To appear in the 11th International Conference on Architectural Support for Programming Languages and Operating System20@§PLOS

Heat-and-Run: Leveraging SMT and CMP to Manage Power
Density Through the Operating System

Michael D. Powell Mohamed Gomaa T. N. Vijaykumar

School of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907

{mdpowell, gomaa, vijay}@purdue.edu
ABSTRACT Keywords

Power density in high-performance processors continues to power density, heat, CMP, SMT, migration
increase with technology generations as scaling of current, clock
speed, and device density outpaces the downscaling of supply volt4 INTRODUCTION
age and thermal ability of packages to dissipate heat. Power den-

e . .) Power-density problems in high-performance microprocessors
sity is characterized by localized chip hot spots that can reach

2. . . i refer to power, and therefore heat, concentrating in “hot spots” of
critical temperatures and cause failure. Previous archl_tectural highly-active microprocessor resources, such as ALUS or register
apprlc_)achzs o ppwfer density havle_z used global Clozk 9;'?‘“”9' fetChfiIes. These localized hot spots can reach a critical temperature
tQQQ ing, dynamic frequency scaling, or resource u|O_ICat'On to regardless of average or peak external package temperature or chip
either prevent heating or relieve overheated resources in a SUper'power; therefore techniques designed to alleviate those problems

scalar processor. Previous approaches also evaluate design tECh'are ineffective at reducing the temperature of chip hot spots. Such

nologies where power density is not a major problem and most hot spots can lead to circuit malfunction or failure, reducing reli-

applications d_o not overht_eat the_ processor. Future pr_ocegsors,abi”tyl Power density continues to increase with technology gener-
however, are I|I_<ely to be chip multiprocessors (CMPs) with sm_lul- ations as scaling of current, clock speed, and device density
taneously-multithreaded .(.SMT) cores. SMT. CMPs pose unlqueoutpaces the downscaling of supply voltages and thermal ability of
challenges and opportunltles for power density. . packages to dissipate heat [6]. Exotic technologies such as heat
SMT and CMP increase throughput and thus on-chip heat, but pipes, liquid cooling, and immersion [16] can improve the pack-

als.o providg ”at”f.a' granularities for managing power-density. ages, but these techniques are expensive and do not scale with
This paper is the first work to leverage SMT and CMP to address technology.

power density. We propose heat-and-run SMT thread assignment to Two types of techniques, temporal or spatial
increase processor-resource utilization before cooling becomes : '

hecessary by CO'SChedE“ng th(;eads that l:]se (;:omplementar down computation through frequency and voltage scaling [9] or
resources. We propose heat-and-run CMP threa mllgratlon to stop computation [4] for a period of time, allowing existing heat to
migrate threads away from overheated cores and assign them WOyissipate, and then resume at full speed. Ehim-goutilizes the
free SMT contexts on alternate cores, Ieveragl_ng _avallablllty of resource at some fraction of its peak capacity, calleditg cycle
SMT contexts on alternate CMP cores to maintain throughput , high duty cycle means a large amount of computation per unit

Wh'lel ﬁllowmg overhea;%(;i’/corzs to COSCZ;)/VYS EhOV\t’] thatr?ur pt:o- cooling time and implies low performance degradation. Spatial
posal has an average of 9% and up to o higher throughput than o, ions reduce heat by moving computation in a hot resource to

ahpre(;nous superscalar technique running the same number Ofan alternate resource (e.g., a spare ALU). Spatial solutions require
threads. the presence of redundant or under-utilized resourcespatial

Categories and Subject Descriptors slack to allow cooling without delaying computation.
¢ f liabil labili Technology trends indicate that future processors will employ
g;ﬁcgir”ﬁ;mance of Systemp Reliability, Availability, and simultaneous multithreading (SMT) [15] and chip multiprocessors

(CMP). SMT worsens power density because SMT increases pro-
cessor-resource utilization to achieve high instruction throughput,
General Terms reducingintra-core spatial slack and duty cycle, compared to a
Performance, Reliability superscalar. CMPs worsen power density by placing more cores on
the same die area that previously held one core. However, CMPs
also provide a natural granularity famter-core spatial slack so
Permission to make digital or hard copies of all or part of this work for heat-producing computation can be migrated away from hot cores,

personal or classroom use is granted without fee provided that copies are reducing or eliminating the need to stop execution while a core
not made or distributed for profit or commercial advantage and that cop- cools.

les bear this notice and the full citation on the first page. To copy other- - prayin,s work has evaluated power density in a single-thread,
wise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. single-core enwronm_e_nt [1, 8, 9, 5] but does not consider the chal-
ASPLOS'040ctober 9-13, 2004, Boston, Massachusetts, USA. lenges and opportunities posed by SMTs and CMPs. [1] and [8, 9]
Copyright 2004 ACM 1-58113-804-0/04/0010...$5.00. tackle the power density problem for technologies where duty

can manage
ower density within a processor. Temporal solutions either slow

cycles are above 97% for most applications and incur minimal per- whose current threads’ heat generation complements that of the
formance impact using stop-go and voltage scaling. Unfortunately, incoming thread. Thus, HRTM balances heat-generation across
even single-threaded processors built with future scaled technolo-cores to achieve high throughput. While HRTA maximizes heat
gies are predicted to approach power-densities of a nuclear reactogeneration by spreading it acrogsourceswithin a core, HRTM

and have already surpassed that of a hotplate [6]. This trend com-maximizes heat generation by spreading it acomsssin a CMP.
bined with the above-mentioned lack of spatial slack will inevita- By distributing threads, and thus heat, across all non-overheated
bly cause lower duty cycles (e.g., 60%) for CMP of SMTs. As cores, HRTM aims to achieve a high duty cycle, and thus high
such, stop-go will incur large performance degradation if as much throughput.

as 30% to 40% of the time is stopped. Apart from these challenges,
using spare cores is preferable to adding spare resources, such as
register files [9], ALUs [5] or even issue queues [5], to superscalar
for two reasons: (1) Adding spare resources (especially critical
resources like register file or issue queue) solely for power-density
purposes is unattractive due to worsened design and wiring com-e
plexity and increased area. (2) CMP cores, unlike spare resources,
can be used to run additional threads for workloads where power
density is less problematic or non-problematic.

We propose to leverage SMT and CMP for the first time to o
manage power density in a CMP of SMTs. We propbsat-and-
run which uses the OS and hardware to control power density.
Heat-and-run has two key components: SMT thread assignment
and CMP thread migration. Heat-and-run thread assignment
(HRTA) is based on the key observation that an entire core must
stop execution even #@ny oneessential resource (e.g., register file, o
issue queue) reaches critical temperature; and that cooling time
does not increase much if more resources are hot (lateral heat
transfer among resources is much less than vertical heat transfer
away from the die [8]). Therefore, throughput can be increased if
thread assignment to a core in a CMP of SMTs is done such that
several resources, instead of just one, are heated to the critical tem-
perature, and the cooling time is made more effective by allowing
several resources to cool simultaneously. Thus, HRTA better uti-
lizes the inevitable cooling time by a counterintuitive policy of

maximizingheat generation across resources in a processor. Hencejiscuss the power density problem

The key contributions of this paper are:

We propose heat-and-run thread assignment (HRTA), which
distributes threads among the SMT cores of a CMP to maxi-
mize heat generation in each core and increases per-core com-
putation per unit cooling time.

We propose heat-and-run thread migration (HRTM), which
migrates an overheated core’s threads to other non-heated
cores to balance and maximize heat generation across cores
and increases overall CMP throughput.

SMT aggravates power-density problems for future designs by
increasing heat within a core, reducing duty cycle compared to
single-threaded runs by as much as 30% to 50%. Applying pre-
vious techniques such as stop-go while running maxout num-
ber of threads hurts instruction throughput for many
applications.

While runningfewerthan maxout threads to allow for spatial
slack, HRTA and HRTM achievbetterthroughput in an SMT
CMP. Using a subset of SPEC2000 benchmarks and running 5
threads on a 4-core SMT CMP, we show that HRTA and
HRTM achieve an average of 9% and up to 34% higher instruc-
tion throughput than stop-go and an average of 6% and up to
27% higher instruction throughput than dynamic voltage scal-
ing, when all the techniques run the same number of threads.

The rest of this paper is organized as follows. In Section 2, we
in microprocessors. In

the first part of the name heat-and-run. HRTA uses the OS to assigNgaction 3. we discuss HRTA and HRTM. Section 4 discusses

threads to cores in a CMP of SMTs such that the threads heat com-,

experimental methodology and Section 5 results. In Section 6 we

plementary resources on each core and increase the amount O&iscuss related work. and we conclude in Section 7

computation per unit cooling time. HRTA is different from symbi-
otic jobscheduling in the number of threads considered in thread 2
assignment [10] and in time granularity of assignment decisions
[11], as we explain later.

MICROPROCESSOR POWER DENSITY

In this section, we discuss background for the power-density

problem in microprocessors. First we briefly discuss on-chip heat

When an SMT core’s resource reaches a critical temperature,sources and dissipation. The details of on-chip heat generation and
we employ heat-and-run thread migration (HRTM) to use the OS (issipation are covered in [9] and are covered only briefly here as

to migrate heat away from that core and allow cooling. Hence the packground for our techniques. Then we discuss spatial and tem-
second part of the name heat-and-run. If there were fewer threadsyoral granularity of power density.

than CMP cores, then this migration would be trivial. Similarly, if
the CMP lacked SMT, it would be trivial to add SMT and create
great amounts of spatial slack. We, however, assume that the base

2.1 Heat generation and removal

In this section, we discuss the dissipation of heat and how inad-

processor already exploits SMT (but not HRTA) and has more equacies in heat removal create the power density problem. We
threads than cores. When many, but not all, SMT contexts on adescribe the situation when heavy use of an individual resource
chip are occupied, HRTM allows threads from an overheated core causes heat production to exceed the ability of the package to
to continue running by exploiting inter-core spatial slack and remove heat, creating a hot spot and possibly a reliability problem.
migrating the threads to available contexts on other non-heated Energy is dissipated and heat is produced by circuit activity
SMT cores. Of course, there is no spatial slack if the number of within microprocessor resources. (The granularity of “resource” is
threads running on an SMT CMP is equal to the maximum number discussed in the next subsection; for now resource is generic.) Fun-
of contexts per core times the number of coresmaxoutthread damentally, if, over long time periods, heat is not moved away
count. However, we show that running maxout threads without from a resource at an equal or greater rate than it is produced, tem-
HRTM performs worse than fewer threads with HRTM. When perature of the resource increases.

choosing a core to migrate to, HRTM uses HRTA to mateba- This process of heat dissipation can be modeled similar to an
rately each thread from the overheated core to that non-heated coreRC electrical circuit with temperature in Kelvin (K) analogous to

voltage as detailed in [8, 9]. Elements that conduct heat from one stage level, however, may not be beneficial if the entire core
point to another are modeled as thermal resistances (units of K/W);requires action when only a single resource overheats.
a higher resistance indicates a worse conductor of heat. Elements Granularity is also limited by ability to place thermal sensors.
that store heat are modeled as thermal capacitors (units of J/K); aFrom a thermal monitoring standpoint, fine granularity allows
large thermal capacitance stores heat energy with small temperagreater tolerance for heat. For example, if only one sensor may be
ture change in the same way that a large electrical capacitor storeplaced on a chip, the trigger temperature must be set low enough to
large charge with small voltage. Thermal circuits also exhibit an detect the small amount of heat transmitted by a single overheated
exponential time constant equal to the value of RC. For the rest of functional unit to the large, chipwide thermal capacitance. In con-
this section, resistance and capacitance refer to thermal, not electritrast, fine-grained sensors on smaller thermal capacitances (e.g.,
cal values. near cores or functional units) may trigger at higher temperatures
Heat generated within a microprocessor resource may stay put,because they can detect localized hot spots.
dissipate through lateral resistance to an adjacent area of the chip .
or dissipate through vertical resistance away from the chip. 2.3 Temporal .Granmamy o
Because package designers want heat to move away from the chip We characterize power density in terms of temporal resource
instead of laterally within the chip, low resistance packaging mate- ut|||zat|o_n at processor-core granular!ty _because cores are a na_ltural
rials, thermal grease, and large heat sinks are placed between th@ranularity for managing power density in CMPs. If a core running
on-die resources and the ambient air to lower vertical resistance.2n application generates heat faster than heat is dissipated, then it
Active components such as fans are used to increase heat transfef@n Slow the rate of heat generation for that core by using a duty
(lower thermal resistance) between heat sinks and the ambient airycle less than 100%. The duty cycle, defined in Section 1, is a
Because physically large components such as heat sinks havé:haracterlst_lc of l:_)oth the [processor and the application(s) exe-
capacitances and time constants orders of magnitude larger thar?UFed- In this section we discuss duty cycles and temporal granu-
those of individual processor resources (seconds versus tens té2Mty:
hundreds of microseconds), their temperature changes slowly com- e use the duty cycle and tieperating periogd which is the
pared to that of individual resources. Heat can dissipate from the SUM Of the heating and cooling times within a duty cycle (or the
individual resources only as fast as allowed by resistance betweerfime between initiation of cooling intervals), to characterize tem-
the resource and the rest of the package, and the small capacitandeoral granularity. For example, the slowing of heat generation can
of individual resources means a relatively small amount of energy P& accomplished by running the processor core at full capacity
(compared to the whole chip) can cause large temperature changeél.nt” it approaches a critical temperature and then stopping until it
Therefore, even a heat sink at a safe temperature dissipating heat dt2S adequately cooled as in global clock gating [4]. With this
an adequate rate for processor as a whole can allow individualCoarse granularity, the duty cycle is the fraction of time spent in
resources, with individually small thermal capacitances, to over- OPeration, and the operating period is the maximum allowed with-
heat dangerously. out overheating. The operating perloql can pe shortened by subdi-
Various technologies exist or have been proposed to reduceviding the stop and go periods, eliminating long pauses and
thermal resistance and improve heat flow away from the chip, achieving finer temporal granularity. However, the overall duty
which would increase duty cycle. These include high-airflow CYCl® and net throughput are the same.
designs, liquid cooling, or even phase-change cooling (i.e., boiling ~ The finest temporal granularity is to slow the clock frequency
a coolant to remove heat) [16]. Low-resistance technologies, such@nough to delay the heat generation as with dynamic frequency
as heat pipes, can help move heat away from individual processorScaling (DFS). In that case, the operating period is one cycle, and
resources [16]. However, these techniques have several limitationsthe duty cycle is the fraction of the original clock frequency. If all
1) Their effectiveness is limited by physical thermal characteristics Other external characteristics were equal (e.g., memory behavior),
which do not scale or improve with technology generations, while DFS will achieve the same throughput as global clock gating for
power and heat continue to grow with Moore’s law. 2) The thermal the same duty cycle. , _
characteristics dictate the physical size of the heat-removal system It iS important to note that changing temporal granularity
to achieve adequately low resistance. Volumes on the order of onethough short operating periods or applying DFS doesalter the
hundred cubic inches may be necessary to achieve lower resisStop-go duty cycle for a given application running on a core. The
tances with air-cooled systems [16], which may be prohibitive for duty cycle is based on equalizing the rate of heat generation and
servers and workstations, let alone mobile devices. 3) Exotic tech-dissipation, and the spectrum of techniques from stop-go to DFS
nologies which do not require such large volumes, such as liquid temporally spread the heat generation but do not fundamentally

cooling, are expensive and complex to implement [16]. change the amount of heat generated. The techniques also do not
)) increase resource utilization or change how many resources are
2.2 Spatial Granularity heated before the core must be cooled. In the next section, we

Power density can be sensed over a spectrum of spatial resourceescribe how HRTA allows additional resources to be utilized in an
granularities ranging from an entire chip down to one transistor. SMT before cooling is necessary and HRTM exploits both core-
Granularity is limited by conceptual as well as practical sensor level spatial granularity and SMT to increase throughput.
limitations and affects ability to react to power-density events.

Conceptually, if resource granularity is too coarse, opportunity 3 LEVERAGING SMT AND CMP
for adaptation may be lost. For example, if only chipwide power- In this section, we explain how heat-and-run leverages SMT
density is monitored on a CMP, then all processor cores require 2nd CMP to manage power density. First we qualitatively explain
action if the chipwide temperature is too high. Increasing granular- the concepts behind heat-and-run thread assignment (HRTA) and
ity to the core level allows other cores to run unaffected if one heat-and-run thread migration (HRTM). Then we give an analyti-
overheats. Increasing granularity to the functional-unit or pipeline- cal example of how our techniques can improve throughput over

stop-go techniques. Finally, we explain implementation details of with low-IPC applications. Low IPC applications are likely to be
HRTA and HRTM. cache-miss bound, and therefore place high stress on the d-cache
but minimal stress on other execution resources (Recall that
3.1 HRTA and HRTM concepts because we are using execute IPC, a hon-memory-bound applica-
3.1.1 HRTA tion with high misspeculation and low commit IPC would be con-

Rather than raising duty cycle, HRTA aims to increase utiliza- sideredhigh IPC). Pairing a I(_)W-I_PC_appIication with a' high-1PC
tion within an existing duty cycle by leveraging SMT to run more appll_catlon allows bot_h t_o maintain hlgh_throughput vyhllg resource
threads on a core, utilizing and heating more resources. HRTA heating occurs at a similar rate to the high-IPC application alone.

determines which threads are co-scheduled on individual SMT ~ Our third strategy is to evenly distribute the IPC of all threads

cores on an SMT CMP. Similar to how SMT can improve through- &C70SS available SMT cores to avoid one core from heating sub-
put over single-thread by using more pipeline resources, SMT Canstantially faster than others. Uneven heating rates creates a low
heat more pipeline resources. duty cycle for the hot cores. Even if two high-IPC threads could be

Ideally, HRTA would co-schedule threads using complemen- reasonably co-scheduled (e.g., one is integer and the other is float-

tary resources such that the core would heat and cool at the samd9-P0int), it would not make sense to have simultaneously another
gore executing only low IPC threads.

rate as the hottest resource under single thread (i.e., the hea X o
increases without reducing the core duty cycle compared to that of _ OUr fourth strategy is to co-schedule applications based on the
IPC of specific resources. Co-scheduled applications should not

a single thread). In reality, there is some reduction for two reasons. - - ’
First, heating additional resources causes the entire core to heapeawly use the same resource. This strategy is necessary when

faster because there is more heat to remove and because of later&i9h (Or low) IPC applications are to be scheduled together, and
conductance of heat between adjacent resources. However |ateraqla33|f|cat|(?n as |nteger§nq floating pomtys insufficient. For exam-
thermal resistance between adjacent resources, while not so high iPIe’l _O?e hlghl;!lPC ap;;llcart]lon _Tay hea\r/llly use the d-cichel_and
can be ignored, is large compared to vertical thermal resistance [g].MU!tiPliers, while another heavily uses the ALUs. Co-scheduling

Because vertical heat conduction away from the core dominates,"€S€ @pplications makes sense. In reality, this fourth strategy
lateral heat conduction does not drastically reduce duty cycle. supersedes the first strategy because it will automatically co-sched-

The second reason is more serious; co-scheduled threads comY!€ intéger and floating-point applications.

pete for certain resources, such as the integer register file and issug 1.2 HRTM
gueue and data cache, and may cause those resources to heat more yrTMm exploits spatial slack in an SMT CMP core by migrat-

quickly, reducing the duty cycle. This competition may not be a ing threads away from an overheated core and using HRTA to
concern for certain resources. For example, if the issue queue ispatch separately each thread to a non-heated core with a comple-
already waking up and selecting a near maximum number of mentary workload. Cores are a natural level of spatial granularity
instructions per cycle with a single-thread, running multiple pecause while the heating of intra-core resources can be sensed,
threads will not cause it to heat any faster. However, this competi- bt the overheating of key core resources (i.e., issue queue)
tion can cause execution resources such as ALUs to heat quicklyyequires that the entire core stop and cool. Alternate cores are far
Avoiding this increased heating or offsetting it with increased enough away to be thermally unaffected by a hot core. The key
throughput is a key component of HRTA. parameter of HRTM is the frequency of migration. Frequency of
HRTA employs several strategies to avoid large reductions in migration is determined by the operating period (defined in
duty cycle or offset reductions with increased throughput. All strat- gaction 2.3).
egies aim to co-schedule complementary threads that will not ggcause migrating threads away from an overheating core
stress the same resources. When evaluating resource utilization fofcurs some overhead (discussed in detail in Section 3.3), we wish
an application, we consider metrics based onekecutelPC, as to migrate as infrequently as possible. Infrequent migration implies
opposed to theommitIPC, of both individual resources and the 5 |ong operating period, because migration is necessary at the end
entire application. Execute IPC includes misspeculated instruc- of each period. Recall from Section 2.3 that any duty cycle can be
tions, which generate no less heat than instructions that commit, 5chieved using short or long operating periods. To achieve the
and can easily be determined through run-time hardware profiling. |ongest operating period, we wish to heat the microprocessor to the
For example, an application may have an overall commit IPC of cjtical temperature and then allow it to cool, rather than heating
2.0 and a d-cache commit IPC of 0.5, but due to misspeculation, 5nq cooling in short spurts.
the execute IPC of the application might be 4.0 with a d-cache exe- e remaining question is how long to allow cooling before
cute IPC of 1.0. For the remainder of this section, IPC refers spe- reassigning threads to a processor core. Too short a cooling time
cifically to execute IPC unless stated otherwise. , will not increase duty cycle because the core will reheat quickly. In
The first and most obvious strategy is to co-schedule integer gqgition, quick reheating of the core shortens operating period. Too
and floating-point threads, which correspondingly utilize comple- |5 a cooling period decreases duty cycle, and the core cools less
mentary issue queues, register files, and execution resources. (O&uickly as it approaches the temperature of the adjacent heat
course, floating-point programs still have many integer instructions spreader and heat sink according to the exponential decay of the
for control flow and address calculations but not as many as anthermal RC time constant. Fortunately, the RC time constant pro-
integer program). However, this strategy alone is inadequate for;jes guidance as to the most effective cooling time for an expo-
two reasons. 1) There may be no floating-point (or integer) threadspential system, and we use that value as the cooling time.
available. 2) Pairing high-IPC floating-point and integer applica- The long operating period HRTM is similar to global clock gat-
tions may stress shared resources (e.g., d-cache). Our other strat@ng [4] or simple fetch toggling [8] and may seem heavy-handed
gies aim to remedy these problems. compared to short-period techniques like DFS or control-theoretic
Our second strategy is to co-schedule high-IPC applications fetch toggling [9]. However, the CMP environment favors long

operating periods because of design considerations such as migra-

tion overhead that are not present in superscalar. Techniques such No power-d Stop-go HRTA and HRTM
as DFS may also be difficult to implement on a per-core basis constraint
within a CMP because multiple frequency (or voltage) domains, T T
one per core, would be necessary on one die. Implementing these I |:| 1d
techniques on only a chipwide basis would require slowing the

entire chip when a single core is overheated. d

~—
—

awiL

3.1.3 Difference From Symbiotic Jobscheduling 2d-1
HRTA is different from symbiotic jobscheduling in the number
of threads considered in thread assignment [10] and in time granu- ~- =
larity of assignment decisions [11]. Given a set of runnable threads |:| |:| |:| I 1-d V
2d

and k SMT contexts, Symbiosis identifies subsets of k threads that
are complementary in pipeline resource usage so that co-schedul-Through- 2
ing them in an SMT achieves high throughput. However, Symbio- put
sis considers only l.<-thr.ead. subsets. If a thread has a power density core running 1 thread
problem then running it witdewer co-scheduled threads may be
better. Consequently, HRTA may run a power-density-constrained
thread with fewer than k-1 other threads on a k-context SMT. Mod-
ifyi_ng Symbiosis to cpnsider up Fo k threads i_s not easy because EF|GURE 1: Execution profile of one operating period on
doing so would require considering exponentially more schedule 2 core CMP running 2 threads.
combinations.

In another paper [11] Symbiosis is extended to ensure fair CPU
usage in an SMT. In [11] a non-symbiotic thread may run alone to Multiplied by the number of contexts per core) is 4, there is spatial
ensure that the threads get its fair share. Fairness is ensured bglack available. We assume that the duty cycle is a constant d,
Samp"ng and Comparing each thread’s instruction throughput regardless of if the core is running Single thread or SMT, and that d
alone and co-scheduled with other threads. The schedule thats greater than 0.5. A throughput of 1 is equivalent to uninterrupted
achieves fair shares for the threads involved is chosen to run until€xecution of a single thread on a single core, and we ignore migra-
the next sampling period. Because running threads alone on aﬂ:ion overhead in this example but include it in our experimental
SMT results in underutilization of the pipeline, the sampling phase €valuation. While this is a simple example, it serves well to illus-
(e.g., one-two OS quanta) is must be much shorter than the runningfrate our techniques. The example is illustrated in Figure 1.
phase (e.g., tens of quanta). However, the coarse granularity of the Using stop-go, throughput is simply the sum of the throughputs
run phase implies that the schedule does not change in this longfor each core or the duty cycles of each core added together.
time even if power-density problems arise. In contrast, HRTA's
schedule granularity is much finer (e.g., one-tenth to one quantum) d+d=2d
so that HRTA goes over several schedules during one run phase. Using HRTA and HRTM, when one core is paused due to heat,
One could consider HRTA to be finer-grained scheduling occurring we run its threads on another core. We examine the execution pro-
within [11]'s run phases. file of the first core. The second core has a duty cycle of d and is

3.2 HRTA and HRTM Analytical Example: 2 cores therefore paused at the _fraction _(1-d) of the time_. _The_first core
. . . . must run two threads during that time. Of the remaining time when
In this section, we provide a analytical example of how HRTA the first core is not paused
and HRTM leverage spatial slack to achieve higher throughput
than a stop-go-based technique through SMT.
Our techniques rely heavily on the ability of SMT to achieve d-(1-d) = 2d-1
high throughput through inter-thread symbiosis and require us to
quantify that capacity. Of course, for single-thread throughput, it is
better to run fewer threads per core, even on an SMT. When two
threads are running, we define tBMT factor a, as the fraction of
throughput for a thread compared to that if it were running alone (2d-1) +20(1-d)
on the same core. (We note thais related to weighted speedup as The execution and throughput for the second core is the same;
defined in [10].) In generaly is different for different threads, but when the first core is paused, the second core runs two threads (see
to simplify our example we assunte to be the same for both Figure 1). Simplifying the throughput and multiplying by the num-
threads. Ao of 1 is ideal and implies that two threads running on ber of cores gives total throughput of
the same core each achieve throughput equal to that of running
alone on different cores. Am of 0.5 implies that two equally-long 4d -2+ 4a(1—d)
(in terms of execution time) threads running together achieve the
same throughput as if they were run sequentially alone (i.e., SMT Now we wish to determine when this throughput is greater than
has no benefit). Ao less than 0.5 implies SMT hurts throughput. throughput in the stop-go case
In our example, we have a CMP with 2 cores and 2 contexts per
core. There are 2 threads available to run. Because the maxout 4d—2+ 4a(1-d)>2d
number of threads (defined in Section 1 as the number of cores

4d-2 + 4a(1-d)

I:I core paused

I core running 2 threads SMT

the core runs a single thread to maximize throughput. Through-
put for the core is

The duty cycles cancel in this inequality, yielding
Table 1: System parameters.

Architectural Parameters

a>0.5
. L . L Instruction issue 6, out-of-order
This result is important for two reasons. First, it indicates that)
as long asa is greater than 0.5, HRTA and HRTM outperform L1 64KB 4-way i & d, 2-cycle
stop-go for our example. Recall thataris 0.5 or less only if there L2 2M 8way shared 12-cycle
is zero or negative throughput symbiosis for the SMT threads. For RUU/LSQ 128/32 entries
many thread pairingsy will be 0.6 or higher. Second, duty cycle Memory ports 5

cancels in the equation. In our example, HRTA and HRTM outper-
form stop-go regardless of duty cycle as long as there is some IPC | Off-chip memory latency] 150 cycles

symbiosis from SMT. For example, with a duty cycle of 80% and CMP and SMT 4 cores, 2 contexts/core
of 0.7, throughput with stop-go is 1.60 while throughput with
HRTA and HRTM is 1.76.

Power Density Parameters

We can extend our analysis beyond the simple example. First, vad 11
we assumed that SMT and single-thread duty cycles are the same. | Base Frequency 4.0 GHz
If they are not, duty cycles do not cancel in the equation, and a Convection resistance 0.8 KIW
large qlecrease in duty cycle will degrade performance unless offset Heatsink thickness 6.9 mm
by a high value ofx. Second, we assumed the duty cycle is greater)
than 0.5, which is reasonable for almost all cases without extreme Maximum temp 85 degrees C
power-density problems. However, with a duty cycle of 0.5 or less, Thermal RC cooling timg 10 ms for a core

it is optimal to run the threads together all of the time migrating -
between cores when one overheats and stalling when both ardnented using hardware counters of execute IPC. Threads from
overheated. Total throughput using migration is@{pversus 2d ove_rheated cores are _the_n mlgrgted to their destination by copying
using stop-go, making migration betterif> 0.5. In the case of a 'egister state and assigning their program counter to a free context
duty cycle of 0.5, exactly one core is idle at all times. on the destination core.

It is important to note the uniqueness of the duty cycle 0.5 for The overhead of our thread migration comes primarily from the
the two-core case. 0.5 is (n-1)/n where n is the number of cores andfast trap and the transfer of register state between cores. While not
n = 2. We define (n-1)/n as theatural duty cyclefor HRTA and compl_etely negligible, this overhead should b_e on the orde_r_of a
HRTM. The natural duty cycle helps to extend our example to mul- few microseconds compgred an operating period of_a few millisec-
tiple cores. For example, with four cores, the natural duty cycle is onds. Furthermore, scaling trends favor the reduction of the rela-
0.75. If the duty cycle is equal to the natural duty cycle and the tive overhead. The migration overhead is based on the wall time
number of threads is less than maxout by the number of contextsre_q“!red for.the fast interrupt and state mi.grationz which shrinKs
on one core, then it is optimal to leave one core idle at all times, With increasing clock frequency. The operating period, however, is
rotating the idle core to achieve cooling. If the duty cycle is less Pased on heating period and thermal time constant. A dramatic
than the natural duty cycle (and/or if there are more threads), thendecrease in _heatln_g period is unlikely because such low duty cycles
there are times when more than one core is idle. If the duty cycle is Would drastically impact performance, and because the thermal
greater than the natural duty cycle (and/or if there are fewer time constant does not scale according to Moore’s law, as men-
threads), then there are times when all cores should be active, as itioned in Section 2.1.

our example. 3.3.1 Optimizations

3.3 HRTA and HRTM Implementation Details An additional migration overhead occurs when threads must
Thread assignment and migration occur though the operatingwarm up stateful resources on their destination core, specifically

system using guidance from hardware counters and temperaturtathe branch predictor and the caches. Branch prediction state,

sensors to assign threads. Thread assignment is conventionally peough not required for correctness, could be transferred along
ith the register state. This transfer, however, would greatly

formed at the OS level and incurs some overhead. We must enablé"’ =l
fast migration to minimize overhead of HRTA and HRTM com- increase the volume of data transferred and gain little performance

pared to core operating periods which are determined by heating!MProvement. Branch predictors warm up after only a few itera-
rates and cooling times and are generally in the range of millisec- oS through the working-set of code, so we do not apply this opti-
onds. mization in our results.

Hardware temperature sensors, as discussed in Section 2.2, A recently-migrated thread also faces cold (in the sense of
indicate when a resource on a core has overheated and the corgt@te: not temperature) L1 caches. Although the cache-coherence
must cool. [9] places thermal sensors on key pipeline Corm:)Onemsprotocol_ensures 'correctness of memory accesses whose data is_in
and functional units, such as register files and ALUS, for a super- the previous core’s cache, cache-to-cache transfers from the previ-

scalar core. We assume the same per-core sensor granularity in oupus core or cache-to-memory transfers may be slow. (Note that
design, but migrate computation away from the entire core when acache-to-cache transfers from an overheated core are not a power-

resource reaches a critical temperature. To reduce migration over-density problem because L1-cache SRAM arrays are too large to
ecome an overheated resource.) The cache warmup time can be

head, we also assume that the sensors trigger a fast trap, whiclr -~) .)
mitigated by having an idle core’s cache snarf bus traffic from L1

consumes at most a few microseconds. : : ’ -
dnisses of the running cores to keep its own cache warm. (Again,

Upon a fast trap, the OS decides where to assign the thread S !
using the strategies discussed in Section 3.1, which are imple-SUCh snarfing is not a power-density problem for the overheated

Table 2: Spec2000 applications with single-thread: stop-go commit IPC, execute IPC, and duty cycle.

Low Execute IPC (L) High Execute IPC (H)
name ammp | applu apsi art lucas bzip crafty eon equake fmadd galge| () oaf
IPC (Int/Fp) | 0.06 098(f)| 094(f)| 054(f) 0.44(f] 1.19(G) 21.03() 1.73() 1.28() 1.25(f) 1.35(f] 1.44 (i)
ex-IPC 0.06 0.99 0.95 0.66 0.44 3.27 3.58 3.07 4.22 4.90 3.66 2.9p
duty cycle 1.00 1.00 1.00 1.00 1.00 0.58 0.53 1.00 0.38 0.46 0.40 0.68
name mcf mgrid parser [swim vpr gzip mesa perl sixtragk twolf vortex
IPC (Int/Fp) | 0.20() | 1.27(f)| 0.75()| 1.00(f)| 0.95(y 1.11() 1.85() 1.33() 150() 0.90() 1.85(i)
ex-IPC 0.42 1.28 1.28 1.00 1.26 3.48 2.88 2.75 3.35 1.96 2.13
duty cycle 1.00 1.00 1.00 1.00 1.00 0.61 0.79 1.00 0.48 1.00 1.00

core’s cache either.) This snarfing, however, may be unnecessary a§ RESULTS

even large L1 caches tend to warm up within a million cycles, We present our experimental results in this section. In
which is orders of magnitude less than the operating period of gection 5.1, we show that power-density limitations of stop-go
cores using HRTA and HRTM. techniques on SMT CMPs limit the number of threads to less than
4 METHODOLOGY maxout. Section 5.2 evaluates policies for HRTA and HRTM and
shows throughput compared to stop-go. Section 5.3 compares

In this section we discuss our simulation environment, design HRTA and HRTM to superscalar power-density techniques.

parameters, and benchmarks. Our base simulator is Wattch [2]
extended to include code from SimpleScalar 3.0b [3] to execute the5.1 Throughput of stop-go

Alpha ISA. We extend Wattch to include SMT and CMP Capabil- Add|ng threads to a power-density_constrained SMT CMP may
ity. The architectural configuration of our simulator is shown in not improve instruction throughput because the additional threads
Table 1. Our SMT cores fetch from up to two threads per cycle and can cause cores to overheat, as mentioned in Section 1. In this sec-
use the ICount fetch policy [14]. We implement common SMT tjon, we evaluate SMT CMP instruction throughput as we increase
optimizations including memory offsetting to reduce cache con- the number of threads. We use the stop-go power-density technique
flicts between threads and thread squash upon L2 misses to avoihs our baseline, which is similar to global clock gating and fetch
pollution of the issue queue [13fach core has private L1 caches; toggling with coarse temporal granularity, as described in
the cores share a unified L2. We enable snarfing by idle cores’ L1 Section 2.3. We do not expect increasing the number of threads
caches as described in Section 3.3.1. We model a 5 microsecon(beyond the number of processor cores to Consistenﬂy improve per-
overhead for each thread HRTM migration between CMP cores to formance across our applications, especially for high execute-IPC
account for the fast trap and state copy. (i.e., high heat) application pairings. We expect running maxout
We use the HotSpot [9] model to extend our Wattch-based sim- threads to aggravate the power density problem and hurt through-
ulator for power density, sensing temperature at 100,000 cycle pyt.
intervals (well under the thermal RC time constant of any Table 2 shows our SPEC 2000 applications along with their
resource). Circuit and packaging parameters are also in Table linstruction throughput (IPC) and duty cycle running as single
For each CMP core, we use the single-core floorplan provided in threads using stop-go. Only nine applications have duty cycles
[9] and without private L2 cache, assuming the CMP cores are lat- ynder 100%; the rest do not exhibit power density problems in this
erally thermally isolated by the cooler shared L2 cache. We use aconfiguration. We also show the execute IPC (ex-IPC, as defined in
chipwide Vyq of 1.1 V and a clock frequency of 4.0 GHz. The Section 3.1.1, not to be confused with commit IPC) for each appli-
parameters are consistent with estimates for high-performancecation, which includes misspeculated instructions. For applications
designs in the next 5 years according to the ITRS [7]. They are with duty cycles under 100%, or “hot” applications, ex-IPC reflects
substantially more aggressive than those of [9] due to the higheron|y active periods andoes NOT include the stopped time.
clock frequency and smaller area. Our thermal packaging is also we divide applications into two categories — high and low—
consistent with an air-cooled, high-performance system. based on ex-IPC and will use this categorization throughout the
For our simulations, we run multithread groupings of results. As discussed in Section 3.1, high ex-IPC reflects high core
SPEC2000 [12]. Because our default configuration includes 4 activity and can indicate potential power-density problems. All of
cores with 2 contexts each, it is impossible to show all permuta- oyr hot single-thread applications are in the high-ex-IPC category.
tions of applications. Therefore we show groupings of high-IPC, Figure 2 shows instruction throughput for 5 through 8 threads
|OW'|PC, and mixed-IPC applications as well as integer and float- running on our 4-core SMT CMP using Stop_gol App|ications are
ing-point mixes. We fast-forward each thread two billion instruc- paired to form workloads as shown on the x-axis and workloads
tions to pass initialization code and warm up the caches (cacheare grouped by the ex-IPC categories of the two applications. We
state, not temperature). We use initial thermal conditions consistentshow the average for each group on the right of each group. We
with SMT workloads on our core. Our simulations run until one pyild n-thread workloads from these pairs by replicating them
thread completes 400 million instructions, measuring instruction enough times. When applications are co-scheduled on an SMT
throughput in instructions per second (IPS). Because we show pre-core, each application is co-scheduled with the other in its pair and
vious teChniqUeS which involve CIOCk-frequency Scaling, we need not with another copy of itself (e%’ap is paired W|thgz|p|n the
to show throughput in IPS and not instructions per cycle (IPC). |eftmost results). The bars for each workload increase in the num-

ber of threads to the right. The number of threads is shown below

the x-axis. Due to space limitations, we show only 14 pairings, but Table 3: 4-application groupings.

we ran a total of 35 pairings which gave similar overall results. | Label | Applications Int/FP | Ex-IPC
Integer and floating-point mixes are shown by the color of the bars. [A bzip+fma3d+mesa+art IEEF HHHAL
The duty cycle for the co-schedu_led appllcatlons_on a sn_ngle coreis g Crafty+gzip+apsi+twolf El TR
shown below the bars. Instruction throughput is relative to that i
with 4-cores running single threads, two with each application | © eon+swim+mcf+parser IFI HLLL
from a pair. D galgel+mgrid+twolf+lucas FFIF HLHL
For high ex-IPC workloads, adding threads does not improve "¢ gap+bzip+mcf+eon m HALH
throughput because of power-density problems created by running S FP TRy T HALH
threads in SMT. For the high+high workloads, relative average gap craftyrvpr+gzip
throughput degrades from 0.96 with 5 threads to 0.83 with 8. Aver- | G gzip+lucas+mcf+crafty IFIl HLLH
age throughput for each workload monotonically degrades as | H perl+gap+sixtrack+ammp IIFF HHHL
threads are added with only one gxceptiomﬁy+ga@. All work- | vortex+peri+applutequake | 1IFF HALA
loads exceptperl+vortex (which just perform poorly together)

have duty cycles below 100%, and two are below 50%. These low below the base case as the number of threads increases to the max-
duty cycles compared to single-thread runs are representative ofout of 8, with degradations as high as 20% to 30% for some of the
the challenge posed by SMT for power density, as discussed inhigh-ex-IPC workloads.
Section 1. Note that relative throughput does not necessarily monotoni-
For mixed workloads, average throughput increases by 2%, cally increase/decrease as threads are added. Adding thread X to a
10%, 10%, and 17% for 5, 6, 7, and 8 threads, indicating benefits core previously running only thread Y has a different effectiun
from SMT in spite of power-density constraints when pairing high changein throughput than adding thread Y to a core previously
and low ex-IPC applications. Three workloadspflu+equake, running only thread X. An example of this behavior gsl-
eon-+parserandmgrid+galgel) have duty cycles below 100%, but gel+lucas Adding the fifth threadlucas to a core runningjalgel
each of the workloads excepon+parserexperiences some benefit reduces throughput compared to 4 threads. However, adding a
from adding threads. In addition, these three duty cycles are highersixth threadgalgel to a core runnintucasincreases throughput.
than those experienced by most of the high ex-IPC pairings.
Our low-ex-IPC workloads do not experience power-density 5.2 HRTA and HRTM
problems. Each has a duty cycle of 100%cf+lucasexperiences We have shown that running close to maxout threads does not
good SMT symbiosis, althougbarser+mcfdoes not. Throughput ~ benefit throughput due to power-density constraints. However,
increases an average of 13% for 8 threads, and all duty cycles ardntra-core spatial slack created by running fewer threads is not
100%. Low-ex-IPC is advantageous for these workloads because itXploitable by stop-go, which results in reduced throughput. HRTA
1) does not conflict with SMT symbiosis and 2) causes fewer and HRTM make it possible to leverage the slack using migration.
power density problems for the SMT configuration, as indicated by We expect HRTA and HRTM to outperform stop-go, and we
the high duty cycles. These advantages make these workloads lesgXpect the best performance from HRTA and HRTM configura-
interesting from a power-density standpoint. tions which co-schedule threads using complementary resources
When workloads from all three groups are considered, as and spread heat throughout the chip.
shown at the far right of the figure, there is no substantial benefit
from adding threads due to the throughput penalties of stop-go.
Averaged over all workloads shown, throughput stays within 3%

5.2.1 HRTA thread-assignment policy evaluation
HRTA thread assignments affect both HRTA and HRTM.

m [] integer + integer [integer + floating point Il floating point + floating point

3 1.6

g

=

3 14 L .
8 _

2 12 L _
8

¢ 10 | . i]
3

=3 08 | _|
5

Q.

< 0.6

3 # of threads 5678

|E 2-thread 0.38 0.45 0.57 0.59 0.63 0.68 1.00 0.70 0.81 0.85 1.00 1.00 1.00 1.00

5 duty cycle © \ \ . N da\JQ
S VA AR SN AR NP1\ S R IR\ LR (s S S I 0%
3] Q*Q. 5 X O T %@ x07 (0 A e xS Q07007 0x LB 00 R

2 ¥ 0 (Y X 07 T x x@O 007 0P S (0T | Vet oW W

= o o S O et W RS “\Q‘\c\ @ Ve av

c

High + High High + Low Low + Low
FIGURE 2: Stop-go for 5-8 threads grouped by individual-thread execute-IPC.

a: co-schedule INT/FP [3: co-schedule hi/low ex-IPC x: evenly spread ex-IPC &: reduce usage of overheating resources

o

(2]

Y

S _

(2]

o 13 1 —
() —

=

z 12 —
[}

x

7 11 - —
a

5 10 —HH ------- - - |- -4 - SN -4 - - Y A
5 [1]

2 0o T 0

= a 1)

= BZ.(S @é *? S iR 3 K N4 O

5 ® & Nt x? S & S N ks

B . Q" <R x < < x xT &

3 v o N © NS N

3

c

FIGURE 3: Evaluation of HRTA policies for 5-thread workloads.

Thread assignment dictates not only resource utilization for a sin- Co-scheduling to evenly spread ex-IPC across the cores (policy
gle core but also directs migration of execution (and heat) amongx) is more effective at spreading heat across cores while still gener-
cores. ating effective thread pairings. (A pairing with a combined ex-IPC
Figure 3 shows throughput for HRTA and HRTM relative to near the chipwide per-core average is unlikely to include two high
stop-go running the same threads. The workloads are 5-threadex-IPC applications.) This policy achieves an average throughput
workloads constructed from the 4-thread groupings in Table 3 plus gain of 7.2% over stop-go. However, this policy performs poorly
an additional copy of 1 of the applications as shown on the x-axis for some workloads (e.g., A and F) where ex-IPC alone does not
of the graph. The average over all workloads is shown at the far seem the best assignment policy.
right. Table 3 also shows the Int/FP composition and ex-IPC cate- Policy 6 co-schedules threads based on the utilization of spe-
gory of each workload’s components. We also ran 6-thread work- cific resources that overheat, not the generalized ex-IPC of the
loads but found their thread-assignment-policy results to be thread. This policy pairs threads with a low combined utilization of
similar; 6-thread workloads will be shown in Section 5.3. these strained resources to reduce overheating and maintain high-
The four bars for each workloadu{d) represent different duty cycles. Policyd has the best overall throughput, 9.2% higher
thread assignment policies for migration described in than stop-go. While it does not outperform poligyor all work-
Section 3.1.10) co-schedule applications with the most different loads, it avoids the poorer performance of policin workloads A
utilization of integer and floating-point resourc@,co-schedule and F. We use policy for the remainder of our results.

applications with the most disparate ex-IB¢ co-schedule appli- There are two 5-thread workloads for which HRTA and HRTM
cations to spread the ex-IPC across the chip, generating pairs withseem ineffective regardless of policy. Workload D experiences no
a combined ex-IPC near the chipwide per-core averapeo- change in throughput because it experiences no overheating (and

schedule applications with small combined usage of resourcesthus needs no migration). Workload B contains 4 high-ex-IPC
prone to overheating. Nearly all overheatings we experience comethreads, two of whichdrafty andgzip) have low duty cycles when
from the register files, integer issue queue, and floating-point units, run in isolation, and the workload is unable to find effective pair-
so we consider those units for polidy These policies are applied ings using our policies.
to assign threads both when a core overheats (and tries to migrat .

g (9gré'¢ 2.2 cache Snarfing

its threads elsewhere if there is spatial slack on other non-over-))
heated cores) and when a core cools (and migrates threads from All of our HRTA and HRTM results shown include snarfing by

other cores). In each case, statistics since the previous migratiorfd/€ cores’ L1 caches as described in Section 3.3.1. Snarfing aims
are considered in the decision. to avoid cold L1 caches immediately after a migration. Overall, we

Co-scheduling based on different integer and floating-point uti- expect snaffing_to havg a small effect b_ecause of th_e long interval
lization (policy a) experiences the smallest throughput gain over between migrations (milliseconds), b_Ut it may bent_aflt some work-
stop-go, 4.7% on average, mainly because it is effective only when loads. For our 5-thread workloads using polysnarfing provides

appropriate applications are available to migrate. The workloads on!y a 1% average throughput increase but provid_es substantial
for which this policy achieves more than 1% performance 9@ins of 4% and 12% for workloads A and G respectively.

impr_oveme_nt (E_,_F, G H,_ and I)_ all have a good mix of integer and g5 3 Comparison to superscalar techniques

_floatlng-pom_t utl_llzatlon, including workloads E_and F, _vvhere_the Other power-density techniques have been applied to supersca-

|nFe_ger_ applicationgyap and eon have substantial floating-point lar processors, such as dynamic frequency scaling (DFS) and

utilization. . . . dynamic voltage scaling (DVS) [1, 8, 9]. In this section, we com-
Co-scheduling based solely on difference in ex-IPC (pdEy 5re HRTA and HRTM to these techniques applied to an SMT

has th_e sec_ond s_,ma_llest throu_gh_put Qa‘“' 5'4_'% on average. A Probevp we expect HRTA and HRTM to outperform these techniques
lem with this policy is that while it pairs applications with widely by exploiting spatial slack through migrating threads.

different ex-IPCs, it may not effectively spread heat across the ~ \yq implement DFS and DVS in our simulator using a PI con-

cores beca_use_ such pairings may not result in per-core ex-IPCs[rO”er with a gain of 10 and setpoint of 81.8 degrees C, similar to
near the chipwide per-core average.

a: relative to stop-go B: relative to DFS X: relative to DVS

5-thread workloads 6-thread workloads
o
= T
*g_ 1.3 - . 4 L |
)
S 1.2 F 1 r —
o
£
c 11} 1 F .
9
©
2 10 - SHHATErAA AT - H 1r- H -|- 11 H_‘ N -]
o 09 (] 09 [Moo -
o .
g GBX\\60~ e aBXé ¢ N & Q& & O
& S LFE S FFEFY @ F TS EEY
Vool Vo ¢ gt T S Fg S F SO
¢ N R SR N S
x Q}x xQ x\ <& <& x @6\ 0\?
v o 9 O & <
FIGURE 4: Evaluation of HRTA and HRTM for 5-thread and 6-thread workloads. >

that in [9]. Each core is voltage and frequency scaled independent5.3.1 Other Superscalar Techniques
of the other cores. We assume the core must stall fps bh each We do not compare against a number of other techniques which
voltage and frequency change to stabilize the PLL; this overhead isare either not generally applicable or create implementation diffi-
the same as that modeled in [9]. For both DFS and DVS, we allow culties. Temperature-Tracking Frequency Scaling (TTDFS), as
6 evenly-spaced frequency steps between the maximum and half oproposed in [9], allows the processor to heat above its “maximum”
the maximum clock frequency. For DVS, we scale frequency and temperature by slowing the clock and relaxing timing constraints.
also allow corresponding voltage steps between 1.1)y)(@nd As stated in [9] TTDFS is effective only if the sole limitation on
0.95V (0.86*Vy). power density is circuit timing. TTDFS does not reduce maximum
We do not aggressively scale the voltage for DVS below 0.95V. temperature or prevent physical overheating and cannot handle
While voltage scaling provides a desirable quadratic reduction in |arge increases in temperature, which may damage the chip. We do
heat, reducing supply voltage becomes increasingly difficult for not compare to resource duplication as demonstrated for the regis-
scaled, low-voltage technologies because transistor threshold volt-ter file in [9] or for various pipeline components in [5] because the
age scales more slowly than the supply voltage [7]. As the gap technique adds substantial complexity within individual cores.
between the supply voltage (e.g., 1.1V) and the threshold voltage
(e.g., 0.25 V) closes, there is substantially less flexibility for DVS. 6 RELATED WORK
Additional supply-voltage reduction may cause soft errors or pre- Several previous proposals address thermal management or
vent transistors from switching even at reduced clock frequencies.power density in superscalars. The authors of [1] evaluate tech-
The ITRS does not predict supply voltages below 0.9 V for high- niques to balance the rate of heat production to heat dissipation at
performance designs in the near term (through 2009) [7]. chip-level granularity. [8] proposes toggling techniques and use of
Figure 4 shows throughput for HRTA and HRTM relative to PID controllers to manage power density. [9] introduces the
stop-go @), DFS @), and DVS §). 5-thread workloads are shown HotSpot temperature model used in this paper and proposes PI-
in the left graph, and 6-thread workloads are shown on the right. controlled DFS/DVS and TTDFS, as discussed in Section 5.3.
(The 5-thread results relative to stop-go are the same as the rightFinally, [5] proposes “ping-ponging” resource activity for various
most bar in Figure 3 but are kept for reference.) For 5-thread work- pipeline resources between duplicates within a superscalar core.
loads, HRTA and HRTM outperform stop-go, DFS, and DVS by
9.2%, 9.6% and 6.2% respectively. For 6-thread workloads, HRTA 7 CONCLUSIQN_S .
and HRTM outperform stop-go, DFS, and DVS by 5.9%, 10.8%, _ Power c_iensny in hlgh-performance processors continues to
and 7.1% respectively. Note that for 6 thread workloads, there is increase with technology generations as scaling of current, clock
less spatial slack and thus less opportunity for HRTA and HRTM speed, and device (_jgnsny outpaces dovv_nspallng of supply voltage
compared to stop-go. and the thermal ability of packages to _d|SS|pate hgat. Future pro-
Intuitively, DFS and stop-go (which both exploit temporal slack €€ssors are likely to be SMT CMPs, which pose unique challenges
at different granularities) should perform about the same, while @d opportunities for power density. SMT and CMP increase
DVS, which has the advantage of voltage scaling, should do better.throughput and thus on-chip heat, but they also provide natural
However, there are exceptions. DFS and DVS do not always out- 9ranularities for managing power-density. We propbset-and-
perform stop-go because they may scale frequency and voltagdUn which uses the OS and hardware to control power c_iensny.
prior to a core actually overheating, such as in workload D, which Heat-and-run has two key components: SMT thread assignment
gets warm but never overheats. (Recall from Section 5.2.1 that@nd CMP thread migration. Heat-and-run thread assignment
workload D experiences no migration.) In these cases HRTA and (HRTA) increases processor-resource utilization before cooling

HRTM have a bigger advantage over DFS and DVS than over Smp_becomes necessary by co-scheduling threads that use complemen-
go. tary resources. HRTA aims to avoid large decreases in processor

duty cycle and to offset inevitable decreases in duty cycle by main-

taining high throughput. Heat-and-run thread migration (HRTM) [6]
migrates threads away from overheated cores and assigns them to
free SMT contexts on alternate cores using HRTA. HRTM lever-
ages availability of SMT contexts on alternate CMP cores to main-
tain throughput while allowing overheated cores to cool. [7]

We show that running the maximum possible number of
threads (maxout threads) on a power-density-constrained SMT
CMP using existing stop-go techniques degrades or does not[g]
improve throughput compared to running threads equal to the num-
ber of cores. The extra heat added by running multiple threads sub-
stantially reduces duty cycle compared to single-threaded
configurations. Stop-go is unable to exploit spatial slack that is
available when fewer than maxout threads are run. We show that[g]
HRTA and HRTM are able to exploit the spatial slack, improving
throughput over stop-go and previous superscalar techniques. For a
4-core CMP running 5 threads, HRTA and HRTM achieve 9%
higher average throughput than stop-go and 6% higher average
throughput than dynamic voltage scaling. [10]

As power density worsens with technology scaling, and as volt-
age scaling becomes more difficult due to the shrinking gap
between the supply and threshold voltages, alternate techniques
like heat-and-run will become more important.

8 ACKNOWLEDGEMENTS

This research is supported in part by NSF under CAREER
award 9875960-CCR, NSF Instrumentation grant CCR-
9986020 and a Purdue Research Foundation Fellowship.

9 REFERENCES

[1] D. Brooks and M. Martonosi. Dynamic thermal manage-
ment for high-performance microprocessorsSkventh In-
ternational Symposium on High Performance Computer
Architecture (HPCA)pages 171-182, Jan. 2001.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International
Symposium on Computer Architectupages 83-94, June
2000.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, Computer Sciences De-
partment, University of Wisconsin—Madison, June 1997.

[4] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Man-
aging the impact of increasing microprocessor power con-
sumption. Inintel Technology Journal Q1 200@Q1 2001.

[5] S. Heo, K. Barr, and K. Asanovic. Reducing power density [16]
through activity migration. IfProceedings of the Interna-
tional Symposium on Low Power Electronics and Design
pages 217-222, Aug. 2003.

[11]

[12]

[13]

[14]

[15]

F. Pollack. New microarchitecture challenges in the com-
ing generations of cmos process technologieégnote
speech: 32nd International Symposium on Microarchitec-
ture, Dec. 1999.

SIA. International Technology Roadmap for Semiconduc-
tors (ITRS) http://public.itrs.net/Files/2002Update/
2002Update.htm, 2002.

K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theo-
retic techniques and thermal-rc modeling for accurate and
localized dynamic thermal managementEighth Interna-
tional Symposium on High Performance Computer Archi-
tecture (HPCA)pages 17-28, Feb. 2002.

K. Skadron, M.R. Stan, W.Huang, S.Velusamy,
K. Sankaranarayanan, and D. Tarjan. Temperature-aware
microarchitecture. IfProceedings of the 30th International
Symposium on Computer Architecture (ISCA p@pes 2—

13, June 2003.

A. Snavely and D. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreading processor.Rroceedings of
the Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS IX)pages 234-244, Nov. 2000.

A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithread-
ing processor. In International Conference on
Measurement and Modeling of Computer Systems (SIG-
METRICS) June 2002.

The Standard Performance Evaluation Corporation. Spec
CPU2000 suite. http://www.specbench.org/osg/cpu2000/.
D. M. Tullsen and J. A. Brown. Handling long-latency
loads in a simultaneous multithreading processoPiio-
ceedings of the 34th International Symposium on Microar-
chitecture (MICRO 34)pages 318-327, Dec. 2001.

D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: instruction fetch
and issue on an implementable simultaneous multithread-
ing processor. IfProceedings of the 23rd Annual Interna-
tional Symposium on Computer Architectupages 191—
202, June 1996.

D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: maximizing on-chip parallelism. Fro-
ceedings of the 22nd Annual International Symposium on
Computer Architecturgpages 392-403, June 1995.

R. Viswanath, V. Wakharkar, A. Watwe, and
V. Lebonheur. Thermal performance challenges from sili-
con to systems. Iintel Technology Journal 3Q 200@3
2000.

	Abstract
	1 Introduction
	2 Microprocessor power density
	2.1 Heat generation and removal
	2.2 Spatial Granularity
	2.3 Temporal Granularity

	3 Leveraging SMT and CMP
	3.1 HRTA and HRTM concepts
	3.1.1 HRTA
	3.1.2 HRTM
	3.1.3 Difference From Symbiotic Jobscheduling

	3.2 HRTA and HRTM Analytical Example: 2 cores
	FIGURE 1: Execution profile of one operating period on 2 core CMP running 2 threads.

	3.3 HRTA and HRTM Implementation Details
	3.3.1 Optimizations
	Table 1: System parameters.

	4 Methodology
	5 Results
	5.1 Throughput of stop-go
	Table 2: Spec2000 applications with single-thread: stop-go commit IPC, execute IPC, and duty cycle.
	FIGURE 2: Stop-go for 5-8 threads grouped by individual-thread execute-IPC.

	Table 3: 4-application groupings.

	5.2 HRTA and HRTM
	5.2.1 HRTA thread-assignment policy evaluation
	5.2.2 Cache Snarfing
	FIGURE 3: Evaluation of HRTA policies for 5-thread workloads.

	5.3 Comparison to superscalar techniques
	5.3.1 Other Superscalar Techniques
	FIGURE 4: Evaluation of HRTA and HRTM for 5-thread and 6-thread workloads.

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	9 References

