
lishadi et al. 2010). An NIAID-sponsored trial
(U01AI063623) is currently under way to deter-
mine whether preemptive rituximab will ame-
liorate CAV in human recipients. Bortezomib, a
proteasome inhibitor that depletes plasma cells,
has shown efficacy in the treatment of AMR and
desensitization in kidney recipients (Walsh et al.
2012). In a recent pilot study, bortezomib and
plasmapheresis appeared to decrease circulating
antibodies in sensitized patients awaiting heart
transplantation (Patel et al. 2011).

Antibody-Mediated Rejection

Antibody-mediated rejection (AMR) is a partic-
ularly challenging form of rejection in heart
transplant recipients. The absence of practice
guidelines for surveillance and diagnosis has re-
sulted in it only recently being recognized as an
important clinical entity. AMR results from al-
loantibody targeting donor antigens on capil-
lary endothelium. It is increasingly recognized
as a major cause of allograft failure and is asso-
ciated with a greater risk of CAVand death (Nair
et al. 2011). Prevention of AMR is dependent on
identifying the sensitized patient before trans-
plantation. This process has been assisted in re-
cent years by the use of solid phase assays, which
more accurately detects anti-HLA antibodies. In
turn, this information permits virtual cross-
matching, which identifies and rules out those
prospective donors with HLA types that corre-
spond to the specificities of the recipient’s
high-level anti-HLA antibodies without the
need for complement-dependent cytotoxicity
assays (Stehlik et al. 2009). Advances in assessing
anti-HLA antibodies in the recipient and the use
of virtual cross-matching have allowed for better
choices of suitable organ donors.

At present, the guidelines for the diagnosis
of AMR rely solely on the presence of antibody-
mediated injury on endomyocardial biopsy and
not on the presence of circulating alloantibody,
which may be bound to the donor tissue (Berry
et al. 2011). The treatment of AMR depends
on the patient’s presentation, the degree of car-
diac dysfunction, and the detection of alloanti-
body (Kittleson and Kobashigawa 2012). Proto-
cols differ by center because there is still a lack of
randomized trials for AMR therapy (Kobashi-
gawa et al. 2011). However, in most centers, pa-
tients with AMR and a significantly reduced
ejection fraction are treated with intravenous
corticosteroids and ATG. Patients presenting in
cardiogenic shock can require plasmapheresis,
intravenous immune globulin (IVIg), heparin,
and mechanical support (Kittleson and Koba-
shigawa 2012). The long-term management of
AMR is also complicated because patients can be
left with a low ejection fraction, restrictive phys-
iology, and accelerated CAV. Some institutions
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are treating these patients with rituximab, bor-
tezomib, and photopheresis, and if necessary,
redo transplantation (Kobashigawa et al. 2011).

Surgical Technique and Organ Preservation

The most significant technical advance in the
heart transplantation surgery over the last dec-
ade has been related to the method of reestab-
lishing systemic venous return. The original or-
thotopic heart transplant operation introduced
by Lower and Shumway (1960) incorporated a
biatrial technique in which cuffs of the left and
right atria were preserved in the recipient and
anastomosed to the corresponding atria of the
donor heart. However, over the last decade, a
bicaval method of systemic venous return has
gained favor. The recipient’s right atrium is
completely resected, and the remaining superior
and inferior vena cavae are anastomosed directly
to the corresponding donor structures. The rea-
son for the switch is that the conventional bi-
atrial technique puts the sinoatrial node at risk
of injury, in addition to adversely impacting
atrial hemodynamics and contributing to an in-
creased risk of atrial arrhythmias in the post-
operative period (Freimark et al. 1995; Leyh
et al. 1995; Brandt et al. 1997). The bicaval tech-
nique eliminates the right atrial suture line, pre-
serves right atrial morphology, and maintains
the sinoatrial node and tricuspid valve function
(Traversi et al. 1998; Aziz et al. 1999). A meta-
analysis of 41 papers comparing bicaval to bi-
atrial anastomoses found significant benefits for
the bicaval technique in terms of early atrial
pressure, tricuspid valve regurgitation, return
to sinus rhythm, frequency of permanent pace-
maker implantation, and even perioperative
mortality. However, long-term outcomes were
less disparate between the groups (Jacob and
Sellke 2009).

In the area of donor heart preservation, a
promising new technology is currently being
evaluated in which normothermic perfusion
provides continuous warm blood flow to the
beating donor heart during transportation
(Ghodsizad et al. 2012). This switch from con-
ventional cold, static storage may not only de-
crease reperfusion injury and primary graft dys-

function but may also allow greater utilization
of available organs.

TRANSPLANT TOLERANCE

As described above, despite improvements in
early posttransplant survival over the last three
decades, a relentless annual attrition rate con-
tinues to plague recipients of previously success-
ful heart allografts, resulting in a median sur-
vival of only 11 yr (Stehlik et al. 2012). Although
infection accounts for most recipient deaths 1-
yr posttransplant, CAVand malignancy account
for most cardiac recipient deaths after 5 yr
(Stehlik et al. 2012). These sobering statistics
emphasize the limitations of chronically admin-
istered immunosuppression and make clear the
need for strategies that achieve long-term graft
survival without the use of chronic immuno-
suppression. Inducing a state of tolerance has
the potential to prevent or ameliorate the three
greatest contributors to heart transplant recipi-
ent mortality, namely, infection, CAV, and can-
cer, while at the same time eliminating drug-
specific morbidities.

Tolerance of kidney allografts has been
achieved in nonhuman primates (NHPs) (Ka-
wai et al. 1995, 1999, 2004) and in humans (Ka-
wai et al. 2008) by using a combination of non-
myeloablative conditioning and donor bone
marrow transplantation that results in transient
mixed chimerism. However, mixed chimerism
protocols that achieve long-term tolerance of
kidney allografts in NHPs fail to induce toler-
ance in recipients of heart allografts (Kawai et al.
2002). The reasons for this organ-specific differ-
ence are not clear. However, it is clear that all
transplanted organs are not created equal. Not
only does the strength of the immune response
to a particular organ vary with the organ trans-
planted, but also the nature of the response itself,
rejection versus tolerance, varies from organ to
organ. In most experimental models of trans-
plantation, heart and lung allografts evoke a
stronger rejection response than kidneyand liver
allografts. Moreover, under the right circum-
stances, kidney and liver allografts can promote
a state of unresponsiveness instead of inciting an
aggressive alloresponse and thus can be consid-
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ered “tolerance-prone” organs. The same can-
not be said for heart and lung allografts, which
are, for the most part, “tolerance resistant.” Not
only do tolerance-prone kidney and liver allo-
grafts appear to contribute to the actual process
of tolerance induction, but also they possess the
unique ability to confer unresponsiveness upon
cotransplanted, tolerance-resistant organs like
hearts. The mechanisms underlying this phe-
nomenon are unclear, but understanding them
could aid into our attempts to bring tolerance to
the clinic. Below, we review organ-specific dif-
ferences in allograft rejection and tolerance, fo-
cusing on ways we might harness the tolero-
genicity of kidney allografts to achieve long-
term, immunosuppression-free survival of more
stringent heart allografts.

ORGAN-SPECIFIC DIFFERENCES
IN REJECTION

The most extreme examples of organ-specific
differences in transplantation are experimental
models in which kidney and liver allografts are
accepted spontaneously (without the use of
immunosuppression), whereas other allografts
such as heart, intestine, and skin transplanted
across the same MHC barrier are rejected acutely
(Russell et al. 1978; Dahmen et al. 1994; Qian
et al. 1994; Zhang et al. 1996; Bickerstaff et al.
2001; Cook et al. 2008; Li et al. 2008; Miyajima
et al. 2011; Wang et al. 2011). Zhang et al. (1996)
compared liver, kidney, and heart transplanta-
tion in three different MHC disparate mouse
strain combinations without treatment. The dif-
ferences in the patterns of rejection between or-
gans were remarkably consistent (Table 1). The
majority of liver allografts in each strain combi-
nation were spontaneously accepted long term,
whereas heart grafts transplanted across identi-
cal histocompatibility barriers were all rejected
in ,10 d. The pattern of kidney allograft rejec-
tion was mixed, with 20%–50% of organs sur-
viving long term (Table 1) (Zhang et al. 1996).
Our results (Madsen et al. 1997; Miyajima et al.
2011) and others (Bickerstaff et al. 2001; Cook
et al. 2008; Wang et al. 2011) in mice support the
fact that kidney allografts have a significantly
prolonged survival compared with heart allo-

grafts transplanted across the same MHC barri-
er. Organ-specific differences in rejection re-
sponses extend to human transplantation. For
example, the graft half-life for heart allografts is
11 yr (Stehlik et al. 2012), whereas the graft half-
life for lung allografts is only 5 yr (Christie et al.
2012). Thus, the organ-specific differences in
transplantation have clinical significance and
deserve further study.

ORGAN-SPECIFIC DIFFERENCES
IN TOLERANCE INDUCTION

Our laboratory has compared the immunobiol-
ogy of heart, kidney, and lung transplantation in
MHC inbred miniature swine (Madsen 1998).
These large animals provide the only preclini-
cal model in which organ transplants can be
performed across the same histocompatibili-
ty barrier reproducibly (Sachs 1992). In brief,
when porcine recipients were transplanted with
MHC class I disparate hearts and treated with
12 d of CyA, they all rejected within 55 d and
showed the florid intimal proliferation of CAV
on necropsy (Madsen et al. 1996). In contrast,
when swine were transplanted with class I dis-
parate kidney allografts and treated with the
same course of CyA, they all became tolerant
to donor antigen and maintained excellent renal
function long term, in some instances for .2 yr
(Fig. 1) (Rosengard et al. 1992). The survival of
lungs transplanted across the same class I barrier
with 12 d of CyA were in between that of hearts
and kidneys, with graft survival ranging from 67
to .605 d and two-thirds developing oblitera-
tive bronchiolitis (Allan et al. 2002). A similar

Table 1. Proportion of liver, kidney, and heart allo-
grafts surviving .100 d in fully MHC disparate
murine recipients

Strain combination Liver Kidney Heart

C57BL/6 into BALB/c
(H-2b) (H-2d)

72% 20% 0%

BALB/c into CBA
(H-2d) (H-2k)

57% 33% 0%

C57BL/6 into C3H/
HeN (H-2b) (H-2k)

73% 50% 0%

Recipients received no treatment; n � 6 recipients/group

(from Zhang et al. 1996).
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hierarchy was observed when organs were trans-
planted across a more rigorous two-haplotype
full MHC barrier and FK506 was substituted for
CyA. Long-term tolerance was induced in renal
allografts (Utsugi et al. 2001), whereas lung sur-
vival ranged 100–500 d and hearts survived
55–134 d. Thus, there are also organ-specific
differences that affect the process of tolerance
induction. In swine, kidneys are easier to tolerize
than lungs, which are easier to tolerize than
hearts. This pattern seems to be true in most
experimental transplant models. These observa-
tions emphasize that protocols designed to in-
duce tolerance may not be directly transferable
from one organ system to another and that the
preclinical testing of tolerance protocols for hu-
man transplantation must proceed in an organ-
specific manner (Massicot-Fisher et al. 2001).

MECHANISMS OF KIDNEY- AND LIVER-
SPECIFIC TOLERANCE INDUCTION

Murine models of spontaneous kidney and liver
allograft acceptance have been well studied and
are arguably our best source of information re-
garding potential mechanisms of organ-specific
tolerance induction.

Kidney Allografts

Spontaneous renal allograft survival was first re-
ported 35 years ago by Russell et al. (1978). Since
then, several studies have shown that MHC-dis-
parate kidney allografts transplanted across cer-

tain strain combinations are accepted spontane-
ously (Russell et al. 1978; Bickerstaff et al. 2001;
Cook et al. 2008; Miyajima et al. 2011; Wang
et al. 2011). We have recently shown that spon-
taneously accepted kidney allografts showed
prominent periarterial lymphoid sheaths con-
taining nodules of CD3þFoxp3þ T cells, CD4þ

T cells, DCs, B cells, and indoleamine-pyrrole
2,3-dioxygenase (IDO)þ cells (Miyajima et al.
2011). The majority of the cells were CD3þ,
and �20%–30% of them were Foxp3þ. These
regulatory T-cell-rich organized lymphoid
structures, which we term “TOLS,” are distinct
from tertiary lymphoid structures (TLOs) found
in chronic inflammation in that they lack high
endothelial venules (MECA792). Similar struc-
tures have been identified in tolerant pig and
nonhuman primate kidneyallografts (E Farkash,
A Alessandrini, and RB Colvin, unpubl.). We
have recently shown that Foxp3þ regulatory T
cells (Tregs) are necessary to maintain unre-
sponsiveness in spontaneously accepted MHC
mismatched mouse kidney allografts (Miyajima
et al. 2011). Administering diphtheria toxin
(DT) to kidney recipients expressing the human
diphtheria toxin receptor (DTR) under the con-
trol of the foxp3 gene (B6.Foxp3DTR) allowed us
to transiently deplete Foxp3þ Tregs without
morbidity (Kim et al. 2007). Treg depletion in
long-term surviving kidney allograft recipients
triggered acute cellular rejection, manifested by
a sudden increase in BUN. The previously iden-
tified TOLS disintegrated after Treg depletion
and was accompanied by widespread CD8þ in-
terstitial mononuclear inflammation, tubulitis,
and endarteritis, indicating acute cellular rejec-
tion (Miyajima et al. 2011). Although there is
convincing evidence that Tregs play a role in
mediating the spontaneous acceptance of renal
allografts (Bickerstaff et al. 2001; Cook et al.
2008; Miyajima et al. 2011; Wang et al. 2011),
the mechanisms by which cells or cell products
intrinsic to kidney but not heart allografts pro-
mote or expand Tregs is unclear.

In addressing this question, we know that
there are two cell populations present in kid-
neys with the capacity to down-regulate alloim-
mune responses: (1) plasmacytoid dendritic
cells (pDCs), which have been shown to be ca-
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Figure 1. Heart versus kidney transplantation in
MHC class I disparate swine treated with a 12-d
course of CyA.
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pable of promoting the generation of Tregs and
inducing tolerance to heart allografts in mice
(Abe et al. 2005; Ochando et al. 2006; Gehrie
et al. 2011); and (2) renal tubular epithelial cells
(RTECs), which have been shown to be capable
of inducing T-cell unresponsiveness to self- and
alloantigens in mice and humans (Hagerty and
Allen 1992; Kirby et al. 1993; Singer et al. 1993;
Hadley et al. 1996; Deckers et al. 1997; Frasca
et al. 1998). These cell types form the basis for
two nonmutually exclusive hypotheses to ex-
plain spontaneous kidney allograft acceptance.

The pDC Hypothesis

The “pDC hypothesis” predicts that donor pDCs
transferred within the kidney allograft traffic to
the host thymus and lymph nodes, where they
facilitate the activation/expansion of donor-spe-
cific Tregs (Fig. 2A). It is known that abundant
CD11cþ DCs are present in normal mouse kid-
neys (Soos et al. 2006). We have recently shown
that CD11cþ cells isolated from naı̈ve, untrans-
plantedkidneys(fromDBA/2andBALB/cmice)
contain a subpopulation of PDCA-1þB220þ

pDCs not found in hearts from the same animals
(A Alessandrini and RB Colvin, unpubl.). The
presence of PDCA-1þB220þ pDCs in DBA/2
kidneys but not hearts may explain why DBA/2
kidneys are spontaneously accepted when trans-
planted into B6 wild-type recipients, whereas
DBA/2 hearts are uniformly rejected (Bicker-
staff et al. 2001; Cook et al. 2008).

The RTEC Hypothesis

The “RTEC hypothesis” predicts that RTECs,
intrinsic to the donor kidney, down-regulate
or inactivate effector T cells emigrating from
the host thymus or convert them to Tregs, thus
shifting the balance of the immune response
away from rejection and toward tolerance (Fig.
2B). There is precedent for this theory in that it
has been previously shown that Foxp3þ cells are
enriched in the tubules of mouse (Brown et al.
2007) and human (Veronese et al. 2007) renal
allografts. Frasca and colleagues (1998) have
shown that IFN-g-treated human RTECs induce
allospecific tolerance via a class II pathway. IFN-
g induces the T-cell inhibitor molecules PD-L1
and IDO on RTECs (Schoop et al. 2004; Mohib
et al. 2007), and PD-L1 can induce the genera-
tion of allogeneic Foxp3þ Tregs (Krupnick et al.
2005), in part by down-regulating PTEN (Fran-
cisco et al. 2009). Importantly, Amarnath et al.
(2011) have recently shown that PD1 signaling
results in the conversion of human TH1 cells
into Treg cells. Finally, RTECs are known to pro-
duce and activate TGF-b (Robertson et al.
2001), which is a major inducer of Foxp3þ

Treg (Zheng 2008) and tolerogenic pDC (Pal-
lotta et al. 2011) generation. High levels of
TGF-b have been documented in accepted
DBA/2 kidneys (Bickerstaff et al. 2001; Cook
et al. 2008). Together, these findings support
the possibility that RTECs contribute to sponta-
neous tolerance of kidney allografts.

Liver Allografts

Like kidney allografts, liver allografts are spon-
taneously accepted across certain mouse and rat
strain combinations (Dahmen et al. 1994; Qian
et al. 1994; Sriwatanawongsa et al. 1995; Zhang
et al. 1996; Li et al. 2008). Like kidney allografts,
depletion of recipient Tregs using anti-CD25 an-
tibody induces acute liver allograft rejection (Li
et al. 2008). And, like kidneys, the mechanism(s)
by which Treg-mediated tolerance is induced by
liver allografts is not known. However, the inher-
ent tolerogenic properties of murine livers
would suggest that, as in kidneys, cells or cell
products intrinsic to the liver play a role. Three

Host thymus
A

B

pDC theory

RTEC theory

Tregs

Tregs

pDCs

RTECs

Teff

Figure 2. Hypothetical models explaining kidney-in-
duced cardiac allograft tolerance.
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cell populations present in liver have been shown
capable of suppressing an alloimmune response.
They are (1) pDCs, located within the periportal
areas and around the central veins (Sumpter
et al. 2007); (2) liver sinusoidal endothelial cells
(LSECs), which generate anti-inflammatory cy-
tokines, such as IL-10 (Knolle et al. 1995), and
diminish the survival CD8þ T cells (Limmer
et al. 2000; Bowen et al. 2004; von Oppen et al.
2009); and (3) hepatic stellate cells (HSCs),
which can promote the induction of Tregs (Fig.
3) (Yang et al. 2009).

The pDC Hypothesis

The “pDC hypothesis” predicts that, like renal
pDCs, liver pDCs migrate to the host thymus
and lymph nodes, resulting in the activation/
expansion of donor-specific Tregs. Support for
this hypothesis comes from the observation that
hepatic dendritic cells are less immunogenic
than splenic dendritic cells and that only 5% of
splenic DCs are made up of pDCs, whereas 19%
of the liver DC population is made up of pDCs
(Pillarisetty et al. 2004). Support also comes
from that fact that circulating pDCs were in-
creased relative to myeloid DCs (mDCs) in op-
erationally tolerant pediatric liver allograft re-
cipients as compared with patients maintained
on chronic immunosuppression (Mazariegos
et al. 2005).

The LSEC Hypothesis

The “LSEC hypothesis” predicts that these cells
regulate the immune response by secreting IL-10

(Knolle et al. 1995). LSECs also constitutively
express MHC class I molecules and, via cross-
presentation of antigen to CD8þ T cells, are able
to induce CD8þT-cell tolerance rather than im-
munity (Limmer et al. 2000; von Oppen et al.
2009). LSEC-primed, naı̈ve CD8þ T cells are
initially induced to proliferate, to release cyto-
kines, such as IL-2 and IFN-g, and to express
CD69 and CD25, but eventually begin to secrete
low levels of the cytokines and show low cyto-
toxicity activity (Limmer et al. 2000). The in-
duction of CD8þ T-cell tolerance has correlated
with and has been shown to be dependent on the
induction of the negative costimulatory mole-
cule PD-L1 by LSECs (Diehl et al. 2008). Wheth-
er LSECs are able to induce Tregs or convert Teff
to Tregs is not yet known, but their contribution
to the down-regulation of an immune response
begs further study in this area.

The HSC Hypothesis

Finally, the “HSC hypothesis” predicts that he-
patic stellate cells (HSCs) are able to convert
naı̈ve or effector T cells to Tregs. HSCs store
vitamin A and can produce TGF-b in response
to inflammation and injury (Diehl et al. 2008;
Tiegs and Lohse 2010). Vitamin A–derived ret-
inoic acid and TGF-b have been shown to par-
ticipate in the conversion of CD4þ T cells to
Tregs (Xiao et al. 2008; Liu et al. 2011). It has
been further shown that activated HSCs express
PD-L1 (Yu et al. 2004). There is precedent for the
HSC theory because HSCs are able to confer
unresponsiveness and long-term survival to
islet allografts by inducing Tregs (Yang et al.
2009) and myeloid-derived suppressor cells
(Chou et al. 2011a,b).

TOLERANCE-PRONE ORGANS CAN
CONFER UNRESPONSIVENESS UPON
TOLERANCE-RESISTANT ORGANS

Although, as mentioned above, some organs are
known to be tolerance prone (liver and kidney),
whereas others are tolerance resistant (heart and
lung), less is known about why tolerance-prone
organs are able to confer a survival advantage
upon another organ allograft procured from

Thymus
and

lymph
nodes

CD4+ T cells

pDCs
HSC

LSEC

?

Tregs
Teff

Donor
liver

Tregs

Figure 3. Hypothetical models explaining the sponta-
neous acceptance of liver allografts.
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the same donor and cotransplanted into the
same recipient. This phenomenon was first de-
scribed in pigs and termed the “liver effect” by
Calne et al. (1969). It is now clear that a similar
effect occurs in human recipients of liver trans-
plants (Calne et al. 1969; Hart et al. 1971; Calne
and Davies 1994; Rasmussen et al. 1995; Prasee-
dom et al. 2001) and to a lesser extent in kidney
allograft recipients (see below).

Kidney-Induced Cardiac Allograft Tolerance
(KICAT)

We have studied the phenomenon of kidney-in-
duced cardiac allograft tolerance (KICAT) in
MHC inbred miniature swine by taking advan-
tage of the ability of kidney allografts to induce
long-term stable tolerance of cotransplanted
heart allografts, which, if transplanted alone,
would reject acutely (Table 2, No. 1). Recipients
cotransplanted with the heart and kidney from
the same class I disparate donor all developed
rapid and stable tolerance to the donor, which
led to long-term survival of both kidney and
heart allografts with no evidence of rejection

on serial biopsies. In addition, there was no allo-
antibody formation, loss of antidonor respon-
siveness in cell-mediated lympholysis (CML) as-
says, and prevention of CAV (Table 2, No. 2).
Neither heart nor kidney allograft survival was
affected by the placement of donor-specific and
third-party skin grafts despite the return of anti-
donor CML reactivity, which suggested the on-
going effects of regulatory T cells (Tregs) (Table
2, No. 3).

Kidney-Specific Elements Responsible
for KICAT

Donor Antigen Load

To test whether KICAT was simply due to the
additional donor antigen presented by the co-
transplanted kidney, we compared heart/kidney
recipients to recipients grafted with two class I
disparate hearts. Although the allografts in re-
cipients of two hearts survived longer than the
allograft in recipients of one heart, (1) the dou-
ble-heart allografts showed high-grade rejection
with early and severe CAVon serial biopsies; (2)

Table 2. Results in class I disparate swine treated with 12 d of CyA

No. Experiment

Heart

survivala
Heart rejection

biopsiesb CAVc

CML/Ab

responsed References

1 Heart alone þþ þþþþ þþþþ þ/þ Madsen et al. 1996
2 Heart and kidney þþþþ 2 2 2/2 Madsen et al. 1998
3 Heart and kidney and

MHC-disparate skin
þþþþ 2 2 þ/2 Madsen et al. 1998

4 Double hearts þþþþ þþþ þþ þ/þ Yamada et al. 2000
5 Heart and kidney

nephrectomized early
þþþ þþþ þþþ þ/2 Mezrich et al. 2005

6 Heart and kidney
nephrectomized late

þþþþ 2 þþ 2/2 Mezrich et al. 2005

7 Irradiated heart and
kidney

þþþþ þþþ þþþ þ/2 Mezrich et al. 2003b

8 Irradiated heart and
shielded kidney

þþþþ 2 2 2/2 Mezrich et al. 2003b

9 Heart and kidney
thymectomized early

þþþ þþþ þþþ þ/2 Yamada et al. 1999

10 Heart and kidney
thymectomized late

þþþþ 2 þþ 2/22 Mezrich et al. 2005

aGraded on a relative scale from þ (�10 d) to þþþþ (.100).
bGraded on a relative scale from þ (ISHLT grade 2) to þþþþ (ISHLT grade 4) on serial biopsies.
cGraded on a relative scale from þ (rare, minimal luminal obstruction) toþþþþ (frequent, significant luminal obstruction).
dGraded as þ (response present) or – (response absent).

Heart Transplantation
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antidonor responsiveness in CML assays was
maintained in the double-heart recipients; and
(3) alloantibody was generated in the double-
heart recipients (Table 2, No. 4). Thus, although
augmentation of donor-antigen load could de-
lay rejection, it could not induce tolerance.

Donor Nephrectomy

Donor kidney graftectomy on postoperative day
(POD) 8 led to early cardiac allograft rejection.
One recipient rejected its heart allograft on POD
29 with severe CAV. The other two showed pro-
longed heart allograft survival but showed high-
grade interstitial rejection with severe CAV as
early as POD 32 and never lost antidonor
CML responsiveness (Table 2, No. 5). Further-
more, 2 wk after donor and third-party skin
grafts were placed on the extended survivors,
the heart allografts were acutely rejected. Thus,
the donor kidney must remain in the recipient
for .8 d to achieve KICAT. When donor ne-
phrectomy was performed late (.100 d) rejec-
tion was not seen, although eventually mild CAV
developed (Table 2, No. 6). However, within
2 wk of donor and third-party skin grafting,
the heart allografts were rejected. These results
suggest that the kidney allograft participates in
the process of both tolerance induction and
maintenance. More specifically, the skin grafting
data suggest that elements associated with the
donor kidney were able to actively suppress the
antidonor response of circulating class I cytotox-
icT lymphocyte precursors (CTLps), whichwere
generated by the skin grafts (documented by
CML) and which had the capacity to mediate
acute rejection after the kidney allograft was re-
moved (Madsen 1998; Christie et al. 2012).

Donor Kidney Irradiation

Cells of hematopoietic origin are extremely sen-
sitive to radiation, with an LD50 estimated at
300–500 rads, but renal parenchymal cells are
able to tolerate doses of 1000–2000 rads of un-
fractionated irradiation (Russell et al. 1978;
Massicot-Fisher et al. 2001). Recipients of heart
and kidney allografts from donors irradiated
with 1000 rads before organ procurement failed

to develop tolerance, maintaining strong anti-
donor CML responses despite having function-
ing, life-sustaining kidney allografts (Table 2,
No. 7). Irradiating the donor heart while shield-
ing the donor kidney before combined trans-
plantation led to KICAT, indicating that it was
unlikely that nonspecific irradiation-associated
inflammation within the cardiac allograft was
the reason for failure of KICAT. Instead, a radio-
sensitive, lymphohematopoietic cell population
intrinsic to the donor kidney but not heart ap-
peared necessary for the development of KICAT.

INITIAL ATTEMPTS TO DETERMINE THE
ROLE FOR TREGS IN MEDIATING KICAT
IN MINIATURE SWINE

Host Thymectomy

Regulatory T cells are primarily generated in the
thymus (Wood and Sakaguchi 2003). To deter-
mine whether KICAT is dependent on an intact
host thymus, total thymectomies were per-
formed in recipients 21 d before heart and kid-
ney transplants. Two of three thymectomized
heart/kidney recipients rejected their heart
grafts within 100 d, and the third animal had
severe rejection when euthanized for seizures.
Unlike the euthymic heart/kidney recipients,
thymectomized heart/kidney recipients showed
CAV, as well as persistent antidonor CML activ-
ity (Table 2, No. 9). The kidney grafts in these
animals continued to function with stable cre-
atinine values, but there was evidence of tubu-
litis and vasculopathy at necropsy. When the
thymus was removed late (.100 d) no rejection
was observed and CML assays remained unre-
sponsive, although CAV eventually developed
(Table 2, No. 10). These data suggest that, like
the donor kidney, the host thymus plays a crit-
ical role during the induction phase of KICAT
but has less influence late after transplantation.

Coculture Suppression Assays

We have found that primed naı̈ve peripheral
blood leukocytes (PBLs) cocultured with naı̈ve
cells augmented lysis of class I mismatched tar-
get cells. In contrast, primed PBLs from tolerant

M. Tonsho et al.
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heart/kidney animals completely suppressed ly-
sis of the same targets by naı̈ve cells. Suppression
was lost following removal of CD25þ T cells
from the tolerant heart/kidney PBL population
but was reestablished by incubation of naı̈ve
cells with CD25þ T cells from tolerant heart/
kidney animals. In summary, these preliminary
data suggest that CD25þ T cells in PBLs from
tolerant swine contain regulatory T cells but
that they require priming to fully suppress the
response of naı̈ve-matched T cells in coculture
CML (Mezrich et al. 2003a).

Putative Intragraft Tregs

We have examined the phenotypes of graft infil-
trating lymphocytes (GILs) retrieved from iso-
lated kidneys transplanted across a class I barrier
that accepted versus rejected (Giangrande et al.
1997). The number of cells expressing the phe-
notypic markers of Tregs (which in swine are
CD4þCD8þCD25high) were substantially high-
er in acceptor than in rejector transplants at all
time points.

KICAT in Fully MHC-Mismatched Swine

We have recently repeated these studies using
donor/recipient pairs fully mismatched at the
MHC and have again shown a dramatic differ-
ence in outcomes between recipients of isolated
class I and II mismatched hearts, which reject
their grafts by POD 35, and recipients of co-
transplanted class I and II mismatched heart
and kidneys, whose heart allografts continue
to contract strongly, show no rejection on serial
biopsies, and no evidence of alloantibody for
.350 d (Madariaga et al. 2013).

KICAT in Nonhuman Primates

We have also extended these studies into cyno-
molgus monkeys using a mixed chimerism tol-
erance induction strategy and found that the
majority of isolated heart recipients developed
antidonor cellular and humoral immunity and
lost their grafts to severe rejection with CAV by
d 175. In contrast, recipients of heart and kid-
ney allografts survived for .380–745 d with

strongly contracting cardiac allografts (Tonsho
et al. 2013). Impressively, every heart/kidney
recipient that successfully completed its mixed
chimerism conditioning regimen became toler-
ant. To our knowledge, these heart/kidney re-
cipients represent the first nonhuman primates
to become tolerant of cardiac allografts.

Summary

Together, these results underscore the robust-
ness, consistency, and the clinical potential
of kidney-induced cardiac allograft tolerance.
Based on these findings and others from studies
in isolated class I mismatched kidney transplant
models (Ierino et al. 1999; Wu et al. 2003; Grie-
semer et al. 2008; Okumi et al. 2013), we hy-
pothesize that cells or cell products intrinsic to
kidney, but not heart allografts, promote the
activation/expansion of host Tregs, which me-
diate tolerance of the heart grafts (for review, see
Mezrich et al. 2004). The intrinsic mechanisms
that allow a kidney but not a heart allograft to
amplify regulatory mechanisms in the host fol-
lowing transplantation are unknown. Based on
the findings in murine models described above,
we are currently investigating whether pDCs or
RTECs are the cells responsible for KICAT in
large animals.

COMBINED ORGAN TRANSPLANTATION
IN HUMAN RECIPIENTS

Review of Combined Heart and
Kidney Transplantation in Patients

Given the remarkable effects a cotransplanted
kidney allograft has on the survival of heart al-
lografts in large animals undergoing tolerance-
induction regimens, it is logical to expect to see
a survival advantage in human recipients trans-
planted with combined heart and kidney allo-
grafts. However, the data are conflicting.

We have reviewed and summarized the
world experience in combined heart and kidney
transplantation in Table 3. The first clinical use
of combined heart and kidney transplantation
was reported in 1978 by Norman et al. (1978).
Although combined heart and kidney trans-

Heart Transplantation
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Table 3. Outcomes of heart versus heart/kidney transplantation in humans

References Year Patients Follow-up

Freedom from acute

heart rejection Overall survival

Czer et al. 2011 2011 30 5 yr Heart/kidney:
96% at 1 mo
96% at 1 yr
91% at 5 yr

Heart/kidney:
93% at 1 mo
87% at 1 yr
68% at 5 yr
51% at 10 yr

Heart:
99% at 1 mo
95% at 1 yr
88% at 5 yr
81% at 10 yr

Heart:
98% at 1 mo
93% at 1 yr
76% at 5 yr
53% at 10 yr

Conclusion:
No significant difference

Conclusion:
No significant

difference
Gill et al. 2009 2009 263 4 yr Heart/kidney:

85% at 1 yr
Heart/kidney:
84% at 1 yr
77% at 4 yr

Heart:
69% at 1 yr

Heart:
87% at 1 yr
77% at 4 yr

Conclusion:
Significantly less

rejection
in the combined
group

Conclusion:
Significantly lower risk

for combined group
on multivariate
analysis

Bruschi et al. 2007 2007 9 10 yr Heart/kidney:
56% at 3 mo

Heart/kidney:
89% at 1 yr
78% at 5 yr
65% at 10 yr
Heart:
87% at 1 yr
78% at 5 yr
63% at 10 yr
Conclusion:
No significant

difference
Vermes et al. 2009 2009 67 10 yr Heart/kidney:

73% at 1 yr
73% at 3 yr
73% at 5 yr
73% at 10 yr

Heart/kidney:
62% at 1 yr
60% at 3 yr
53% at 5 yr
47% at 10 yr
Heart:
71% at 1 yr
65% at 3 yr
60% at 5 yr
47% at 10 yr
Conclusion:
No significant

difference

Continued
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Table 3. Continued

References Year Patients Follow-up

Freedom from acute

heart rejection Overall survival

Hermsen et al. 2007 2007 19 5 yr Heart/kidney:
57% at 1 yr
43% at 5 yr

Heart/kidney:
90% at 1 yr
82% at 5 yr

Heart:
28% at 1 yr
20% at 5 yr

Heart:
88% at 1 yr
75% at 5 yr

Conclusion:
Significantly less

rejection in the
combined group

Conclusion:
No significant

difference

Wang et al. 2006 2006 16 10 yr Heart/kidney:
100% at 10 yr

Heart/kidney:
83% at 1 yr
83% at 5 yr
55% at 10 yr
Heart:
63% at 5 yr
46% at 10 yr

Groetzner et al. 2005 2005 13 5 yr Incidence of acute
heart rejection
episode

Heart/kidney:
0.02/100 patient-days

Heart/kidney:
92% at 1 yr
92% at 5 yr

Heart:
0.04/100 patient-days

Heart:
88% at 1 yr
84% at 5 yr

Conclusion:
No significant

difference

Conclusion:
No significant difference

Trachiotis et al. 2003 2003 8 10 yr Heart/kidney:
50% at 3 yr

Heart/kidney:
88% at 1 yr
88% at 5 yr
88% at 10 yr

Heart:
50% at 4 yr

Heart:
91% at 1 yr
74% at 5 yr
52% at 10 yr
Conclusion:
No significant

difference
Luckraz et al. 2003 2003 13 10 yr Incidence of acute

heart rejection
episodes per 100
patient-days was
significantly lower in
the combined group
than that in the
isolated heart
transplant group

Heart/kidney:
77% at 1 yr
67% at 10 yr

Continued

Heart Transplantation
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Table 3. Continued

References Year Patients Follow-up

Freedom from acute

heart rejection Overall survival

Heart:
82% at 1 yr
58% at 10 yr
Conclusion:
No significant

difference
Leeser et al. 2001 2001 13 5 yr Heart/kidney:

85%
Heart/kidney:
92% at 1 mo
77% at 1 yr
60% at 5 yr

Heart:
66%

Heart:
91% at 1 mo
80% at 1 yr
67% at 5 yr

Conclusion:
Significantly less

rejection in the
combined group

Conclusion:
No significant difference

Vermes et al. 2001 2001 12 12 yr Heart/kidney:
90% at 6 mo
70% at 1 yr

Heart/kidney:
66% at 1 yr
55% at 5 yr
28% at 12 yr

Heart:
65% at 6 mo
49% at 1 yr

Heart:
66% at 1 yr
44% at 5 yr
32% at 12 yr

Conclusion:
Significantly less

rejection in the
combined group

Conclusion:
No significant difference

Blanche et al. 2001 2001 10 5 yr Heart/kidney:
90% at 30 d
80% at 1 yr
80% at 2 yr

Heart/kidney:
100% at 1 yr
88% at 2 yr
55% at 5 yr
Heart:
92% at 1 yr
84% at 2 yr
71% at 5 yr

Conclusion:
Suggestive of lower rates

of acute rejection than
in hearts alone

Conclusion:
No significant difference

Col et al. 1998 1998 6 2 yr Heart/kidney:
66% at 2 yr

Heart/kidney:
67% at 2 yr

Kocher et al. 1998 1998 9 4 yr 67% at 4 yr Heart/kidney:
89% at 4 yr

Conclusion:
No significant difference

Conclusion:
No significant difference

Continued
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plantations account foronly 1.5% of heart trans-
plants performed annually, the last decade has
seen a significant rise in the number of com-
bined heart and kidney transplants conducted
in humans, with excellent short-term successes
(Cecka and Terasaki 2003). Indeed, since 1994,
the number of patients in the United States re-
quiring combined heart and kidney transplants
has more than tripled to 78 recipients in 2012
(Stehlik et al. 2012).

Data regarding long-term outcomes in re-
cipients of these transplants are now becoming
available. The recent publication by Czer et al.
(2011) is the latest in a series of papers exam-
ining the results of heart and kidney cotrans-
plantation. The investigators compared the out-
comes of 30 patients receiving heart and kidney
transplants with those of 440 patients receiv-
ing isolated heart allografts and found that the
heart/kidney recipients had the same excellent
long-term survival rates and low incidence of
cellular rejection (ISHLT grade .2) as recipients
of isolated hearts. Although there were no stat-
istical differences between the two groups in
terms of overall outcomes, cellular and anti-
body-mediated rejection of the cardiac allo-
graft was not observed more than 5 yr follow-
ing heart/kidney transplantation, whereas it was

observed 5 yr after heart-alone transplantation
(Table 3) (Czer et al. 2011). Thus, combined
heart/kidney transplantation may confer a late
immunological advantage.

In contrast, the most recent cohort analysis
using the OPTN/UNOS database showed that
the risk of death was 44% lower in heart/kidney
recipients compared with heart-alone recipients
afteradjustingforpotentialconfoundersonmul-
tivariate analysis. Furthermore, acute rejection
rates at 1 yr posttransplant were lower in heart/
kidney recipients (Table 3) (Gill et al. 2009).

Taken together, the world’s literature sug-
gests that recipients of combined heart and kid-
ney allografts have less acute and possibly less
chronic posttransplant rejection than recipients
of isolated hearts (Rasmussen et al. 1995; Na-
rula et al. 1997; Opelz et al. 2002; Goldfarb 2003;
Luckraz et al. 2003; Hermsen et al. 2007). How-
ever, most studies do not show an increase in
long-term survival following heart and kidney
cotransplantation. The immunological advan-
tage of heart and kidney recipients may not
translate into a long-term survival benefit in hu-
man recipients because any tolerogenic effect
engendered by the kidney allograft could be ab-
rogated by the presence of continuous immuno-
suppression.

Table 3. Continued

References Year Patients Follow-up

Freedom from acute

heart rejection Overall survival

Narula et al. 1997 1997 82 2 yr Heart/kidney:
88% at 1 mo
71% at 6 mo
66% at 12 mo

Heart/kidney:
92% at 1 mo
76% at 12 mo
67% at 24 mo

Heart:
64% at 1 mo
44% at 6 mo
39% at 12 mo

Heart:
92% at 1 mo
86% at 6 mo
83% at 12 mo
79% at 24 mo

Conclusion:
Significantly less

rejection in the
combined group

Conclusion:
No significant difference

Colucci et al. 1997 1997 6 3.5 yr Heart/kidney:
100% at 3.5 yr

Heart/kidney:
100% at 3.5 yr

Gonwa et al. 1992 1992 3 6 mo Heart/kidney:
100% at 3 yr

Heart/kidney:
100% at 6 mo

Heart Transplantation
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Review of Combined Heart and
Liver Transplantation in Patients

Although many less patients have undergone
heart and liver cotransplantation, the data that
are available suggest that there is also an immu-
nological benefit conferred upon the heart by
the cotransplanted liver allograft. In a single-
center study, Raichlin et al. (2009) reported
that although 1-, 5-, and 10-yr survival rates
in combined heart/liver recipients were similar
to those in isolated heart recipients, the heart/
kidney recipients showed significantly less acute
cardiac allograft rejection. Moreover, heart/liv-
er recipients showed no evidence of angiograph-
ic CAV, which was diagnosed in 38% of compa-
rable isolated heart recipients (Raichlin et al.
2009). In a recent follow-up study using intra-
vascular ultrasound (IVUS) to interrogate the
coronary arteries, the same group showed that
patients with heart/liver transplants had slower
progression of CAV, which translated to better
coronary-related clinical outcomes in unadjust-
ed and adjusted analysis (Topilsky et al. 2013).
These data suggest that the cotransplanted liver
can modify the recipient’s immunological risk
factors and improve the natural history of CAV.
Finally, a protective “liver effect” can be docu-
mented by the fact that heart–liver recipients
require less immunosuppression than recipients
of isolated heart and still maintain low rates of
acute rejection (Te et al. 2008).

Summary

Kidney-induced cardiac allograft tolerance has
proven effective across two large animal models
and across two different tolerance-induction
protocols. Understanding how tolerance-prone
organs confer unresponsiveness upon toler-
ance-resistant organs could provide important
mechanistic information that is relevant to our
attempts at inducing tolerance in human trans-
plant recipients. Data from studies in mice,
swine, and nonhuman primates suggest that
cells or cell products resident within kidneys
and livers but not hearts actively participate in
the induction of tolerance by amplifying the
contributions of Tregs. Isolating and harnessing

these cells or cell products could provide an
avenue toward the induction of tolerance in hu-
mans. Of course, cotransplanting a kidney with
a heart allograft to induce tolerance in a recip-
ient that does not have irreversible end-stage
renal failure is an untenable strategy. Instead,
one might imagine achieving tolerance of iso-
lated heart allografts without sacrificing a donor
kidney, possibly by obtaining the to-be-identi-
fied, KICAT-mediating cells via a simple kidney
biopsy at the time of organ procurement and
expanding them in vitro for subsequent use in
a delayed tolerance protocol that our group de-
scribed previously (Yamada et al. 2012). Indeed,
this strategy could be applicable to all deceased-
donor transplantation and to all tolerance-re-
sistant organs/tissues including islets and vas-
cularized composite allografts.

CONCLUSIONS

The future of heart transplantation must fo-
cus on the disappointing late outcomes that
have not changed in decades and the donor or-
gan shortage. Achieving tolerance could ad-
dress both challenges by eliminating the need
for chronic immunosuppression (Kawai et al.
2008) and by providing a potential avenue to
pig-to-human xenotransplantation (Kuwaki et
al. 2005). However, there are other exciting pos-
sibilities on the horizon that could achieve the
same end including stem cell therapy (Shiba
et al. 2012), advanced mechanical assistance
(Abraham and Smith 2013), and whole-organ
bioengineering (Ott et al. 2008). Which modal-
ity will be the first to reach the ultimate goal
of achieving unlimited, long-term, circulatory
support with minimal risk to longevity or life-
style is unknown. However, significant advances
are being made and will continue to be made in
each of these areas.
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