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�is study developed an automatic heartbeat classi�cation system for identifying normal beats, supraventricular ectopic beats,
and ventricular ectopic beats based on normalized RR intervals and morphological features. �e proposed heartbeat classi�cation
system consists of signal preprocessing, feature extraction, and linear discriminant classi�cation. First, the signal preprocessing
removed the high-frequency noise and baseline dri	 of the original ECG signal.�en the feature extraction derived the normalized
RR intervals and two types of morphological features using wavelet analysis and linear prediction modeling. Finally, the linear
discriminant classi�er combined the extracted features to classify heartbeats. A total of 99,827 heartbeats obtained from the MIT-
BIH Arrhythmia Database were divided into three datasets for the training and testing of the optimized heartbeat classi�cation
system. �e study results demonstrate that the use of the normalized RR interval features greatly improves the positive predictive
accuracy of identifying the normal heartbeats and the sensitivity for identifying the supraventricular ectopic heartbeats in
comparison with the use of the nonnormalized RR interval features. In addition, the combination of the wavelet and linear
prediction morphological features has higher global performance than only using the wavelet features or the linear prediction
features.

1. Introduction

�e ambulatory electrocardiogram (ECG) is a powerful
and noninvasive tool that can provide long-term cardiac
information for the diagnosis of cardiac functions. Because
the classi�cation of heartbeats based on manpower is very
costly and time consuming, many studies have contributed
their eorts to the design of automatic classi�cation systems
to identify normal beats, supraventricular ectopic beats,
ventricular ectopic beats, fusion beats, and other abnormal
heartbeats [1–15]. �e classi�cation results can also pro-
vide valuable information for the diagnosis of the risk of
arrhythmias or sudden cardiac death such as the presence
of ventricular premature beats and nonsustained ventricular
tachycardia and for further inspection, for example, for long-
term heart rate variability and heart rate turbulence [1].

A variety of ECG features and classi�cationmethods have
been proposed in the previous studies. �e ECG features

include the intervals between two consecutive heartbeats [2–
6], the morphological features extracted by the wavelet anal-
ysis [2–7] or the Hermit basis functions [8], and the features
drawn from the higher order cumulants [9].�e classi�cation
methods contain the linear discriminant classi�cation [2–
5], quadratic classi�er [4], support vector machines [6], self-
organizing maps [8], patient-adapting heartbeat classi�er [3,
10, 11], �th nearest-neighbor rules [12], fuzzy neural networks
[13], back propagation neural networks [14], and radial basis
neural networks [15].

One of the main limitations of the current heartbeat
classi�cation methods is the low positive prediction accuracy
for identifying supraventricular ectopic beats [5], because
their QRS waveforms are very similar with those of normal
beats. �e presence of supraventricular ectopic beats only
changes the RR interval and hence most of the previous stud-
ies combined RR intervals with other features for identifying
supraventricular ectopic beats and other arrhythmic beats
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[2–6]. However, the RR intervals are not only aected by
the presence of the arrhythmic beats but are also dominated
by the heart rate. �e inconsistent heart rates among ECG
recordings would reduce the performance of the RR intervals
for classifying supraventricular ectopic beats.

In order to reduce the eects of inconsistent heart rates
among ECG recordings, the RR interval features are normal-
ized by the mean value of all RR intervals within the same
ECG recording in this study. �e normalized RR interval
features are then combined with the morphological features
extracted by the wavelet analysis and the linear prediction
modeling, and a linear discriminant classi�er is applied for
identifying the normal beats, supraventricular ectopic beats,
and ventricular ectopic beats. �e MIT-BIH Arrhythmia
Database [16] was used to test the performance of the
proposed heartbeat classi�cation system.�e purpose of this
study is to evaluate the heartbeat classi�cation performance
of combining two types of morphological features extracted
using the wavelet analysis [5] and the linear prediction mod-
eling [17] and to evaluate whether the heartbeat classi�cation
performance can be improved by using the normalized RR
interval features.

�e rest of this paper is organized as follows. Section 2
describes the ECG recordings obtained from the MIT-BIH
Arrhythmia Database and the proposed automatic heartbeat
classi�cation system. �e classi�cation results are summa-
rized in Section 3 and then discussed in Section 4. Finally,
Section 5 concludes this study.

2. Materials and Method

Figure 1 is a block diagram of the proposed heartbeat clas-
si�cation system. �e purpose of the signal preprocessing
is to remove the high-frequency noise signal and baseline
dri	 using a second-order low-pass �lter and two median
�lters, respectively. �e heartbeat classi�cation is based on
the nonnormalized and normalized RR interval features,
and the morphological features were extracted using the
wavelet analysis and the linear prediction modeling and are
performed by linear discriminant classi�cation. �e details
are described in the following sections.

2.1. ECG Recordings. All of the ECG data used in this study
are obtained from the MIT-BIH Arrhythmia Database [16]
which contains common and life-threatening arrhythmic
heartbeats. �e MIT-BIH Arrhythmia Database contains 48
recordings of two-channel ambulatory ECG recordings with
a length of 30 minutes, a sampling frequency of 360Hz,
and 11-bit resolution over a 10mV range. In most recordings,
the upper lead is a modi�ed limb lead II (MLII), and the
lower lead is usually a modi�ed lead V1 (occasionally V2 or
V5, and in one instance V4). �ere are over 109,000 beats
that are individually labeled as one of 15 possible heartbeat
classes. In accordance with the standards recommended by
the Association for the Advancement of Medical Instrumen-
tation (AAMI) [18], the four recordings containing paced
beats were removed from this study.

Signal preprocessing

RR interval feature  

extraction

Morphological feature 

extraction

Linear discriminant 

classi�cation

ECG signals

Heartbeat class N, S, or V

Figure 1: Block diagram of the proposed heartbeat classi�cation
system.
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Figure 2: Illustrations of an ECG recording before (top) and a	er
(bottom) removing the high-frequency noises using a second-order
integer low-pass �lter.
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Figure 3: Illustrations of an ECG recording with a large baseline
dri	 (bottom) and the same ECG recording a	er removing the
baseline dri	 using two median �lters (top).
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�e heartbeat classes included in this study are class N,
consisting of the normal and bundle branch block beats,
class S, consisting of supraventricular ectopic beats, and class
V, consisting of ventricular ectopic beats, according to the
AAMI recommendations. �ree datasets were used for the
training and testing of the proposed heartbeat classi�cation
system. �e selection of the imbalanced training and testing
datasets are identical with the previous studies [2–5]. �e
balanced testing dataset was randomly selected from the
imbalanced testing dataset. �ere are 1,000 heartbeats for
each of the three classes in the balanced testing dataset.
Table 1 lists the heartbeat classes and numbers of the training
and testing datasets.

2.2. Signal Preprocessing. �e input ECG signal is �rst �ltered
by a second-order integer low-pass �lter to remove the
high-frequency noise components. �e �-transform system
function of this second-order �lter is de�ned as follows:

�(�) = 1
36

(1 − �−6)2
(1 − �−1)2 (1)

and the corresponding dierence equation can be given with

	 [
] = 1
18	 [
 − 1] − 1

36	 [
 − 2] + 1
36� [
]

− 1
18� [
 − 6] + � [
 − 12] .

(2)

�e presented second-order �lter has a narrower tran-
sition band and hence has greater attenuation for high-
frequency noise in comparison with the �rst-order �lter
used in the previous study [19]. Figure 2 illustrates an ECG
recording before (top) and a	er (bottom) removing high-
frequency noises using the second-order integer low-pass
�lter. It is shown that the low-amplitude and high-frequency
noises are removed a	er low-pass �ltering.

Furthermore, two median �lters were applied to remove
the low-frequency baseline dri	 [2]. Each recording was �rst
�ltered by a median �lter with a width of 200ms (i.e., 72
samples at a sampling rate of 360Hz) to remove the QRS and
P waves and was then �ltered by a median �lter with a width
of 600ms to remove the T waves. Hence the baseline dri	
signal can be extracted by the output of the second median
�lter, and the baseline dri	 eliminated ECG recording can be
obtained by subtracting the estimated baseline dri	 from the
original ECG signal. Figure 3 illustrates an ECG recording
with a large baseline dri	 (bottom) and the same ECG
recording a	er removing the baseline dri	 using two median
�lters (top). It is shown that most of the baseline dri	 can be
removed a	er median �ltering.

2.3. RR Interval Features. �e RR interval was de�ned as
the interval between two successive R waves. Following
the previous studies [2–6], four RR interval features were
extracted in this study including the previous RR interval,
the post-RR interval, the averaged 1min RR interval, and the
averaged 20min RR interval, de�ned as follows.

(a) Previous RR interval, RR[�]: the interval between the�th R wave and the previous R wave.

(b) Post-RR interval, RR[� + 1]: the interval between the�th R wave and the next R wave.

(c) Averaged 1min RR interval, RR1: the averaged RR
intervals of 1-minute ECG recordings.

(d) Averaged 20min RR interval, RR20: the averaged RR
intervals of 20-minute ECG recordings.

Figures 4(a) and 4(b) demonstrate the presence of atrial
premature beats in class S and premature ventricular contrac-
tion beats in class V, respectively. �e normal, atrial prema-
ture, and premature ventricular contraction beats are marked
as N, A, and V, respectively. �e presence of arrhythmic
heartbeats would shorten or prolong the previous or post-
RR intervals. However it is worth noting that the RR interval
features were also directly related with the heart rate. �e
inconsistency of the heart rates between ECG recordings
would reduce the classi�cation performance of the RR inter-
val features. Hence the four RR interval features were further
normalized by the mean value of all RR intervals within the
same ECG recording. �e normalized RR interval between
two normal heartbeats is close to one. If the RR interval is
prolonged or shortened, the normalized RR interval is larger
or less than one.

2.4. Morphology Features Extracted Using the Wavelet Analy-
sis. �ewavelet transformwas applied in this study to extract
the morphological features of the QRS wave. �e wavelet
transform for a continuous signal �() is de�ned as follows:

��� (�) = 1
√� ∫+∞
−∞

� () �( − �
� )�, � > 0, (3)

where � and � denote the scaling and translation parame-
ters, respectively. A small scaling parameter � can help the
wavelet transform to locate details or fast transitions, and the
translation parameter � can indicate the location.�e selected
prototype wavelet �() is a quadratic spline which has been
applied to ECG signals in the previous study [20].�e Fourier
transformof the quadratic splinewavelet is de�ned as follows:

Ψ (Ω) = �Ω( sin (Ω/4)Ω/4 )4. (4)

�e corresponding discrete-time wavelet transform can be
performed by the low-pass �lter �(�) and high-pass �lter�(�) de�ned as follows [20]:

�(�) = ���/2(cos �2 )
3

� (�) = 4����/2 (sin �
2 )

(5)

which have the following impulse responses:

ℎ [
] = 1
8 { [
 + 2] + 3 [
 + 1] + 3 [
] +  [
 − 1]}

! [
] = 2 { [
 + 1] −  [
]} .
(6)



4 Mathematical Problems in Engineering

Table 1: Summary of heartbeat types and numbers for the training and testing datasets.

Dataset
Heartbeat classes

Total
N S V

Imbalanced training 45,824 943 3,787 50,554

Imbalanced testing 44,218 1,836 3,219 49,273

Balanced testing 1,000 1,000 1,000 3,000

Class N: normal beats; Class S: supraventricular ectopic beats; Class V: ventricular ectopic beats.
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Figure 4: Illustrations of the presence of (a) atrial premature beats in class S and (b) premature ventricular contraction beats in class V. N
denotes the normal beat, A denotes the atrial premature beat, and V denotes the premature ventricular contraction beat.

Table 2: List of the features extracted for the heartbeat classi�cation.

Features Description

RR[�] Pre-RR interval

RR[� + 1] Post-RR interval

RR1 1-min averaged RR interval

RR2 20-min averaged RR interval

��,1 First zero-cross position in lead 1

��,2 First zero-cross position in lead 2

��,1 Maximum position in lead 1

��,2 Maximum position in lead 2

"�,1(0) Optimal �lter coe�cient 0 in lead 1

"�,1(1) Optimal �lter coe�cient 1 in lead 1

"�,2(0) Optimal �lter coe�cient 0 in lead 2

"�,2(1) Optimal �lter coe�cient 1 in lead 2

�e autocorrelation signal of the fourth scale of the discrete-
time wavelet transformwas then calculated in a time window
starting from 130ms before# peak and ending at 200ms a	er# peak as follows [5]:

$ [%] = 	−1∑

=0

' [
] ' [
 − %] , (7)

where '[
] is the fourth scale of the discrete-time wavelet
transform, N is the length of the time window, and % is the

time lag variable. Based on the autocorrelation signal, the
morphological features were de�ned as the �rst zero-cross
position and the maximum position which has the value of
the absolute maximum.

Figures 5, 6, and 7 demonstrate the results of the wavelet
analysis for a normal beat from recording 101 of MIT-BIH
Arrhythmia Database, an atrial premature beat from record-
ing 209, and a premature ventricular beat from recording
119, respectively. �e circle and rectangle indicate the zero-
cross and maximum positions in the autocorrelation signal
of the fourth scale, respectively. It can be found that the
QRS waveform and the wavelet morphological features of the
normal beat are similar to those of the atrial premature beat,
but very dierent from those of the premature ventricular
beat, and their �rst zero-cross and maximum positions are
9 versus 8 and 18, and 16 versus 14 and 30, respectively.
Both the �rst zero-cross and maximum positions are post-
poned due to the presence of the premature ventricular
beat.

2.5. Morphological Features Extracted Using the Linear Pre-
diction Modelling. Figure 8 is a block diagram of a linear
prediction model for modeling the input QRS wave, where* is the prediction depth and�(�) denotes the �-transform
system function of the Wiener �lter with �nite impulse
response. �e desired input �(
) is the input QRS wave,
and the input reference signal �(
) is the delayed version of



Mathematical Problems in Engineering 5

Table 3: Classi�cation results for the imbalanced training dataset.

Feature con�gurations
N S V Global

Se1 -+1 Se2 -+2 Se3 -+3 Se -+ Acc

Nonnormalized RR intervals + WT features 93.5 99.2 80.2 20.7 78.0 79.2 83.9 66.4 92.1

Normalized RR intervals + WT features 94.8 99.1 77.2 24.5 78.2 78.3 83.4 67.3 93.2

Nonnormalized RR intervals + LP features 92.7 99.1 84.1 20.6 78.2 76.4 85.0 65.4 91.4

Normalized RR intervals + LP features 92.4 99.1 79.2 25.2 81.4 63.4 84.3 62.6 91.3

Nonnormalized RR intervals + WT + LP features 93.7 99.0 82.9 20.6 75.6 84.7 84.1 68.1 92.2

Normalized RR intervals + WT + LP features 94.6 98.9 78.2 24.1 77.8 79.7 83.5 67.6 93.0

WT: wavelet; LP: linear prediction.
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Figure 5: Illustration of a normal QRS wave (a), the fourth scale (b), and the autocorrelation signal (c). �e �rst zero-cross and maximum
positions are 9 and 16, respectively.
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Figure 6: Illustration of an atrial premature QRS wave (a), the fourth scale (b), and the autocorrelation signal (c). �e �rst zero-cross and
maximum positions are 8 and 14, respectively. AP: atrial premature.
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Figure 7: Illustration of a premature ventricular contraction QRS wave (a), the fourth scale (b), and the autocorrelation signal (c). �e �rst
zero-cross and maximum positions are 18 and 30, respectively. PVC: premature ventricular contraction.
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Figure 8: Block diagram of a linear prediction model for modeling
the input QRS wave.

the input QRS wave, �(
) = �(
 − *). �e prediction output
of the Wiener �lter with order 5 − 1 can be represented as
[17]

�̂ (
) = � (
) ⊗ " (
) = �−1∑
�=0

" (�) � (
 − �) , (8)

where ⊗ denotes the operation of the convolution sum and"(�) for � = 0, . . . ,5−1 are the �lter coe�cients.�eWiener
�lter design problem requires �nding the �lter coe�cients,"(�), that minimize the mean-square error

: = ; {|� (
)|2} = ; {AAAAA� (
) − �̂ (
)AAAAA2} . (9)

�e necessary and su�cient condition for a set of �lter
coe�cients to minimize : is that the derivative of : with
respect to"∗(�)must be equal to zero for � = 0, 1, . . . ,5− 1
(∗ denotes a complex conjugate operation). Assuming �(
)
and �(
) are jointly wide-sense stationary, then ;{�(
 −�)�∗(
−�)} = $(�− �) and ;{�(
)�∗(
−�)} = $�(�) and the
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Figure 9: A normal QRSwave (solid line) and the prediction output
(dashed line) ("�(0) = 1.85, "�(1) = −0.89).

well-knownWiener-Hopf equations can be derived as follows
[21]:

�−1∑
�=0

" (�) $ (� − �) = $� (�) , � = 0, 1, . . . ,5 − 1 (10)

which is a set of5 linear equations in the5 unknowns"(�),� = 0, 1, . . . ,5 − 1.
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Figure 10: An atrial premature QRS wave (solid line) and the
prediction output (dashed line) ("�(0) = 1.88, "�(1) = −0.94). AP:
atrial premature.
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Figure 11: A premature ventricular contraction QRS wave (solid
line) and the prediction output (dashed line) ("�(0) = 1.37,"�(1) =−0.38). PVC: premature ventricular contraction.

�e matrix form of the Wiener-Hopf equations can be
written as

[[[[[[
[

$ (0) $∗ (1) ⋅ ⋅ ⋅ $∗ (5 − 1)$ (1) $ (0) ⋅ ⋅ ⋅ $∗ (5 − 2)$ (2) $ (1) ⋅ ⋅ ⋅ $∗ (5 − 3)
...

...
...$ (5 − 1) $ (5 − 2) ⋅ ⋅ ⋅ $ (0)

]]]]]]
]

[[[[[[
[

" (0)" (1)" (2)
..." (5 − 1)

]]]]]]
]

=
[[[[[[
[

$� (0)$� (1)$� (2)
...$� (5 − 1)

]]]]]]
]
,

(11)

Rw� = r�, (12)

whereR is an5×5 autocorrelationmatrix of the reference
input �(
), w� is an5 × 1 vector of the optimal �lter coe�-
cients, and r� is an 5 × 1 vector of the cross-correlations
between the desired input �(
) and the reference input �(
).
�is study introduces General Levinson Recursion [21] to
recursively solve the Wiener-Hopf equations which are a set
of Hermitian Toeplitz equations of the form given in (11).

Two optimal �lter coe�cients, "�(0) and "�(1) of a �rst-
order linear prediction model with the prediction depth* = 1, are applied as themorphological features of QRS wave
in this study. Figures 9, 10, and 11 illustrate the results of the
linear prediction modeling for a normal beat from recording
101, an atrial premature beat from recording 209, and a
premature ventricular beat from recording 119, respectively.
�e solid and dashed lines denote the input QRS wave and
the output of the linear prediction �lter, respectively. �e
heartbeats used in Figures 9, 10, and 11 are the same as those
in Figures 5, 6, and 7. It can be found that the dierences in
the two optimal �lter coe�cients between the normal and
atrial premature beats are small ("�(0) = 1.85 versus 1.88
and "�(1) = −0.89 versus −0.94) because of their similarity
in the QRS waveforms, and the presence of the premature
ventricular beat changes the coe�cients to "�(0) = 1.37 and"�(1) = −0.38.
2.6. Linear Discriminant Classi
cation. �is study used the
linear discriminant classi�cation method to combine the
extracted RR intervals and morphological features and to
classify the normal, supraventricular ectopic, and ventricular
ectopic heartbeats. Assume the number of classes is !, and
the number of heartbeats in class � is N�. �e feature vector
x
� consists of all features extracted from the 
th heartbeat in
class �.�e discriminant value of each feature vector � in class� can be derived as [2]

�� (x) = −12 (��� Σ−1��) + (��� Σ−1x) + log (O�) , 1 ≤ � ≤ !,
(13)

where O� denotes the prior probability of class � and the mean
vector �� of class � is calculated by

�� = 1
N�
	�∑

=1

x
�, 1 ≤ � ≤ ! (14)

and the covariance matrix Σ under the assumptions of
normality and homogeneity of variances is de�ned as

Σ = 1
N� − !

�∑
�=1

	�∑

=1

(x
� − ��) (x
� − ��)�. (15)

�e prior probability of classes N, S, and V was equally set to
1/3. A	er determining the discriminant values of all classes,
the posterior probability -(� | �) for class � can be estimated
by

- (� | �) = exp (�� (x))
∑��=1 exp (�� (x)) , 1 ≤ � ≤ !. (16)

�e feature vector will be classi�ed into a class that has the
highest posterior probability estimated by (16).
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Table 4: Classi�cation results for the imbalanced testing dataset.

Feature con�gurations
N S V Global

Se1 -+1 Se2 -+2 Se3 -+3 Se -+ Acc

Nonnormalized RR intervals + WT features 91.1 98.2 56.3 21.8 83.7 77.3 77.0 65.7 89.3

Normalized RR intervals + WT features 91.4 99.2 77.3 28.5 83.4 75.3 84.0 67.7 90.4

Nonnormalized RR intervals + LP features 87.4 98.5 62.5 24.0 88.4 54.4 79.5 58.9 86.5

Normalized RR intervals + LP features 88.7 99.4 79.5 30.1 88.6 57.7 85.6 62.4 88.4

Nonnormalized RR intervals + WT + LP features 90.5 98.2 59.4 23.7 87.2 71.1 79.0 64.3 89.1

Normalized RR intervals + WT + LP features 91.6 99.3 81.4 31.6 86.2 73.7 86.4 68.2 90.8

Table 5: Classi�cation results for the balanced testing dataset.

Feature con�gurations
N S V Global

Se1 -+1 Se2 -+2 Se3 -+3 Se -+ Acc

Nonnormalized RR intervals + WT features 91.5 71.9 55.5 77.5 84.2 83.2 77.1 77.6 77.1

Normalized RR intervals + WT features 91.8 89.2 77.1 82.4 84.0 81.2 84.3 84.3 84.3

Nonnormalized RR intervals + LP features 87.7 75.4 62.0 82.8 88.7 81.4 79.4 79.9 79.4

Normalized RR intervals + LP features 89.1 90.9 79.1 86.0 88.7 80.7 85.7 85.9 85.7

Nonnormalized RR intervals + WT + LP features 90.7 72.5 58.6 81.4 87.4 84.9 78.9 79.6 78.9

Normalized RR intervals + WT + LP features 91.9 89.5 81.0 85.8 86.6 84.2 86.5 86.5 86.5

2.7. Classi
cation Performance Evaluation. �is study eval-
uated the classi�cation performance by the class sensitivity
Se� and class positive prediction accuracy -+� and by the
global sensitivity S�, global positive prediction accuracy-+, and global accuracy Acc [5]. Assume N�� denotes

the number of heartbeats correctly classi�ed as class �,N�� is
the total number of heartbeats in class �,N�� is the number of
heartbeats classi�ed as class �, and N� is the total number of
heartbeats in the dataset. �en the performance parameters
for class � are de�ned as follows:

Se� = N��N�� ,

-+� = N��N��
(17)

and the global performance parameters are de�ned by

Se = 1
!
�∑
�=1

Se�,

-+ = 1
!
�∑
�=1

-+� ,

Acc = 1
N�
�∑
�=1

N�� .

(18)

3. Results

�e extracted features described in the previous section for
the classi�cation of normal, supraventricular ectopic, and

ventricular ectopic heartbeats are summarized in Table 2,
including the RR interval features and the morphological
features extracted using the wavelet analysis and the linear
prediction modeling. �e length of each feature vector is
dependent on the feature con�guration. �e best linear
discriminant classi�er was determined using the imbalanced
training dataset according to (13), (14), and (15) and was
then applied to the imbalanced and balanced testing datasets
to test the classi�cation performance of dierent feature
con�gurations. Tables 3, 4, and 5 summarize the classi�cation
results for the imbalanced training, imbalanced testing, and
balanced testing datasets, respectively, and compare the clas-
si�cation performance of the dierent feature con�gurations.
�ere were two RR interval con�gurations using the non-
normalized and normalized RR interval features and three
morphological con�gurations using the wavelet features, the
linear prediction features, and the combination of the wavelet
and linear prediction features, with a total of six feature
con�gurations.

Table 3 shows that there were no signi�cant dierences
in the classi�cation performance between the uses of non-
normalized and normalized RR interval con�gurations in the
training dataset.�epositive prediction accuracy of the linear
prediction morphological features for class V was lower than
that of the wavelet features, 63.4% versus 78.3%, for com-
bining with the normalized RR interval features. �e global
accuracies for the six feature con�gurations in the training
dataset are high, ranging from91.3% to 93.0%, but the positive
prediction accuracies of class S only ranged from 20.6% to
25.2%.

�e classi�cation results of the imbalanced testing dataset
in Table 4 demonstrate that the sensitivity and positive
predictive accuracy of class S using the normalized RR
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Table 6: Comparisons of the classi�cation results with the previous studies.

Classi�ers
N S V Fusion

Se1 -+1 Se3 -+3 Se2 -+2 Se4 -+4
�is study 91.6 99.3 81.4 31.6 86.2 73.7 — —

de Chazal et al. [2] 87.0 99.2 75.9 38.5 77.7 81.9 89.3 8.6

de Chazal and Reilly [3] 94.4 99.4 87.7 47.0 94.3 96.2 74.0 29.1

Llamedo and Mart́ınez [4] 80.1 99.4 86.0 20.0 71.0 61.0 — —

Llamedo and Mart́ınez [5] 95.0 98.0 77.0 39.0 81.0 87.0 — —

intervals increased by 21.0% and 6.7% for combining with
the wavelet features, 17.0% and 6.1% for combining with the
linear prediction features, and 22.0% and 7.9% for combining
with the wavelet and linear prediction features in compar-
ison with using the nonnormalized RR interval features,
respectively. �e global sensitivity using the normalized RR
intervals increased by 7.0% for combining with the wavelet
features, 6.1% for combining with the linear prediction
features, and 7.4% for combining with both the wavelet and
linear prediction features in comparison with the use of the
nonnormalized RR interval features. �e positive prediction
accuracies of the linear prediction morphological features
for class V were lower than those of the wavelet features,
54.4% and 57.7% versus 77.3% and 75.3% for combining
with the nonnormalized and normalizedRR interval features,
respectively. �e combination of the wavelet and linear
prediction features has higher global performance than only
using the wavelet features or the linear prediction features.

Table 5 shows the classi�cation results of the balanced
testing dataset and demonstrates that the use of the nor-
malized RR interval features can increase the sensitivity and
positive predictive accuracy of class S by 21.6% and 4.9%
for combining with the wavelet features, 17.1% and 3.2% for
combining with the linear prediction features, and 22.4%
and 4.4% for combining with both the wavelet and linear
prediction features in comparison with the use of the non-
normalized RR interval features, respectively. �e positive
predictive accuracy of class N using the normalized RR
interval features was also increased by 17.3%, 15.5%, and 17%
for combining with the three morphological feature con�gu-
rations, respectively. �e use of the normalized RR interval
features also increases the global performance parameters
from 6.0% to 7.6% for the six feature con�gurations.

4. Discussion

�is study proposes an automatic classi�cation system for
identifying normal beats, supraventricular ectopic beats, and
ventricular ectopic beats based on the nonnormalized and
normalized RR intervals and the morphological features
extracted by the wavelet analysis and linear prediction mod-
eling. �e signal preprocessing introduced a second-order
integer low-pass �lter to attenuate the high-frequency noise
and two median �lters to remove the baseline dri	. A linear

discriminant classi�er was then applied for combining the
extracted features to classify the heartbeats.

Because the QRSmorphological features of the supraven-
tricular ectopic heartbeats are similar to those of normal
beats, the identi�cation of a supraventricular ectopic heart-
beat is mainly dependent on the shortened RR interval
due to the absence of a P wave. �e four RR interval
features including the previous and post-RR intervals and
the averaged 1min and 20min RR intervals are commonly
used to identify the presence of the supraventricular ectopic
heartbeats [2–6]. However the RR interval is also dominated
by the heart rate. �e inconsistency of the heart rate among
the ECG recordings would decrease the performance of
the RR interval features for identifying the supraventricu-
lar ectopic heartbeats. Although Korürek and Nizam [22]
have proposed the use of the averaged RR interval of the
preceding 8 normal beats to normalize the RR interval
features, it is not easy to determine the normal beats in
advance because the heartbeat types are unknown before they
can be accurately identi�ed. �is study adopted the mean
value of all RR intervals within the same ECG recording to
normalize the RR interval features to reduce the eect of
the inconsistent heart rates instead of �nding the normal
RR intervals before heartbeat classi�cation. �e averaged
RR interval in an ECG recording may also include the RR
intervals that are shortened or prolonged due to the presence
of the arrhythmic heartbeats. �e study further compares
the classi�cation performance of the normalized RR interval
features with that of the nonnormalized RR interval features.
�e classi�cation results of the imbalanced and balanced
testing dataset show that the use of the normalized RR
interval features combining with the three morphological
feature con�gurations improves the sensitivity from 17.0% to
22.4%, the positive predictive accuracy from 3.2% to 7.9% for
identifying the supraventricular ectopic beats, and the global
sensitivity from 6.1% to 7.4%. �e normalized RR interval
features also improve the positive predictive accuracy from
15.5% to 17.3% for identifying the normal beats in the balanced
testing dataset.

�e morphological features are mainly used for identi-
fying the ventricular ectopic heartbeats because their wave-
form shapes are dierent from those of the normal and
supraventricular ectopic heartbeats. �is study adopted two
types of heartbeat morphological features extracted using
wavelet analysis and linear prediction modeling. �e wavelet
morphological features were proposed by Llamedo and



10 Mathematical Problems in Engineering

Mart́ınez [5], including the �rst zero-cross and maximum
positions obtained from the autocorrelation signal of the
fourth scale of the discrete-time wavelet transform. �e
study results demonstrate that the presence of the ventricular
premature contraction beats postponed the �rst zero-cross
and maximum positions in comparison with the normal
and atrial premature beats as shown in Figures 5, 6, and
7. �e linear prediction morphological features were two
optimal �lter coe�cients extracted by a �rst-order linear
prediction model with one-step prediction depth [17]. �e
linear prediction can estimate the predictable and smoothed
parts of the input QRS wave, while the prediction error
represents the unpredictable part that has been applied for
the detection of the signals with sudden slope change within
theQRSwave [17]. Figures 9, 10, and 11 demonstrated that this
low-order linear prediction �lter can accurately predict most
parts of the input QRS wave. �e classi�cation performance
of the linear prediction morphological features is similar to
that of the wavelet features except that the positive prediction
accuracies of the linear prediction features for identifying
the ventricular ectopic beats were much lower than those of
the wavelet features in the imbalanced training and testing
datasets. However, the global performance parameters of the
linear prediction features were slightly higher than those of
the wavelet features. �e study results further demonstrate
that the combination of the wavelet and linear prediction
morphological features can further improve the heartbeat
classi�cation performance.

Several classi�cation performance parameters of the pro-
posed heartbeat classi�cation system using the combination
of the normalized RR interval features, the wavelet, and linear
predictionmorphological features are better than those of the
previous studies. Table 6 compares the classi�cation results of
this study with those of the previous studies using the MIT-
BIH Arrhythmia Database. de Chazal et al. [2] combined
the RR interval features, heartbeat interval features, and
morphology features based on two time-sampling methods
and used the linear discriminant classi�er to classify the
arrhythmic heartbeats. �e fusion beats are included in
their classi�cation results. de Chazal and Reilly [3] further
proposed an adaptive heartbeat classi�cation system based
on their previous work [2]. Although their classi�cation
performance is the best in Table 6, their system is not fully
automatic and needs an expert to validate and correct a
fraction of the beats of the recording during the classi�cation
processing. Another ECG classi�cation model developed by
Llamedo and Mart́ınez [4] is based on the RR intervals
and the morphological features extracted from dierent
scales of the wavelet decomposition and applies the linear
discriminant analysis and a Mahalanobis distance classi�er
to classify the heartbeats. �e classi�cation performance
was greatly enhanced by their recent study [5]. A �oating
feature selection algorithm was proposed to obtain the best
performing and generalizing models in the training and
validation sets for dierent search con�gurations. However,
the sensitivity for identifying the supraventricular ectopic
beats decreased from 86.0% to 77.0%, and the sensitivity for
identifying the ventricular ectopic beats was lower than that
of this study, 81.0% versus 86.2%.

�e main limitation of the proposed heartbeat clas-
si�cation system is the low positive prediction accuracy,
which only ranged from 20.6% to 31.6%, for identifying the
supraventricular ectopic beats in the training and testing
datasets. �is is caused by the imbalanced ratios of normal,
supraventricular ectopic beats, and ventricular ectopic beats
heartbeats. �e ratio of supraventricular ectopic beats is only
1.9% in the training dataset and 3.9% in the testing dataset.
Even if only a small proportion of the normal and ventricular
ectopic heartbeats are misclassi�ed as the supraventricular
ectopic beats, the positive prediction accuracy will be greatly
decreased. �e study results of the balanced testing dataset
show that the positive prediction accuracy for identifying
the supraventricular ectopic beats was substantially increased
and ranged from 77.5% to 86.0%.

5. Conclusions

�is study has successfully demonstrated that the use of the
normalized RR interval features can greatly improve the pos-
itive predictive accuracy of identifying the normal heartbeats
and the sensitivity for identifying supraventricular ectopic
heartbeats in comparison with the use of the nonnormalized
RR interval features, and the combination of the wavelet
and linear prediction features has higher global performance
than only using the wavelet features or the linear prediction
features.
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[22] M. Korürek and A. Nizam, “A new arrhythmia clustering tech-
nique based on ant colony optimization,” Journal of Biomedical
Informatics, vol. 41, no. 6, pp. 874–881, 2008.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


