
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 346281, 13 pages
http://dx.doi.org/10.1155/2013/346281

Research Article
Heat and Mass Transfer with Free Convection MHD Flow Past
a Vertical Plate Embedded in a Porous Medium

Farhad Ali, Ilyas Khan, Sharidan Shafie, and Norzieha Musthapa

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia (UTM), Skudai, 81310 Johor Bahru, Malaysia

Correspondence should be addressed to Sharidan Shafie; ridafie@yahoo.com

Received 7 November 2012; Accepted 11 April 2013

Academic Editor: Zhijun Zhang

Copyright © 2013 Farhad Ali et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An analysis to investigate the combined effects of heat and mass transfer on free convection unsteady magnetohydrodynamic
(MHD) flow of viscous fluid embedded in a porous medium is presented.The flow in the fluid is induced due to uniformmotion of
the plate. The dimensionless coupled linear partial differential equations are solved by using Laplace transform method. The solu-
tions that have been obtained are expressed in simple forms in terms of elementary function exp(⋅) and complementary error func-
tion erf 𝑐(⋅). They satisfy the governing equations; all imposed initial and boundary conditions and can immediately be reduced to
their limiting solutions.The influence of various embedded flowparameters such as theHartmannnumber, permeability parameter,
Grashof number, dimensionless time, Prandtl number, chemical reaction parameter, Schmidt number, and Soret number is analyzed
graphically. Numerical solutions for skin friction, Nusselt number, and Sherwood number are also obtained in tabular forms.

1. Introduction

The process of heat transfer or heat and mass transfer
together occurs simultaneously in a moving fluid and plays
an important role in the design of chemical processing equip-
ment, nuclear reactors, and formation and dispersion of fog.
A detailed discussion on this topic can be found in Raptis [1],
Kim and Fedorov [2], El-Arabawy [3], Takhar et al. [4], Alam
et al. [5], Chaudhary and Arpita [6], Ferdows et al. [7], Rajesh
et al. [8], Rajesh and Varma [9], Bakr [10], and the references
therein. Dass et al. [11] considered themass transfer effects on
flow past an impulsively started infinite isothermal vertical
plate with constant mass flux. Muthucumaraswamy et al. [12]
presented an exact solution to the problem of flow past an
impulsively started infinite vertical plate in the presence of
uniform heat and mass flux at the plate using Laplace trans-
form technique.

Recently, the free convection flow of magnetohydrody-
namic fluid has attractedmany researchers in view of its num-
erous applications in geophysics, astrophysics, meteorology,
aerodynamics, magnetohydrodynamic power generators and
pumps, boundary layer controlenergy generators, accelera-
tors, aerodynamics heating, polymer technology, petroleum
industry, purification of crude oil, and in material processing

such as extrusion, metal forming, continuous casting wire,
and glass fibre drawing. Further, the convective flow through
porousmediumhas applications in the field of chemical engi-
neering for filtration and purification processes. In petroleum
technology, it is used to study the movement of natural gas
oil and water through oil channels or reservoirs, and in the
field of agriculture engineering to study the underground
water resources (see e.g., Hayat and Abbas [13], Rahman and
Sattar [14], Kim [15], Kaviany [16], Vafai and Tien [17], Jha
and Apere [18], Mandal et al. [19], Katagiri [20]). In view of
such applications, Chaudhary and Jain [21] analyzed themag-
netohydrodynamic free convection flow past an accelerated
surface embedded in a porous medium and obtained the
exact solutions for the velocity, temperature, and concen-
tration fields using Laplace transform method. Seth et al.
[22] investigated the unsteady MHD natural convection flow
with radiative heat transfer past an impulsively moving plate
with ramped wall temperature. Toki and Tokis [23] obtained
the exact solutions for the unsteady free convection flows
on a porous plate with time depending heating. Toki [24]
developed the analytical solutions for free convection and
mass transfer flow near a moving vertical porous plate. Das
[25] developed the closed form solutions for the unsteady
MHD free convection flow with thermal radiation and mass
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transfer over a moving vertical plate. In this continuation, the
effect of heatmass transfer on unsteadyMHD free convection
flow past a moving vertical plate in a porous medium was
investigated by Das and Jana [26]. They considered the
impulsive, uniform, and oscillating motions of the plate
with constant heat and mass diffusion and developed the
exact solutions using Laplace transform technique. Recently,
Osman et al. [27] analyzed the thermal radiation and chem-
ical reaction effects on unsteady MHD free convection flow
through a porous plate embedded in a porous medium with
heat source/sink and the closed form solutions are obtained.
Khan et al. [28] and Sparrow and Cess [29] analyzed the
effects of Hall current and mass transfer on the unsteady
MHD free convection flow in a porous channel. The motion
in fluid is induced to the external pressure gradient and
the closed form solutions for the velocity, temperature, and
concentration fields are obtained.

Motivated by the above investigations the present paper
aims to study the combined heat and mass effects on the
unsteady MHD free convection flow of an incompressible
viscous fluid passing through a porous medium. The flow in
the fluid is caused due to the uniform motion of the plate.
Exact solutions are derived for the velocity distributions, tem-
perature, and concentration fields by using Laplace transform
technique and presented graphically for small as well as large
times. To the best of authors’ knowledge this problem has
not been studied before and the reported results are new.The
present study is of course of great practical and technological
importance, for example, in astrophysical regimes, the pres-
ence of planetary debris, cosmic dust, and so forth and creates
a suspended porous medium saturated with plasma fluids.
Combined buoyancy-generated heat and mass transfer, due
to temperature and concentration variations with unsteady
MHD free convection flow in fluid-saturated porous media,
has several important applications in a variety of engineering
processes including heat exchanger devices, petroleum reser-
voirs, chemical catalytic reactors, solar energy porous water
collector systems, and ceramic materials.

This paper is organized as follows. A brief description
of the problem formulation is given in Section 2. The exact
solutions for the uniformly uniform motion of the plate are
derived in Section 3. The graphical results and discussion
are provided in Section 4. The conclusions of the paper are
given in Section 5 whereas some future recommendations are
included in Section 6.

2. Description of the Problem Formulation

Let us consider the unsteady one dimensional flow of
an incompressible and electrically conducting viscous fluid
caused due to the uniform motion of the plate. The 𝑥∗-axis
is taken along the plate in the vertical direction and 𝑦∗-axis
is taken normal to the plate. The electrically conducting fluid
occupies the porous half space 𝑦∗ > 0. A uniform magnetic
field B

0
is acting in the transverse direction to the flow.

The magnetic Reynolds number is assumed to be small and
therefore the induced magnetic field is negligible compared
with the applied magnetic field. The applied magnetic field
is also taken weak so that Hall and ion slip effects may be

neglected. Initially both the plate and fluid are at the same
temperature 𝑇

∗

∞
and concentration 𝐶∗

∞
. At time 𝑡 = 0+,

the plate begins to slide in its own plane and accelerates
against the gravitational field with uniform acceleration in
𝑥
∗-direction. Then the temperature and concentration level

are raised to 𝑇∗
𝑤
and 𝐶∗

𝑤
as shown in Figure 1.

The Soret and thermal buoyancy effects are also consid-
ered. In addition to the above assumptions, we assume that
the internal dissipation is absent and the usual Boussinesq
approximation is taken into consideration. Moreover, the
pressure gradient in the flow direction is compensated by the
gradient of the hydrostatic pressure gradient of the fluid. As
a result the governing equations of momentum, energy, and
concentration are derived as follows:
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with the following initial and boundary conditions:
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(4)

where 𝑓(𝑡∗) is the uniform acceleration of the plate, 𝑥∗ and
𝑦∗ (m) are the distances along and perpendicular to the
plate, 𝑡∗ (s) is the time, 𝑢∗ (ms−1), denote the fluid velocity
in the 𝑥∗-direction, 𝑇∗ (K) temperature, 𝑇∗

∞
(K) temper-

ature far from the plate, 𝑇∗
𝑤
(K) temperature at the wall,

𝐶∗ (molm−3) are the species concentration, 𝐶∗
𝑤
(molm−3)

surface concentration, 𝐶∗
∞
(molm−3) species concentration

far from the surface, 𝛽 (1/K) the volumetric coefficient of
thermal expansion, 𝛽∗ (molm−3)−1 or (m3mol−1) is the
volumetric coefficient of expansion for concentration, ] =

𝜇/𝜌 (m2 s−1) the kinematic viscosity, 𝜇 (kgm−1 s−1) viscosity,
𝜌 (kgm−3) the fluid density, 𝑐

𝑝
(kg−1 K−1) is the specific heat

capacity, 𝑞∗
𝑟
the radiative heat flux in 𝑥∗-direction,𝐷 (m2 s−1)

is mass diffusivity, 𝑘 (Wm−1 K−1) is the thermal conductivity
of the fluid, 𝜎 (Sm−1) the electrical conductivity of the fluid,
𝐾∗ > 0 (m2) is the permeability of the porous medium, 𝑇

𝑚

(K) is the mean fluid temperature, 𝑇∗
∞
is the free stream tem-

perature, 𝐶∗
∞

is the free stream concentration of the species,
𝐾
𝑇

is the thermal-diffusion ratio, and 𝐾∗
𝑟

the chemical
reaction constant.The radiative heat flux term for an optically
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Figure 1: Flow geometry and physical coordinate system.

thin fluid is simplified by making use of the Rosseland
approximation (Sparrow and Cess [29])

𝑞
∗

𝑟
= −

4𝜎∗

3𝑘∗
𝜕𝑇∗
4
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, (5)

where 𝜎∗ (Wm−2 K−4) is the Stefan-Boltzmann constant and
𝑘∗ (m−1) is themean absorption coefficient. It is assumed that
the temperature differences within the flow are sufficiently
small such that the term 𝑇∗

4

is expressed as the linear func-
tion of temperature. Thus expanding 𝑇∗

4
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Taylor series expansion and neglecting higher order terms we
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From (5) and (6), (2) reduces to the following form:
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3. Flow due to Uniform Motion of the Plate

For uniform motion of the plate, we take 𝑓(𝑡∗) = 𝐴𝑡∗ and
define the following dimensionless variables:
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where 𝐴 with dimension 𝐿/𝑇2 denotes the uniform accelera-
tion of the plate in𝑥-direction,𝑢 is the dimensionless velocity,
𝑦 dimensionless coordinate perpendicular to the plate, 𝑡 is the
dimensionless time, 𝜃 is the dimensionless temperature and
𝜙 is the dimensionless species concentration.

Hence the governing equations in dimensionless form are
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Here𝑀 is a magnetic parameter called Hartmann number,𝐾
is the dimensionless permeability, Sc is Schmidt number, 𝑅 is
Radiation parameter, Gr is Grashof number, and Sr is Soret
number. The well-posed problems defined by (9)–(11) will be
solved by using the Laplace transform technique. Hence the
problem in the transformed plane is given as
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where 𝑞 is the Laplace transformation parameter.
The solutions of (13) in the transformed 𝑞-plane are given

by
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erf 𝑐 (
𝑦√𝐹∗

2√𝑡
− √𝐻∗𝑡)

+𝑒
𝑦√𝐹
∗
𝐻
∗

erf 𝑐 (
𝑦√𝐹∗

2√𝑡
+ √𝐻∗𝑡)] ,

𝐼
8
= erf 𝑐 (

𝑦√𝐹∗

2√𝑡
) ,

𝐼
9
=
1

2
[𝑒
−𝑦√𝛾Sc erf 𝑐 (

𝑦√Sc
2√𝑡

− √𝛾𝑡)

+𝑒
𝑦√𝛾Sc erf 𝑐 (

𝑦√Sc
2√𝑡

+ √𝛾𝑡)] ,

𝐼
10
=
𝑒−𝑎0𝑡

2
[𝑒
−𝑦√Sc(𝛾−𝑎

0
) erf 𝑐 (

𝑦√Sc
2√𝑡

− √(𝛾 − 𝑎
0
) 𝑡)

+ 𝑒
𝑦√Sc(𝛾−𝑎

0
) erf 𝑐 (

𝑦√Sc
2√𝑡

+ √(𝛾 − 𝑎
0
) 𝑡)] ,

𝐼
11
=
𝑒𝐻
∗

1
𝑡

2
[𝑒
−𝑦√Sc(𝐻∗

1
+𝛾) erf 𝑐 (

𝑦√Sc
2√𝑡

− √(𝐻∗
1
+ 𝛾) 𝑡)

+ 𝑒
𝑦√Sc(𝐻∗

1
+𝛾) erf 𝑐 (

𝑦√Sc
2√𝑡

+ √(𝐻∗
1
+ 𝛾) 𝑡)] ,

(21)

where erf 𝑐(𝑥) is the complementary error function. It is
important to note that the above solutions are valid for Pr ̸= 1

and Sc ̸= 1. The solutions for Pr = 1 and Sc = 1, can be easily
obtained by substituting Pr = Sc = 1 into (10) and (11) and
repeating the same process as discussed above.

3.1. Skin-Friction. The expression for skin-friction is given by

𝜏
∗

= −𝜇
𝜕𝑢∗

𝜕𝑦∗

𝑦∗=0
, (22)

which in view of (8) reduces to

𝜏 = −
𝜕𝑢

𝜕𝑦
, 𝜏 =

𝜏
∗

𝜌𝑈2
𝑜

. (23)

Hence from (18), we get

𝜏 =
𝑎
8
𝑒−𝐻𝑡

√𝜋𝑡
−
𝑎
11

√𝐹∗

√𝜋𝑡
+
𝑎
4

√𝐹∗

√𝜋𝑡
+
𝑎
5

√𝐹∗

√𝜋𝑡
−
𝑎
6
𝑒−𝛾𝑡√Sc
√𝜋𝑡

+
𝑒−𝐻𝑡√𝑡

√𝜋
+
𝑡√𝐻

2
(−1 + erf (√𝐻𝑡)) +

erf (√𝐻𝑡)

2√𝐻

+ 𝑎
8

√𝐻 erf (√𝐻𝑡) + 𝑡√𝐻

2
(1 + erf (√𝐻𝑡))

− 𝑎
6
√Sc 𝛾 erf (√𝛾𝑡) − 𝑎

11
𝑒
𝐻
∗
𝑡√𝐻∗𝐹∗ erf (√𝐻∗𝑡)

+ 𝑎
5
𝑒
𝐻
∗

1
𝑡√𝐹∗𝐻∗

1
erf (√𝐻∗

1
𝑡)

−
1

2
𝑎
11
𝑒
𝐻
∗
𝑡

{−
2𝑒−𝐻𝑡−𝐻

∗
𝑡

√𝜋𝑡
+ √𝐻 +𝐻∗

× (−1 − erf (√(𝐻 + 𝐻∗) 𝑡) + √𝐻 +𝐻∗)

× (1 − erf (√(𝐻 + 𝐻∗) 𝑡)) }

−
1

2
𝑎
10
𝑒
𝐻
∗

1
𝑡

{−
2𝑒−(𝐻+𝐻

∗

1
)𝑡

√𝜋𝑡
+ √𝐻 +𝐻∗

1

× (−1 − erf (√(𝐻 + 𝐻∗
1
) 𝑡))

+√𝐻 +𝐻∗
1
(1 − erf (√(𝐻 + 𝐻∗

1
) 𝑡))}

−
1

2
𝑎
9
𝑒
−𝑎
0
𝑡

{
2𝑒𝑎0𝑡−𝐻𝑡

√𝜋𝑡
− √𝐻 − 𝑎

0

× (−1 − erf (√−𝑎
0
𝑡 + 𝐻𝑡))

−√𝐻 − 𝑎
0
(1 − erf (√−𝑎

0
𝑡 + 𝐻𝑡))}

−
1

2
𝑎
9
𝑒
−𝑎
0
𝑡

{−
2𝑒𝑎0𝑡−𝛾𝑡√Sc

√𝜋𝑡
+ √(−𝑎

0
+ 𝛾) Sc

× (−1 − erf (√(−𝑎
0
+ 𝛾) 𝑡))

+ √(−𝑎
0
+ 𝛾) Sc

×(1 − erf (√(−𝑎
0
+ 𝛾) 𝑡))}

−
1

2
𝑎
7
𝑒
𝐻
∗

1
𝑡

{
2𝑒−(𝐻

∗

1
+𝛾)𝑡

√𝜋𝑡
− √Sc√𝐻∗

1
+ 𝛾

× (−1 − erf (√(𝐻∗
1
+ 𝛾) 𝑡))
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− √Sc√𝐻∗
1
+ 𝛾

×(1 − erf (√(𝐻∗
1
+ 𝛾) 𝑡))} .

(24)

3.2. Nusselt Number. The rate of heat transfer for the present
problem is given as

Nu = −𝑘
𝜕𝑇∗

𝜕𝑦∗

𝑦∗=0
,

Nu = 𝜕𝜃

𝜕𝑦

𝑦∗=0
,

Nu = √
𝐹∗

𝜋𝑡
.

(25)

3.3. Sherwood Number. The rate of mass transfer is given by

Sh = 𝜕𝐶
∗

𝜕𝑦∗

𝑦∗=0
,

Sh = −
1

√𝜋𝑡
{𝑒
−𝛾𝑡

(−𝑒
𝛾𝑡√𝐹∗𝑆

∗

+ √Sc + 𝑆∗√Sc

−𝑒
𝐻
∗
𝑡+𝛾𝑡

𝑆
∗√𝜋𝑡𝐻∗𝐹∗ erf (√𝐻∗𝑡))

+ 𝑒
𝛾𝑡√𝛾Sc𝜋𝑡 erf (√𝛾𝑡) + 𝑒𝐻

∗
𝑡+𝛾𝑡

𝑆
∗

×√𝜋𝑡Sc√𝐻∗ + 𝛾 erf (√(𝐻∗ + 𝛾) 𝑡)} .

(26)

It is important to note that solutions (18)–(20) satisfy all
the imposed boundary and initial conditions. Further, the
solutions obtained here are more general and the existing
solutions in the literature appeared as the limiting cases.

(1) The present solutions given by (18)–(20) in the
absence of radiation effect and by taking the thermal-
diffusion ratio (𝐾

𝑇
) and the chemical reaction con-

stant (𝐾∗
𝑟
) equal to zero reduce to the solutions of Das

and Jana [26] (see (4.2), (3.8), and (3.9)).
(2) The solutions (18)–(20) for the flow of optically thick

fluid in a nonporous medium with𝐾∗
𝑟
= 𝐾
𝑇
= 0, give

the solutions of Das [25] (see (4.4), (3.1), and (3.2)).

4. Graphical Results and Discussion

An exact analysis is presented to investigate the combined
effects of heat mass transfer on the transient MHD free con-
vective flow of an incompressible viscous fluid past a vertical
plate moving with uniform motion and embedded in a
porous medium. The expressions for the velocity 𝑢, temper-
ature 𝜃, and concentration 𝜙 are obtained by using Laplace
transform method. In order to understand the physical
behavior of the dimensionless parameters such as Hartmann
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Figure 2: Velocity profiles for different values of𝑀.
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Figure 3: Velocity profiles for different values of 𝐾.

number 𝑀 also called magnetic parameter, permeability
parameter 𝐾, Grashof number Gr, dimensionless time 𝑡,
Prandtl number Pr, radiation parameter 𝑅, chemical reaction
parameter 𝛾, Schmidt number Sc, and Soret number Sr,
Figures 2–17 have been displayed for 𝑢, 𝜃, and 𝜙.

Figure 2 presents the velocity profile for different values
of 𝑀. It is observed that the velocity and boundary layer
thickness decreases upon increasing the Hartmann number
𝑀. It is due to the fact that the application of transverse
magnetic field results a resistive type force (called Lorentz
force) similar to drag force and upon increasing the values of
𝑀 increases the drag force which leads to the deceleration of
the flow. Figure 3 is sketched in order to explore the variations
of permeability parameter 𝐾. It is found that the velocity
increases with increasing values of 𝐾. This is due to the fact
that increasing values of 𝐾 reduces the drag force which
assists the fluid considerably to move fast. The variation of
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Figure 6: Velocity profiles for different values of Sc.
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Figure 8: Velocity profiles for different values of Pr.

velocity for different values of dimensionless time 𝑡 is shown
in Figure 4. It is noticed that velocity increases with increas-
ing time. Further, this figure verifies the boundary conditions
of velocity given in (9). Initially, velocity takes the values of
time and later for large values of 𝑦, and the velocity tends to
zerowith increasing time. It is observed fromFigure 5 that the
fluid velocity increases with increasing Gr. Figure 6 reveals
that velocity profiles decrease with the increase of Schmidt
number Sc, while an opposite phenomenon is observed in
case of Soret number Sr as shown in Figure 7.

Velocity, temperature, and concentration profiles for
some realistic values of Prandtl number Pr = 0.015, 0.71, 1.0,

7.0, 100, which are important in the sense that they physically
correspond to mercury, air, electrolytic solution, water, and
engine oil, are shown in Figures 8–10, respectively. From Fig-
ure 8, it is found that the momentum boundary layer thick-
ness increases for the fluids with Pr < 1 and decreases for
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Figure 16: Temperature profiles for different values of 𝑦.

Pr > 1. The Prandtl number actually describes the relation-
ship between momentum diffusivity and thermal diffusivity
and hence controls the relative thickness of the momentum
and thermal boundary layers. When Pr is small, that is, Pr =
0.015, it is noticed that the heat diffuses very quickly com-
pared to the velocity (momentum).Thismeans that for liquid
metals the thickness of the thermal boundary layer is much
bigger than the velocity boundary layer.

In Figure 9, we observe that the temperature decreases
with increasing values of Prandtl number Pr. It is also
observed that the thermal boundary layer thickness is maxi-
mum near the plate and decreases with increasing distances
from the leading edge and finally approaches to zero. Further-
more, it is noticed that the thermal boundary layer for
mercury which corresponds to Pr = 0.015 is greater than
those for air, electrolytic solution, water, and engine oil.
It is justified due to the fact that thermal conductivity of
fluid decreases with increasing Prandtl number Pr and hence

𝑅 = 0.4, Γ = 0.7, Sc = 0.3, Sr = 0.5, Pr = 0.71
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Figure 17: Concentration profiles for different values of 𝑦.

decreases the thermal boundary layer thickness and the
temperature profiles. We observed from Figure 10 that the
concentration of the fluid increases for large values of Prandtl
number Pr.

The effects of radiation parameter 𝑅 on the temperature
profiles are shown in Figure 11. It is found that the tempera-
ture profiles 𝜃, being as a decreasing function of 𝑅, decelerate
the flow and reduce the fluid velocity. Such an effect may
also be expected, as increasing radiation parameter 𝑅 makes
the fluid thick and ultimately causes the temperature and the
thermal boundary layer thickness to decrease. The influence
of 𝛾, Sc, and Sr on the concentration profiles 𝜙 is shown in
Figures 12–14. It is depicted from Figures 12 and 13 that the
increasing values of 𝛾 and Sc lead to fall in the concentration
profiles. Figure 14 depicts that the concentration profiles
increase when Soret number Sr is increased. Furthermore, we
observe that in the absence of Soret effects, the concentration
profile tends to a steady state in terms of 𝑦; this may be seen
from (11). When Soret effects are present, then at large times,
the solutal solution consists of this steady-state solution and
an evolving “particular integral” due to the presence of the
temperature term.

An important aspect of the unsteady problem is that it
describes the flow situation for small times (𝑡 ≪ 1) as well as
large times (𝑡 → ∞). Therefore, the present solutions for
velocity distributions, temperature, and concentration pro-
files are displayed for both small and large times (see Figures
15–17). The velocity versus time graph for different values of
independent variable𝑦 is plotted in Figure 15. It is found from
Figure 15 that the velocity decreases as independent variable
𝑦 increases. Further, it is interesting to note that initially,
when 𝑡 = 0 the fluid velocity is zero which is also true from
the initial condition given in (9). However, it is observed
that as time increases, the velocity increases and after some
time of initiation, this transition stops and the fluid motion
becomes independent of time and hence the solutions are
called steady-state solutions. This transition is smooth as we
can see from the graph. On the other hand, from the velocity
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Figure 18: Combined effect of various parameters on velocity
profiles.

versus time graph for different values of the independent
variable 𝑦 (see Figure 15), it is found that the velocity at 𝑦 = 0,
is maximum and continuously decreases for large values of 𝑦.
It is further noted from this figure that for large values of 𝑦,
that is, when 𝑦 → ∞, the velocity profile approaches to zero.
A similar behavior was also expected in view of the bound-
ary conditions given in (9). Hence this figure shows the cor-
rectness for the obtained analytical result given by (18).

Similarly, the next two Figures 16 and 17 are plotted
to describe the transient and steady-state solutions which
include the effects of heating and mass diffusion. It is clear
from Figure 16 that the dimensionless temperature 𝜃 has its
maximum value unity at 𝑦 = 0 and then decreasing for
further large values of 𝑦 and ultimately approaches to zero. A
similar behavior was also expected due the fact that the tem-
perature profile is 1 for 𝑦 = 0 and for large values of 𝑦, its
value approaches to 0, which is mathematically true in view
of the boundary conditions given in (10). From Figure 17, it
is depicted that the variation of time on the concentration
profile presents similar results as for the temperature profile
in qualitative sense. However, these results are not the same
quantitatively.

A very important phenomenon to see the combined
effects of the embedded flow parameters on the velocity, tem-
perature, and concentration profiles is analyzed in Figures 18–
21. Figure 18 is plotted to observe the combined effects of Pr,
𝑀, and𝐾 on velocity in case of cooling of the plate (Gr > 0) as
shown by Curves I–IV. Curves I & II are sketched to display
the effects of Pr on velocity. The values of Prandtl number
are chosen as Pr = 0.71 (air) and Pr = 7 (water), which
are the most encountered fluids in nature and frequently
used in engineering and industry. We can from the compari-
son of Curves I & II that velocity decreases upon increasing
Prandtl number Pr. Curves I & III present the influence of
Hartmann number 𝑀 on velocity profiles. It is clear from
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Figure 19: Combined effect of various parameters on velocity pro-
files.
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these curves that velocity decreases when 𝑀 is increased.
The effect of permeability parameter 𝐾 on the velocity is
quite different to that of 𝑀. This fact is shown from the
comparison of Curves I & IV. Figure 19 is plotted to show
the effects of Grashof number Gr, modified Grashof number
Gm, Schmidth number Sc, and Soret number Sr on velocity
profiles. Curves I & II show that velocity increases when Gr
is increased. It is observed that the effect of Gm on velocity
is the same as Gr. This fact is shown from the comparison of
Curves I & III. The effect of Sc on velocity is shown from the
comparison of Curves I & IV. Here we choose the Schmidth
number values as Sc = 0.22 and Sc = 0.6 which physically
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Figure 21: Combined effect of various parameters on concentration
profiles.

correspond to Helium and water vapours, respectively. From
these curves it is clear that velocity decreases when Sc is
increased. The effect of Soret number Sr on velocity is quite
opposite to that of Sc.

Figure 20 is plotted to show the effects of Prandtl number
Pr, radiation parameter 𝑅, and time 𝑡 on the temperature
profiles. The comparison of Curves I & II shows the effects of
Pr on the temperature profiles. Twodifferent values of Prandtl
number Pr, namely, Pr = 0.71 and Pr = 1 corresponding
to air and electrolyte are chosen. It is observed that tem-
perature decreases with increasing Pr. Furthermore, the tem-
perature profiles for increasing values of radiation parameter
𝑅 indicate an increasing behavior as shown in Curves I & III.
A behavior was expected because the radiation parameter 𝑅
signifies the relative contribution of conduction heat trans-
fer to thermal radiation transfer. The effect of time 𝑡 on tem-
perature is the same as observed for radiation. This fact is
shown from the comparison of Curves I & IV. Graphical
results of concentration profiles for different values of Prandtl
number Pr, Schmidth number Sc, Soret number Sr, and
chemical reaction parameter 𝛾 are shown in Figure 21. Com-
parison of Curves I & II shows that concentration profiles
increase for the increasing values of Pr. The effect of Sc on
the concentration is shown from the comparison of Curves
I & III. Here we choose real values for Schmidth number as
Sc = 0.6 and Sc = 1 which physically correspond to water
vapours and methanol. It is observed that an increase in Sc
decreases the concentration. The effect of Soret number Sr
on the concentration is seen from the comparison of Curves
I & IV. It is observed that concentration increases when Sr
increases. The effect of chemical reaction parameter 𝛾 on the
concentration is quite opposite to that of Sr.This fact is shown
from the comparison of Curves I & V.

The numerical values of the skin friction (𝜏), Nusselt
number (Nu), and Sherwood number (Sh) are computed in

Table 1: The effects of various parameters on skin friction (𝜏) when
𝑡 = 1, 𝑅 = 0.2, 𝛾 = 0.7.

Pr 𝑀 𝐾 Gr Sc Sr Gm 𝜏

0.71 1 0.5 1 2 1 1 1.27

1 1 0.5 1 2 1 1 1.30

0.71 2 0.5 1 2 1 1 2.05

0.71 1 1 1 2 1 1 0.94

0.71 1 0.5 2 2 1 1 0.85

0.71 1 0.5 1 3 1 1 1.31

0.71 1 0.5 1 2 3 1 1.25

0.71 1 0.5 1 2 1 2 0.96

Table 2: The effects of various parameters on Nusselt number (Nu)
when 𝑡 = 1.

Pr 𝑅 Nu
0.71 0.2 0.43

1 0.2 0.51

0.71 0.4 0.40

Table 3: The effects of various parameters on Sherwood number
(Sh) when 𝑡 = 1, 𝑅 = 0.1,Gr = 1,𝑀 = 𝐾 = 1,Gm = 2.

Pr 𝛾 Sc Sr Sh
0.71 1 0.6 2 1.36

1 1 0.6 2 0.84

0.71 2 0.6 2 1.9

0.71 1 1 2 0.96

0.71 1 0.6 3 1.64

Tables 1–3. In all these tables, it is noted that the comparison
of each parameter ismade with first row in the corresponding
table. It is found fromTable 1 that the effect of each parameter
on the skin friction shows quite opposite effect to that of
the velocity of the fluid. For instance, when we increase the
magnetic parameter 𝑀, the skin friction increases, as we
observed previously velocity decreases. It is observed from
Table 2 that Nusselt number increases with increasing values
of Prandtl number Pr, whereas it decreases when the radia-
tion parameter𝑅 is increased. FromTable 3, we observed that
Sherwood number goes on increasing with increasing 𝛾 and
Sc, but the trend reverses for large values of Pr and Sr.

5. Conclusions

The exact solutions for the unsteady free convection MHD
flow of an incompressible viscous fluid passing through a
porous medium and heat and mass transfer are developed by
using Laplace transform method for the uniform motion of
the plate.The solutions that have been obtained are displayed
for both small and large times which describe the motion
of the fluid for some time after its initiation. After that time
the transient part disappears and the motion of the fluid is
described by the steady-state solutions which are indepen-
dent of initial conditions. The effects of different parameters
such as Grashof number Gr, Hartmann number 𝑀, porosity
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parameter 𝐾, Prandtl number Pr, radiation parameter 𝑅,
Schmidt number Sc, Soret number Sr, and chemical reaction
parameter 𝛾 on the velocity distributions, temperature, and
concentration profiles are discussed. Themain conclusions of
the problem are listed below.

(i) The effects ofHartmann number and porosity param-
eter on velocity are opposite.

(ii) The velocity increases with increasing values of𝐾, Gr,
and 𝑡, whereas it decreases for larger values of𝑀 and
Pr > 1.

(iii) The temperature and thermal boundary layer de-
crease owing to the increase in the values of 𝑅 and
Pr.

(iv) The fluid concentration decreases with increasing
values of 𝛾 and Sc, whereas it increases when Sr and
Pr are increased.

6. Future Recommendations

Convective heat transfer is a mechanism of heat transfer
occurring because of bulk motion of fluids and it is one of
the major modes of heat transfer and is also a major mode
of mass transfer in fluids. Convective heat and mass transfer
takes place through both diffusion—the random Brownian
motion of individual particles in the fluid—and advection, in
whichmatter or heat is transported by the larger-scalemotion
of currents in the fluid. Due to its role in heat transfer, natural
convection plays a role in the structure of Earth’s atmosphere,
its oceans, and its mantle. Natural convection also plays a role
in stellar physics. Motivated by the investigations especially
those they considered the exact analysis of the heat and mass
transfer phenomenon (see for example, Seth et al. [22], Toki
[24], Das and Jana [26], Osman et al. [27], Khan et al. [28],
and Sparrow and Cess [29]) and the extensive applications of
non-Newtonian fluids in the industrial manufacturing sector,
it is of great interest to extend the present work for non-
Newtonian fluids. Of course, in non-Newtonian fluids, the
fluids of second grade and Maxwell form the simplest fluid
models where the present analysis can be extended. However,
the present study can also by analyzed for Oldroyd-B and
Burger fluids.There are also cylindrical and spherical coordi-
nate systems where such type of investigations are scarce. Of
course, we can extend this work for such type of geometrical
configurations.
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