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Abstract

Unsteady magneto-hydrodynamic heat and mass transfer analysis of hybrid nano�uid �ow over stretching surface with 
chemical reaction, suction, slip e�ects and thermal radiation is analyzed in this problem. Combination of carbon nano-
tubes and silver nanoparticles are taken as hybrid nanoparticles and water is considered as base �uid. Using similarity 
transformation method, the governing equations are changed into system of ordinary di�erential equations. These 
equations together with boundary conditions are numerically evaluated by using �nite-element method. The in�uence 
of various pertinent parameters on the pro�les of �uids concentration, temperature, and velocity is calculated and the 
outcomes are plotted through graphs. The values of non-dimensional rates of heat transfer, mass transfer and velocity 
are also analyzed, and the results are depicted in tables. Temperature sketches of hybrid nano�uid intensi�ed in both 
steady and unsteady cases as volume fraction of both nanoparticles rises.

Keywords MWCNT/Ag‒water hybrid nano�uid · Magneto-hydrodynamics · Chemical reaction · Slip e�ects · Thermal 
radiation · FEM

Abbreviations

Cf  Skin friction coe�cient
ϕ2  Nanoparticle volume fraction of silver
kf  Thermal conductivity of base�uid

Nu
x
  Nusselt number

ϕ1  Nanoparticle volume fraction of MWCNT
Rex  Local Reynolds number
C∞  Ambient �uid concentration
u∞  Velocity of mainstream
Tw  Wall constant temperature

T
∞

  Ambient temperature
T  Fluid temperature
C  Fluid concentration

q
w

  Wall heat �ux
Jw  Wall mass �ux
f  Dimensionless stream function
uw  Velocity of the wall
K*  Mean absorption coe�cient

σ*  Stephan–Boltzmann constant
Shx  Sherwood number
Pr  Prandtl number
(u, v)  Velocity components in x- and y-axis
R  Radiation parameter
τw  Shear stress
Sc  Schmidt number
M  Magnetic �eld parameter
Dm  Di�usion coe�cient
Sc  Schmidth number
U  Composite velocity

(x, y)  Direction along and perpendicular to the wedge
Cr  Chemical reaction parameter
V0  Suction parameter
Cw  Concentration at the wall
s1  First solid component
s2  Second solid component
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Greek symbols

α  Thermal di�usivity of base �uid
�  Kinematic viscosity
μ  Fluid viscosity
ρp  Nanoparticle mass density
S  Dimensionless nanoparticle volume fraction
η  Similarity variable
θ  Dimensionless temperature
λ  Velocity slip parameter
σ  Electrical conductivity
ξ  Thermal slip parameter

Subscripts

∞  Condition far away from cone surface hnf hybrid 
nano�uid

f  Base �uid
nf  Nano�uid

Superscript

′  Di�erentiation with respect to η

1 Introduction

In modern days, the concept of nano�uids has turned 
into more extensive area for the research people owing 
to its enormous range of signi�cances in biomedicine, 
heat exchangers, cooling of electronic devises, double 
windowpane, food, transportation, etc. To amplify the 
general �uids thermal conductivity such as ethylene gly-
col, water, kerosene, engine oils, we have to add di�erent 
types of nanoparticles, like, graphene, silica, silver, gold, 
copper, alumina, carbon nanotubes, etc. to the base �u-
ids. Good numbers of research articles are identi�ed in 
survey of literature which deals the enhancement of the 
base �uids thermal conductivity by adding various types 
of nanoparticles [1–6]. Carbon-based nanomaterials can 
greatly contribute to environment sector and agriculture 
because of their enormous absorption potential due to 
their high surface area. Carbon-based nanomaterials are 
categorized into three kinds based on the shape of the 
nanoparticles, such as spheres or ellipsoidal shape, horn 
shape, and tube shape. CNTs are further categorized as 
single-wall carbon nanotubes (SWCNTs) and multi-wall 
carbon nanotubes (MWCNTs) depending on the number 
of concentric layers of rolled graphene sheets. Abbasi et al. 
[7] presented theoretical and experimental results on ther-
mal conductivity of MWCNTs and  TiO2 nanoparticles and 
revealed that experimental values of thermal conductiv-
ity are higher than the theoretical values. Imtiaz et al. [8] 
detected higher temperature enhancement in MWCNTs 
than the SWCNTs in their work on heat transfer analysis 
of carbon nanotubes between rotating stretchable disks. 
Hayat et al. [9] deliberated �ow and heat transfer analysis 

of carbon nanotubes–water-based nano�uid �ow over 
a thin moving needle and noticed ampli�cation in the 
sketches of velocity as volume fraction parameter rises. 
Estelle et al. [10] measured rheological and thermal con-
ductivity properties of carbon nanotubes–water nano�uid 
in their experimental study and also measured the impact 
of volume fraction and type of base �uid on these prop-
erties. Hussain et al. [11] studied the in�uence of Darcy 
Forhheimer parameter on mass and heat transfer char-
acteristics of carbon nanotubes-water-based nano�uid 
�ow over �at plate/stretching cylinder by taking hetero-
geneous–homogeneous reactions. Sreedevi et  al. [12] 
presented single and multi-walled carbon nanotubes heat 
transfer characteristics over a vertical cone with convective 
boundary conditions. Sudarsana Reddy et al. [13] deliber-
ated Maxwell �uid �ow between two stretchable rotating 
disks �lled with carbon nanotubes-water nano�uid and 
detected reduction in the temperature of the both nano-
�uids with rising values of nanoparticle volume fraction 
parameter. Ahmadi et al. [14] presented �ow and heat 
transfer characteristics of Bungiorno’s model nano�uid 
�ow over a heated stretching sheet and identi�ed aug-
mentation in the values of Nusselt number with up surging 
values of Brownian motion parameter. Qasim et al. [15] 
perceived heat and mass transfer analysis of Bungiorno’s 
model nano�uid thin �lm �ow over a stretching sheet and 
noticed reduction in the values of heat transfer rates as 
Brownian motion parameter values rises. Biglarian et al. 
[16] studied the in�uence of various types of nanoparticles 
and volume fraction of nanoparticles on heat transport 
and �ow of unsteady nano�uid between parallel plates. 
Mahdy et al. [17] noticed elevation in the values of skin 
friction coe�cient with rising values of Weissenberg num-
ber in their analysis on time-dependent hyperbolic tan-
gential nano�uid �ow over stretching wedge. Sheremet 
et al. [18] presented heat transfer analysis of  Al2O3–water-
based nano�uid �ow in square inclined cavity with the left 
vertical wall is maintained sinusoidal temperature distribu-
tion. Hashim et al. [19] perceived the impact of thermo-
phoresis and Brownian motion on mass and heat transport 
characteristics of Williamson nano�uid �ow over a wedge.

“Hybrid nano�uids” are special kind of �uids having bet-
ter thermal conductivity compared to the nano�uids and 
base �uids. Hybrid nano�uids have similar kind of applica-
tions as compared with the nano�uids. The superior ther-
mal e�ciency is predicted in hybrid nano�uids because of 
its better performance. Hybrid nano�uids are generated 
by dispersing two di�erent types of nanoparticles in the 
base �uid. Megatif et al. [20] detected 38% intensi�cation 
in the coe�cient of heat transfer of CNT/TiO2–water-based 
hybrid nano�uid with volume fraction of nanoparticles is 
0.2 wt% in their experimental study. Sidik et al. [21] noticed 
that the hybrid nano�uids have higher thermal properties 
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compared to the nano�uids with single nanoparticle and 
base fluids. Further, they observed that volume frac-
tion and temperature are highly in�uencing the thermal 
properties of hybrid nanofluids. Ahammed et  al. [22] 
experimentally investigated heat transport capabilities of 
alumina/graphene–water hybrid nano�uid �ow in a min-
ichannel. Rahman et al. [23] deliberated heat transfer capa-
bilities of  Al2O3/Cu–water hybrid nano�uid �ow through 
an axisymmetric tube and perceived augmentation in 
rates of heat transfer as the values of volume fraction of 
hybrid nano�uid rises. Yarmand et al. [24] presented inten-
si�cation in the heat transfer of hybrid nano�uid made up 
of platinum/graphene nanoplatelet–water at a four-sided 
microchannel whose boundaries are maintained with con-
stant heat �ux. Hussien et al. [25] experimentally examined 
the heat transport characteristics of GNPs/MWCNTs–water 
hybrid nano�uid �ow through a minitube and detected 
43.4% augmentation in the rate of heat transfer of hybrid 
nano�uid. Izadi et al. [26] presented lattice Boltzmann 
method (LBM) to analyze natural convection of hybrid 
nano�uid generated by  Fe2O4–water over ┴-shaped cavity. 
Asadi et al. [27] studied MWCNT/Al2O3–water hybrid nano-
�uid heat transfer e�ciency as a cooling �uid in energy 
management and thermal applications. Kumar et al. [28] 
theoretically and experimentally investigated heat trans-
port enhancement of MWCNT/Al2O3–water nano�uid �ow 
over minichannel heat sink and noticed intensi�cation in 
the coe�cient of heat transfer in the range of 30–35% as 
the hydraulic diameter of the decreases. Bhattad et al. [29] 
studied pressure drop and heat transfer characteristics of 
hybrid nanofluid made up of MWCNT/Al2O3–water on 
heat exchanger plate and detected 39.16% enhancement 
in heat transfer coe�cient. Maddah et al. [30] perceived 
analysis of  TiO2/Al2O3–water-based hybrid nano�uid �ow 
in turbulent �ow regime. Akilu et al. [31] detected 6.9% 
augmentation in coe�cient of heat transfer in their study 
taking carbon/ceramic copper oxide as hybrid nanopar-
ticles and glycerol/ethylene glycol as base �uids. Waini 
et al. [32] deliberated analysis of Cu/Al2O3–water-based 
hybrid nanofluid over shrinking/stretching sheet and 
identi�ed deterioration in the sketches of temperature 
with higher values of suction parameter. Recently, several 
authors [33–41] discussed about intensi�cation in the val-
ues of heat transfer coe�cient by taking di�erent types 
of nanoparticles and hybrid nanoparticles over various 
geometries.

Careful observation on available literature reveals that no 
studies have reported to analyze the impact of slip e�ects 
and chemical reaction on mass and heat transport character-
istics of magneto-hydrodynamic hybrid nano�uids prepared 
by considering MWCNTs/Silver as nanoparticles and water 
as base �uid over stretching sheet. The resultant equations 
are solved using �nite-element method with Mathematica 

10.0. The problem addressed in this analysis has immedi-
ate applications in generator cooling, transformer cooling, 
electronic cooling, etc.

2  Mathematical analysis of the problem

Consider unsteady, laminar, two-dimensional, MHD bound-
ary layer heat and mass transfer of MWCNT/Ag–water-based 
hybrid nano�uid �ow through a stretching sheet with slip 
e�ects as depicted in Fig. 1. Along the stretching surface and 
in the direction of �ow the x-axis considered and y-axis is 
measured normal to it. Uw (x, t) is the velocity of the stretch-
ing sheet. A constant magnetic �eld of strength B0 is applied 
normal to the plate. Tw and Cw are considered as sheet sur-
face uniform temperature and concentration, and further-
more, T∞ and C∞ are taken as ambient �uid temperature and 
concentration, correspondingly. Under the above assump-
tions, the governing equations describing the momentum, 
energy and concentration in the presence of chemical reac-
tion, slip e�ects and thermal radiation are given by Asadi 
et al. [27].

(1)
�u

�x
+

�v

�y
= 0

(2)
�u

�t
+ u

�u

�x
+ v

�u

�y
= −

1

�hnf

�p

�x
+ �hnf

�2u

�y2
−

�B2(t)

�hnf
u

(3)
�T

�t
+ u

�T

�x
+ v

�T

�y
=

khnf
(

�Cp
)

hnf

�2T

�y2
−

1
(

�Cp
)

nf

�qr

�y

Fig. 1  Physical model and coordinate system
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The following physical boundary conditions are

The subsequent similarity transformations are presented 
to streamline the mathematical study of the problem

Additionally,

By utilizing Rosseland estimation for radiation, the radia-
tive heat �ux qr is demarcated as

The transformed equations are

The associated converted boundary conditions are

The associated non-dimensional parameters are de�ned 
as
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The density �hnf , thermal conductivity khnf , dynamic 
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hybrid nanofluid are specified by:

where
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where

represents the local Reynolds number.

3  Numerical solution of the problem

3.1  The �nite-element method

The variational �nite-element process [42–45] is imple-
mented to evaluate numerically above Eqs. (10)–(12) with 
boundary conditions (13)–(14). Compared with other 
numerical methods, �nite element method is the better 
method to solve both ordinary and partial differential 
equations numerically. The steps involved in the �nite 
element method are as follows.

3.1.1  Finite-element discretization

The whole domain is divided into a �nite number of sub-
domains, which is called the discretization of the domain. 
Each subdomain is called an element. The collection of 
elements is called the �nite-element mesh.

3.1.2  Generation of the element equations

1 From the mesh, a typical element is isolated and the 

variational formulation of the given problem over the 
typical element is constructed.

2 An approximate solution of the variational problem 
is assumed, and the element equations are made by 
substituting this solution in the above system.

3 The element matrix, which is called sti�ness matrix, is 
constructed by using the element interpolation func-
tions.

3.1.3  Assembly of element equations

The algebraic equations so obtained are assembled by 
imposing the inter-element continuity conditions. This 
yields a large number of algebraic equations known as 
the global �nite-element model, which governs the whole 
domain.
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3.1.4  Imposition of boundary conditions

The essential and natural boundary conditions are imposed 
on the assembled equations.

3.1.5  Solution of assembled equations

The assembled equations so obtained can be solved by any 
of the numerical techniques, namely the Gauss elimination 
method, LU decomposition method, etc. An important con-
sideration is that of the shape functions which are employed 
to approximate actual functions.

For the solution of system of non-linear ordinary di�eren-
tial equation (10)–(12) together with boundary conditions 
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where w1, w2, w3 , and w
4
 are arbitrary test functions 

and may be viewed as the variations in f, h, θ, and S, 
respectively.

3.3  Finite-element formulation

The finite-element model may be obtained from above 
equations by substituting �nite-element approximations 
of the form

With, w1 = w2 = w3 = w4 = �
i(i = 1, 2, 3, 4).
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4  Results and discussion
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Fig. 2  The e�ect of (ϕ1) on f′
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16, 17, 18, 19, 20 and 21. The thermophysical properties 
of nanoparticles and water are depicted in Table 1. Com-
parison of present numerical code with existing values is 
made and depicted in Table 2.

Figures 2, 3, 4, 5, 6 and 7 re�ect the sway of nanoparti-
cle volume fraction parameters ϕ1 and ϕ2 on the sketches 
of concentration, temperature and velocity for both 
unsteady and steady cases of MWCNT/Ag–water hybrid 
nano�uid. The velocity scatterings depreciate with escalat-
ing values of both ϕ1 and ϕ2. Furthermore, this phenom-
enon is signi�cantly higher in unsteady case than steady 
case of MWCNT/Ag–water hybrid nano�iud as shown in 

Figs. 2 and 5. With rising ϕ1 and ϕ2 values, the sketches of 
both concentration and temperature intensi�es in both 
unsteady and state cases of hybrid nano�uid. Furthermore, 
this intensi�cation is slightly higher in unsteady case than 
steady case of MWCNT/Ag–water hybrid nanofluid as 
shown in Figs. 3, 4, 6 and 7. This is due to the fact that with 
growing values of nanoparticle volume fraction param-
eters the thermal boundary layer thickness intensi�es. This 
means the rate of heat transfer augments in the �uid area 
as the volume fraction of nanoparticle deteriorates.

We professed from Fig. 8 that the sketches of veloc-
ity declines in both unsteady and state case MWCNT/
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Ag–water-based hybrid nano�uid with escalating values 
of magnetic parameter (M) and this escalating tendency is 
slightly more in unsteady case than steady case MWCNT/
Ag–water hybrid nano�uid. The scatterings of both tem-
perature and concentration of unsteady and steady case 
MWCNT/Ag–water hybrid nano�uid with rising values of 
(M) is depicted in Figs. 9 and 10. The concentration and 
temperature scattering optimize with amplifying values 
of (M), and this amplifying nature is less in steady case 
MWCNT/Ag–water hybrid nano�uid than unsteady case. 
This is due to the fact that the presence of magnetic �eld in 

the �ow creates a force known as the Lorentz force which 
acts as a retarding force, and consequently, the momen-
tum boundary layer thickness decelerates throughout the 
�ow region. To overcome from this Lorentz force �uid has 
to perform extra work, which intensi�es the temperature 
of the �uid.

Thickness of thermal boundary layer with altered val-
ues of Radiation parameter (R) in both unsteady and 
steady case of MWCNT/Ag–water hybrid nanofluid is 
portrayed in Fig. 11 and detected that thermal boundary 
layer thickness upsurges with cumulating values of (R) 
in both cases. The intention for this nature is that, as the 
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Fig. 7  The e�ect of (ϕ2) on S 
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values of (R) rises, the Rosseland radiative absorptive k* 
diminutions. Consequently, the radiative heat flux 

�qr

�y
 

values and the radiative rates of heat transfer into the 
liquid upsurges. This higher radiative heat transfer 
results the intensification in the thickness of thermal 
boundary layer. Moreover, this cumulating nature is 
slightly higher in unsteady case than steady case 
MWCNT/Ag–water hybrid nanofluid. Figure 12 shows the 
disparities in temperature scatterings with altered values 
of Prandtl number (Pr) for both unsteady and state case 
of MWCNT/Ag–water hybrid nanofluid. The temperature 
sketches worsen with up surging values of (Pr), and this 
phenomenon is marginally higher in steady case than 

unsteady case MWCNT/Ag–water-based hybrid nano-
fluid. Form the characterization of Prandtl number, val-
ues raises means thermal diffusivity of the liquid worsens 
which causes lesser heat dispersion. Subsequently, the 
distributions of thermal boundary layer thickness as well 
as temperature of nanoliquid are both deteriorate in the 
fluid region.

MWCNT/Ag–water-based hybrid nano�uid concentra-
tion scatterings shrinks in both unsteady and steady cases 
with rising values of Schmidt number (Sc), and this shrink-
ing nature in concentration sketches is more in steady case 
than unsteady case of MWCNT/Ag–water-based hybrid 
nanofluid (Fig. 13). Figure 14 exhibits the significance 
of chemical reaction parameter (Cr) on concentration 
sketches in both steady and unsteady cases of MWCNT/
Ag–water-based hybrid nano�uid and noticed deterio-
ration in the pro�les with cumulated values of (Cr). It is 
cleared that the deterioration is consequently higher in 
steady case than unsteady case hybrid nano�uid.

Figures 15, 16 and 17 show the disparities in the thick-
ness of hydrodynamic, thermal and solutal boundary lay-
ers with altered values of suction parameter (V0) in both 
unsteady and steady case MWCNT/Ag–water-based hybrid 
nano�uid. The thickness of hydrodynamic boundary layer 
escalates with amplifying values of (V0) in both cases, 
whereas, the thickness of thermal and solutal boundary 
layers diminishes with higher values of (V0). Furthermore, 
the escalating nature in the thickness of hydrodynamic 
boundary layer and diminishing nature in the thickness of 
both thermal boundary layer and solutal boundary layers 
is slightly more steady case than unsteady case of MWCNT/
Ag–water-based hybrid nano�uid. The authenticity for this 
behavior is that sucking the warm liquid from liquid area 
de�nitely deteriorates the thickness of the concentration, 
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thermal and hydrodynamic boundary layers, and conse-
quently, all pro�les of the liquid worsen.

The impact of velocity slip parameter (�) on scatterings 
of concentration, temperature and velocity is depicted in 
Figs. 18, 19 and 20. It is perceived from Fig. 18 that �u-
ids velocity ampli�es with improving values of (�) in both 
unsteady and steady cases of MWCNT/Ag–water-based 
hybrid nano�uid. This is true because as the values of (�) 
rises the thickness of thermal boundary layer denigrates, 
consequently, velocity of the liquid grows. Nevertheless, 

the temperature and concentration sketches depreciate 
with intensifying values of (�) in both unsteady and steady 
cases of MWCNT/Ag–water-based hybrid nano�uid. Fur-
thermore, amplifying tendency in velocity sketches and 
depreciation in temperature, concentration scatterings is 
marginally more in steady case than unsteady case.

Figure  21 describes the sway of temperature slip 
parameter (�) on thermal boundary layer thickness in 
both unsteady and steady cases of MWCNT/Ag–water-
based hybrid nano�uid. With up-surging values of (�) , the 
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temperature sketches degenerates in both cases and this 
degenerating phenomenon is slightly more in steady case 
than unsteady case.

Tables 3 and 4 reveal the sway of pertinent parameters 
on non-dimensional rates of mass transfer, heat transfer, 
and velocity in both unsteady and steady cases of MWCNT/
Ag–water-based hybrid nanofluid. It is perceived that 
values of Sherwood number, Nusselt number, and skin 

friction coe�cient decrease in both unsteady and steady 
cases of MWCNT/Ag–water-based hybrid nano�uid as the 
values of �1,�2 and M rises. With rise in the values of (Pr), 
the dimensionless values of (Cf) and  (Nux) are intensi�es in 
both steady and unsteady cases, while, the opposite trend 
is noticed in  (Shx) values. As the values of (R) improves, 
the values of non-dimensional rates of mass transfer, heat 
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Fig. 17  The e�ect of (V0) on S 
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transfer and rates of velocity values deteriorate in both 
unsteady and steady cases of MWCNT/Ag–water-based 
hybrid nano�uid.

The values of (Cf ),  (Nux) and  (Shx) upsurges in both 
steady and unsteady state hybrid nanofluid as the val-
ues of (Cr) intensifies. The non-dimensional rates of 
velocity, temperature, and concentration values are 
optimized as the values of (V0) upsurges in unsteady 
state hybrid nanofluid as well as this behavior is similar 

in steady state hybrid nanofluid. The values of 
(

f ��(0)
)

 
and 

(

−��(0)
)

 diminish; however, the values of 
(

−S�(0)
)

 
intensify with rising values of (Sc) in steady state case. 
The rates of velocity and Sherwood number values rise, 
whereas Nusselt number values diminish with (Sc) in 
unsteady case. As the values of (�) rise the values 

(

f ��(0)
)

 
decelerate, whereas the values 

(

−��(0)
)

 and 
(

−S�(0)
)

 
intensify in both unsteady and steady cases of MWCNT/
Ag–water-based hybrid nanofluid. The non-dimensional 
rates of velocity and temperature values worsen with 
improved values of (ξ) in both unsteady and steady 
state cases. However, with the higher values of (ξ), the 
values of  (Shx) rise in both cases.

5  Conclusion

The present study addressed MWCNT/Ag–water-based 
hybrid nanofluid heat and mass transfer analysis over a 
stretching sheet. The impact of velocity slip, tempera-
ture slip, chemical reaction, and thermal radiation on 
MWCNT/Ag–water-based hybrid nanofluid flow is also 
analyzed. We have investigated the sway of different 
crucial parameters through plots and tables. The most 
noteworthy findings are as follows:

1 We have noticed up to 22.4% enhancement in 
the rate of heat transfer from viscous fluid (water) 
to Ag–water-based nanofluid as the values of 
ϕ1 rises from 0.01 to 0.1 and with fixed values of 
M = 0.3, R = 1.0, V0 = 0.5, Pr = 6.2, Cr = 0.1, � = 0.5,

� = 0.5, Sc = 1.0. However,  26.7% augmenta-
tion is perceived in the rate of heat transfer from 
Ag–water-based nanofluid to MWCNT/Ag–water-
based hybrid nanofluid as the values of ϕ1 and ϕ2 
increases from 0.01 to 0.1 and with �xed values of 
M = 0.3, R = 1.0, V0 = 0.5, Pr = 6.2, Cr = 0.1, � = 0.5,

� = 0.5, Sc = 1.0.

2 As the volume fraction parameters of both nano�uids 
ϕ1 and ϕ2 intensi�es the thickness of thermal boundary 
layer upsurges in both unsteady and steady cases of 
MWCNT/Ag–water-based hybrid nano�uid.

3 Temperature and concentration of MWCNT/Ag–water-
based hybrid nano�uid deteriorate as the values of (V0) 
rise in both unsteady and steady cases.

4 Both temperature and concentration sketches worsen 
with rising values of velocity slip parameter (�) in both 
unsteady and steady cases of MWCNT/Ag–water-
based hybrid nano�uid.

5 Rising values of (M) lead to depreciation in the values 
of Sherwood number, Nusselt number, and skin fric-
tion coe�cient.
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Fig. 21  The e�ect of (ξ) on θ 

Table 1  Thermo-physical properties of water and nanoparticles

Fluid ρ (kg/m3) Cp (J/kg K) k (W/mK)

Pure water 997.1 4179 0.613

MWCNTs 1600 796 3000

Silver (Ag) 10,500 235 429

Table 2  Comparison of 
(

−��(0)
)

 with the results of Waini et al. [32] 
for various values of (Pr) and �1 = 0, �2 = 0

Parameter Waini et al. [32] Present results

Pr
(

−��(0)
) (

−��(0)
)

2.0 0.911353 0.911341

6.13 1.759682 1.759676

7.0 1.895400 1.895397

20.0 3.353902 3.353915
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6 The dimensionless rates of heat transfer shrinks with 
rising values of (�) in both unsteady and steady cases 
of MWCNT/Ag–water-based hybrid nano�uid.
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0.01 0.01 0.5 6.2 0.1 0.10622 1.63678 1.16709 0.09076 1.60372 1.14493

0.01 0.01 0.5 6.2 0.2 0.10584 1.56234 1.16521 0.08253 1.52986 1.14356

0.01 0.01 0.5 6.2 0.3 0.10252 1.14955 1.15423 0.06548 1.46199 1.14258

Table 4  Values of skin-
friction coe�cient 

(

f ��(0)
)

 , 

Nusselt number 
(

−��(0)
)

 and 

Sherwood number 
(

−S�(0)
)

Parameters Steady-MWCNT/Ag–water Unsteady-MWCNT/Ag–water

C
r

V
0

Sc � �
(

f ��(0)
) (

−��(0)
) (

−S�(0)
)

.
(

f ��(0)
) (

−��(0)
) (

−S�(0)
)

.

0.1 0.5 1.0 0.5 0.5 0.10627 1.16293 0.78842 0.09768 1.12220 0.74926

0.2 0.5 1.0 0.5 0.5 0.10645 1.16325 0.99664 0.09786 1.12357 0.96850

0.3 0.5 1.0 0.5 0.5 0.10875 1.17548 1.16697 0.10235 1.13258 1.14476

0.1 0.1 1.0 0.5 0.5 0.02622 0.49275 0.90043 0.01951 0.39062 0.88228

0.1 0.2 1.0 0.5 0.5 0.03083 0.66010 0.95686 0.02314 0.56794 0.93762

0.1 0.3 1.0 0.5 0.5 0.03590 0.82505 1.01632 0.02724 0.74827 0.99607

0.1 0.5 1.0 0.5 0.5 0.04786 1.12421 1.14439 0.03691 1.07552 1.12268

0.1 0.5 1.2 0.5 0.5 0.04773 1.12354 1.28568 0.03698 1.07452 1.26165

0.1 0.5 1.4 0.5 0.5 0.04532 1.08962 1.42166 0.03754 1.06548 1.39553

0.1 0.5 1.0 0.1 0.5 0.06988 1.11707 1.14099 0.05422 1.06919 1.12007

0.1 0.5 1.0 0.2 0.5 0.04786 1.12421 1.14439 0.03691 1.07552 1.12268

0.1 0.5 1.0 0.3 0.5 0.03428 1.12850 1.14646 0.02630 1.07929 1.12425

0.1 0.5 1.0 0.5 0.1 0.04786 0.92769 1.14388 0.03691 0.89429 1.12195

0.1 0.5 1.0 0.5 0.2 0.04658 0.78967 1.14452 0.03785 0.76533 1.12365

0.1 0.5 1.0 0.5 0.3 0.03265 0.68739 1.15432 0.03954 0.66888 1.12536

https://doi.org/10.1371/journal.pone.0126486
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