
Heat-and-Run: Leveraging SMT and CMP to Manage Power
Density Through the Operating System

Mohamed Gomaa

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907

Michael D. Powell T. N. Vijaykumar

To appear in the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2004)

ors
of
ter
ure
chip
ms
ch

li-
er-
ity
of
eat

k-
with

ge
w

or
o

nit
ial
to

uire

oy
rs
ro-
ut,
a
on
Ps

es,
re

ad,
al-

, 9]
ty
{mdpowell, gomaa, vijay}@purdue.edu
ABSTRACT

Power density in high-performance processors continues to
increase with technology generations as scaling of current, clock
speed, and device density outpaces the downscaling of supply volt-
age and thermal ability of packages to dissipate heat. Power den-
sity is characterized by localized chip hot spots that can reach
critical temperatures and cause failure. Previous architectural
approaches to power density have used global clock gating, fetch
toggling, dynamic frequency scaling, or resource duplication to
either prevent heating or relieve overheated resources in a super-
scalar processor. Previous approaches also evaluate design tech-
nologies where power density is not a major problem and most
applications do not overheat the processor. Future processors,
however, are likely to be chip multiprocessors (CMPs) with simul-
taneously-multithreaded (SMT) cores. SMT CMPs pose unique
challenges and opportunities for power density.

SMT and CMP increase throughput and thus on-chip heat, but
also provide natural granularities for managing power-density.
This paper is the first work to leverage SMT and CMP to address
power density. We propose heat-and-run SMT thread assignment to
increase processor-resource utilization before cooling becomes
necessary by co-scheduling threads that use complementary
resources. We propose heat-and-run CMP thread migration to
migrate threads away from overheated cores and assign them to
free SMT contexts on alternate cores, leveraging availability of
SMT contexts on alternate CMP cores to maintain throughput
while allowing overheated cores to cool. We show that our pro-
posal has an average of 9% and up to 34% higher throughput than
a previous superscalar technique running the same number of
threads.

Categories and Subject Descriptors
C.4.6 [Performance of Systems]: Reliability, Availability, and
Serviceability

General Terms
Performance, Reliability

Keywords
Power density, heat, CMP, SMT, migration

1 INTRODUCTION
Power-density problems in high-performance microprocess

refer to power, and therefore heat, concentrating in “hot spots”
highly-active microprocessor resources, such as ALUs or regis
files. These localized hot spots can reach a critical temperat
regardless of average or peak external package temperature or
power; therefore techniques designed to alleviate those proble
are ineffective at reducing the temperature of chip hot spots. Su
hot spots can lead to circuit malfunction or failure, reducing re
ability. Power density continues to increase with technology gen
ations as scaling of current, clock speed, and device dens
outpaces the downscaling of supply voltages and thermal ability
packages to dissipate heat [6]. Exotic technologies such as h
pipes, liquid cooling, and immersion [16] can improve the pac
ages, but these techniques are expensive and do not scale
technology.

Two types of techniques, temporal or spatial, can mana
power density within a processor. Temporal solutions either slo
down computation through frequency and voltage scaling [9]
stop computation [4] for a period of time, allowing existing heat t
dissipate, and then resume at full speed. Thisstop-goutilizes the
resource at some fraction of its peak capacity, called theduty cycle.
A high duty cycle means a large amount of computation per u
cooling time and implies low performance degradation. Spat
solutions reduce heat by moving computation in a hot resource
an alternate resource (e.g., a spare ALU). Spatial solutions req
the presence of redundant or under-utilized resources, orspatial
slack, to allow cooling without delaying computation.

Technology trends indicate that future processors will empl
simultaneous multithreading (SMT) [15] and chip multiprocesso
(CMP). SMT worsens power density because SMT increases p
cessor-resource utilization to achieve high instruction throughp
reducing intra-core spatial slack and duty cycle, compared to
superscalar. CMPs worsen power density by placing more cores
the same die area that previously held one core. However, CM
also provide a natural granularity forinter-core spatial slack so
heat-producing computation can be migrated away from hot cor
reducing or eliminating the need to stop execution while a co
cools.

Previous work has evaluated power density in a single-thre
single-core environment [1, 8, 9, 5] but does not consider the ch
lenges and opportunities posed by SMTs and CMPs. [1] and [8
tackle the power density problem for technologies where du

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
ASPLOS’04, October 9-13, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-804-0/04/0010...$5.00.

the
oss
at

ted
gh

ch
xi-
om-

h
ted
res

by
to

re-
m-
y

l

g 5
d
c-
to
l-

s.

e
In
es
we

ity
at

and
as
m-

d-
We
rce

to
m.

ity
is
un-
y

em-

an
o

cycles are above 97% for most applications and incur minimal per-
formance impact using stop-go and voltage scaling. Unfortunately,
even single-threaded processors built with future scaled technolo-
gies are predicted to approach power-densities of a nuclear reactor
and have already surpassed that of a hotplate [6]. This trend com-
bined with the above-mentioned lack of spatial slack will inevita-
bly cause lower duty cycles (e.g., 60%) for CMP of SMTs. As
such, stop-go will incur large performance degradation if as much
as 30% to 40% of the time is stopped. Apart from these challenges,
using spare cores is preferable to adding spare resources, such as
register files [9], ALUs [5] or even issue queues [5], to superscalar
for two reasons: (1) Adding spare resources (especially critical
resources like register file or issue queue) solely for power-density
purposes is unattractive due to worsened design and wiring com-
plexity and increased area. (2) CMP cores, unlike spare resources,
can be used to run additional threads for workloads where power
density is less problematic or non-problematic.

We propose to leverage SMT and CMP for the first time to
manage power density in a CMP of SMTs. We proposeheat-and-
run which uses the OS and hardware to control power density.
Heat-and-run has two key components: SMT thread assignment
and CMP thread migration. Heat-and-run thread assignment
(HRTA) is based on the key observation that an entire core must
stop execution even ifany oneessential resource (e.g., register file,
issue queue) reaches critical temperature; and that cooling time
does not increase much if more resources are hot (lateral heat
transfer among resources is much less than vertical heat transfer
away from the die [8]). Therefore, throughput can be increased if
thread assignment to a core in a CMP of SMTs is done such that
several resources, instead of just one, are heated to the critical tem-
perature, and the cooling time is made more effective by allowing
several resources to cool simultaneously. Thus, HRTA better uti-
lizes the inevitable cooling time by a counterintuitive policy of
maximizingheat generation across resources in a processor. Hence
the first part of the name heat-and-run. HRTA uses the OS to assign
threads to cores in a CMP of SMTs such that the threads heat com-
plementary resources on each core and increase the amount of
computation per unit cooling time. HRTA is different from symbi-
otic jobscheduling in the number of threads considered in thread
assignment [10] and in time granularity of assignment decisions
[11], as we explain later.

When an SMT core’s resource reaches a critical temperature,
we employ heat-and-run thread migration (HRTM) to use the OS
to migrate heat away from that core and allow cooling. Hence the
second part of the name heat-and-run. If there were fewer threads
than CMP cores, then this migration would be trivial. Similarly, if
the CMP lacked SMT, it would be trivial to add SMT and create
great amounts of spatial slack. We, however, assume that the base
processor already exploits SMT (but not HRTA) and has more
threads than cores. When many, but not all, SMT contexts on a
chip are occupied, HRTM allows threads from an overheated core
to continue running by exploiting inter-core spatial slack and
migrating the threads to available contexts on other non-heated
SMT cores. Of course, there is no spatial slack if the number of
threads running on an SMT CMP is equal to the maximum number
of contexts per core times the number of cores, ormaxoutthread
count. However, we show that running maxout threads without
HRTM performs worse than fewer threads with HRTM. When
choosing a core to migrate to, HRTM uses HRTA to matchsepa-
ratelyeach thread from the overheated core to that non-heated core

whose current threads’ heat generation complements that of
incoming thread. Thus, HRTM balances heat-generation acr
cores to achieve high throughput. While HRTA maximizes he
generation by spreading it acrossresourceswithin a core, HRTM
maximizes heat generation by spreading it acrosscoresin a CMP.
By distributing threads, and thus heat, across all non-overhea
cores, HRTM aims to achieve a high duty cycle, and thus hi
throughput.

The key contributions of this paper are:
• We propose heat-and-run thread assignment (HRTA), whi

distributes threads among the SMT cores of a CMP to ma
mize heat generation in each core and increases per-core c
putation per unit cooling time.

• We propose heat-and-run thread migration (HRTM), whic
migrates an overheated core’s threads to other non-hea
cores to balance and maximize heat generation across co
and increases overall CMP throughput.

• SMT aggravates power-density problems for future designs
increasing heat within a core, reducing duty cycle compared
single-threaded runs by as much as 30% to 50%. Applying p
vious techniques such as stop-go while running maxout nu
ber of threads hurts instruction throughput for man
applications.

• While runningfewer than maxout threads to allow for spatia
slack, HRTA and HRTM achievebetterthroughput in an SMT
CMP. Using a subset of SPEC2000 benchmarks and runnin
threads on a 4-core SMT CMP, we show that HRTA an
HRTM achieve an average of 9% and up to 34% higher instru
tion throughput than stop-go and an average of 6% and up
27% higher instruction throughput than dynamic voltage sca
ing, when all the techniques run the same number of thread

The rest of this paper is organized as follows. In Section 2, w
discuss the power density problem in microprocessors.
Section 3, we discuss HRTA and HRTM. Section 4 discuss
experimental methodology and Section 5 results. In Section 6
discuss related work, and we conclude in Section 7.

2 MICROPROCESSOR POWER DENSITY
In this section, we discuss background for the power-dens

problem in microprocessors. First we briefly discuss on-chip he
sources and dissipation. The details of on-chip heat generation
dissipation are covered in [9] and are covered only briefly here
background for our techniques. Then we discuss spatial and te
poral granularity of power density.

2.1 Heat generation and removal
In this section, we discuss the dissipation of heat and how ina

equacies in heat removal create the power density problem.
describe the situation when heavy use of an individual resou
causes heat production to exceed the ability of the package
remove heat, creating a hot spot and possibly a reliability proble

Energy is dissipated and heat is produced by circuit activ
within microprocessor resources. (The granularity of “resource”
discussed in the next subsection; for now resource is generic.) F
damentally, if, over long time periods, heat is not moved awa
from a resource at an equal or greater rate than it is produced, t
perature of the resource increases.

This process of heat dissipation can be modeled similar to
RC electrical circuit with temperature in Kelvin (K) analogous t

re

s.
s
be

h to
ted
n-
e.g.,
res

ce
ural
g

en it
uty

a
xe-
nu-

e
-

an
ity
l it
is
in
h-
di-

nd
ty

y
cy
nd

ll
or),
or

y

e
nd

FS
lly
not

are
we

an
e-

T
in
and
ti-
er
voltage as detailed in [8, 9]. Elements that conduct heat from one
point to another are modeled as thermal resistances (units of K/W);
a higher resistance indicates a worse conductor of heat. Elements
that store heat are modeled as thermal capacitors (units of J/K); a
large thermal capacitance stores heat energy with small tempera-
ture change in the same way that a large electrical capacitor stores
large charge with small voltage. Thermal circuits also exhibit an
exponential time constant equal to the value of RC. For the rest of
this section, resistance and capacitance refer to thermal, not electri-
cal values.

Heat generated within a microprocessor resource may stay put,
dissipate through lateral resistance to an adjacent area of the chip,
or dissipate through vertical resistance away from the chip.
Because package designers want heat to move away from the chip
instead of laterally within the chip, low resistance packaging mate-
rials, thermal grease, and large heat sinks are placed between the
on-die resources and the ambient air to lower vertical resistance.
Active components such as fans are used to increase heat transfer
(lower thermal resistance) between heat sinks and the ambient air.

Because physically large components such as heat sinks have
capacitances and time constants orders of magnitude larger than
those of individual processor resources (seconds versus tens to
hundreds of microseconds), their temperature changes slowly com-
pared to that of individual resources. Heat can dissipate from the
individual resources only as fast as allowed by resistance between
the resource and the rest of the package, and the small capacitance
of individual resources means a relatively small amount of energy
(compared to the whole chip) can cause large temperature changes.
Therefore, even a heat sink at a safe temperature dissipating heat at
an adequate rate for processor as a whole can allow individual
resources, with individually small thermal capacitances, to over-
heat dangerously.

Various technologies exist or have been proposed to reduce
thermal resistance and improve heat flow away from the chip,
which would increase duty cycle. These include high-airflow
designs, liquid cooling, or even phase-change cooling (i.e., boiling
a coolant to remove heat) [16]. Low-resistance technologies, such
as heat pipes, can help move heat away from individual processor
resources [16]. However, these techniques have several limitations.
1) Their effectiveness is limited by physical thermal characteristics
which do not scale or improve with technology generations, while
power and heat continue to grow with Moore’s law. 2) The thermal
characteristics dictate the physical size of the heat-removal system
to achieve adequately low resistance. Volumes on the order of one
hundred cubic inches may be necessary to achieve lower resis-
tances with air-cooled systems [16], which may be prohibitive for
servers and workstations, let alone mobile devices. 3) Exotic tech-
nologies which do not require such large volumes, such as liquid
cooling, are expensive and complex to implement [16].

2.2 Spatial Granularity
Power density can be sensed over a spectrum of spatial resource

granularities ranging from an entire chip down to one transistor.
Granularity is limited by conceptual as well as practical sensor
limitations and affects ability to react to power-density events.

Conceptually, if resource granularity is too coarse, opportunity
for adaptation may be lost. For example, if only chipwide power-
density is monitored on a CMP, then all processor cores require
action if the chipwide temperature is too high. Increasing granular-
ity to the core level allows other cores to run unaffected if one
overheats. Increasing granularity to the functional-unit or pipeline-

stage level, however, may not be beneficial if the entire co
requires action when only a single resource overheats.

Granularity is also limited by ability to place thermal sensor
From a thermal monitoring standpoint, fine granularity allow
greater tolerance for heat. For example, if only one sensor may
placed on a chip, the trigger temperature must be set low enoug
detect the small amount of heat transmitted by a single overhea
functional unit to the large, chipwide thermal capacitance. In co
trast, fine-grained sensors on smaller thermal capacitances (
near cores or functional units) may trigger at higher temperatu
because they can detect localized hot spots.

2.3 Temporal Granularity
We characterize power density in terms of temporal resour

utilization at processor-core granularity because cores are a nat
granularity for managing power density in CMPs. If a core runnin
an application generates heat faster than heat is dissipated, th
can slow the rate of heat generation for that core by using a d
cycle less than 100%. The duty cycle, defined in Section 1, is
characteristic of both the processor and the application(s) e
cuted. In this section we discuss duty cycles and temporal gra
larity,

We use the duty cycle and theoperating period, which is the
sum of the heating and cooling times within a duty cycle (or th
time between initiation of cooling intervals), to characterize tem
poral granularity. For example, the slowing of heat generation c
be accomplished by running the processor core at full capac
until it approaches a critical temperature and then stopping unti
has adequately cooled as in global clock gating [4]. With th
coarse granularity, the duty cycle is the fraction of time spent
operation, and the operating period is the maximum allowed wit
out overheating. The operating period can be shortened by sub
viding the stop and go periods, eliminating long pauses a
achieving finer temporal granularity. However, the overall du
cycle and net throughput are the same.

The finest temporal granularity is to slow the clock frequenc
enough to delay the heat generation as with dynamic frequen
scaling (DFS). In that case, the operating period is one cycle, a
the duty cycle is the fraction of the original clock frequency. If a
other external characteristics were equal (e.g., memory behavi
DFS will achieve the same throughput as global clock gating f
the same duty cycle.

It is important to note that changing temporal granularit
though short operating periods or applying DFS doesnot alter the
stop-go duty cycle for a given application running on a core. Th
duty cycle is based on equalizing the rate of heat generation a
dissipation, and the spectrum of techniques from stop-go to D
temporally spread the heat generation but do not fundamenta
change the amount of heat generated. The techniques also do
increase resource utilization or change how many resources
heated before the core must be cooled. In the next section,
describe how HRTA allows additional resources to be utilized in
SMT before cooling is necessary and HRTM exploits both cor
level spatial granularity and SMT to increase throughput.

3 LEVERAGING SMT AND CMP
In this section, we explain how heat-and-run leverages SM

and CMP to manage power density. First we qualitatively expla
the concepts behind heat-and-run thread assignment (HRTA)
heat-and-run thread migration (HRTM). Then we give an analy
cal example of how our techniques can improve throughput ov

che
hat
lica-
-

ce
e.
s

ub-
low
e

oat-
er

the
not
hen
nd
-

nd
g
gy
ed-

-
to
ple-
ity
sed,
ue)
far
ey
of
in

re
ish
es
end
be
the
the
ng

e
ime
In
oo

less
eat
the
ro-
o-

-
d
tic
g

stop-go techniques. Finally, we explain implementation details of
HRTA and HRTM.

3.1 HRTA and HRTM concepts

3.1.1 HRTA
Rather than raising duty cycle, HRTA aims to increase utiliza-

tion within an existing duty cycle by leveraging SMT to run more
threads on a core, utilizing and heating more resources. HRTA
determines which threads are co-scheduled on individual SMT
cores on an SMT CMP. Similar to how SMT can improve through-
put over single-thread by using more pipeline resources, SMT can
heat more pipeline resources.

Ideally, HRTA would co-schedule threads using complemen-
tary resources such that the core would heat and cool at the same
rate as the hottest resource under single thread (i.e., the heat
increases without reducing the core duty cycle compared to that of
a single thread). In reality, there is some reduction for two reasons.
First, heating additional resources causes the entire core to heat
faster because there is more heat to remove and because of lateral
conductance of heat between adjacent resources. However lateral
thermal resistance between adjacent resources, while not so high it
can be ignored, is large compared to vertical thermal resistance [8].
Because vertical heat conduction away from the core dominates,
lateral heat conduction does not drastically reduce duty cycle.

The second reason is more serious; co-scheduled threads com-
pete for certain resources, such as the integer register file and issue
queue and data cache, and may cause those resources to heat more
quickly, reducing the duty cycle. This competition may not be a
concern for certain resources. For example, if the issue queue is
already waking up and selecting a near maximum number of
instructions per cycle with a single-thread, running multiple
threads will not cause it to heat any faster. However, this competi-
tion can cause execution resources such as ALUs to heat quickly.
Avoiding this increased heating or offsetting it with increased
throughput is a key component of HRTA.

HRTA employs several strategies to avoid large reductions in
duty cycle or offset reductions with increased throughput. All strat-
egies aim to co-schedule complementary threads that will not
stress the same resources. When evaluating resource utilization for
an application, we consider metrics based on theexecuteIPC, as
opposed to thecommitIPC, of both individual resources and the
entire application. Execute IPC includes misspeculated instruc-
tions, which generate no less heat than instructions that commit,
and can easily be determined through run-time hardware profiling.
For example, an application may have an overall commit IPC of
2.0 and a d-cache commit IPC of 0.5, but due to misspeculation,
the execute IPC of the application might be 4.0 with a d-cache exe-
cute IPC of 1.0. For the remainder of this section, IPC refers spe-
cifically to execute IPC unless stated otherwise.

The first and most obvious strategy is to co-schedule integer
and floating-point threads, which correspondingly utilize comple-
mentary issue queues, register files, and execution resources. (Of
course, floating-point programs still have many integer instructions
for control flow and address calculations but not as many as an
integer program). However, this strategy alone is inadequate for
two reasons. 1) There may be no floating-point (or integer) threads
available. 2) Pairing high-IPC floating-point and integer applica-
tions may stress shared resources (e.g., d-cache). Our other strate-
gies aim to remedy these problems.

Our second strategy is to co-schedule high-IPC applications

with low-IPC applications. Low IPC applications are likely to be
cache-miss bound, and therefore place high stress on the d-ca
but minimal stress on other execution resources (Recall t
because we are using execute IPC, a non-memory-bound app
tion with high misspeculation and low commit IPC would be con
sideredhigh IPC). Pairing a low-IPC application with a high-IPC
application allows both to maintain high throughput while resour
heating occurs at a similar rate to the high-IPC application alon

Our third strategy is to evenly distribute the IPC of all thread
across available SMT cores to avoid one core from heating s
stantially faster than others. Uneven heating rates creates a
duty cycle for the hot cores. Even if two high-IPC threads could b
reasonably co-scheduled (e.g., one is integer and the other is fl
ing-point), it would not make sense to have simultaneously anoth
core executing only low IPC threads.

Our fourth strategy is to co-schedule applications based on
IPC of specific resources. Co-scheduled applications should
heavily use the same resource. This strategy is necessary w
high (or low) IPC applications are to be scheduled together, a
classification as integer and floating point is insufficient. For exam
ple, one high-IPC application may heavily use the d-cache a
multipliers, while another heavily uses the ALUs. Co-schedulin
these applications makes sense. In reality, this fourth strate
supersedes the first strategy because it will automatically co-sch
ule integer and floating-point applications.

3.1.2 HRTM
HRTM exploits spatial slack in an SMT CMP core by migrat

ing threads away from an overheated core and using HRTA
match separately each thread to a non-heated core with a com
mentary workload. Cores are a natural level of spatial granular
because while the heating of intra-core resources can be sen
but the overheating of key core resources (i.e., issue que
requires that the entire core stop and cool. Alternate cores are
enough away to be thermally unaffected by a hot core. The k
parameter of HRTM is the frequency of migration. Frequency
migration is determined by the operating period (defined
Section 2.3).

Because migrating threads away from an overheating co
incurs some overhead (discussed in detail in Section 3.3), we w
to migrate as infrequently as possible. Infrequent migration impli
a long operating period, because migration is necessary at the
of each period. Recall from Section 2.3 that any duty cycle can
achieved using short or long operating periods. To achieve
longest operating period, we wish to heat the microprocessor to
critical temperature and then allow it to cool, rather than heati
and cooling in short spurts.

The remaining question is how long to allow cooling befor
reassigning threads to a processor core. Too short a cooling t
will not increase duty cycle because the core will reheat quickly.
addition, quick reheating of the core shortens operating period. T
long a cooling period decreases duty cycle, and the core cools
quickly as it approaches the temperature of the adjacent h
spreader and heat sink according to the exponential decay of
thermal RC time constant. Fortunately, the RC time constant p
vides guidance as to the most effective cooling time for an exp
nential system, and we use that value as the cooling time.

The long operating period HRTM is similar to global clock gat
ing [4] or simple fetch toggling [8] and may seem heavy-hande
compared to short-period techniques like DFS or control-theore
fetch toggling [9]. However, the CMP environment favors lon

ial
t d,
t d
ed
ra-
al
s-

ts

at,
ro-
is
re

en

h-

e;
(see
-

an
operating periods because of design considerations such as migra-
tion overhead that are not present in superscalar. Techniques such
as DFS may also be difficult to implement on a per-core basis
within a CMP because multiple frequency (or voltage) domains,
one per core, would be necessary on one die. Implementing these
techniques on only a chipwide basis would require slowing the
entire chip when a single core is overheated.

3.1.3 Difference From Symbiotic Jobscheduling
HRTA is different from symbiotic jobscheduling in the number

of threads considered in thread assignment [10] and in time granu-
larity of assignment decisions [11]. Given a set of runnable threads
and k SMT contexts, Symbiosis identifies subsets of k threads that
are complementary in pipeline resource usage so that co-schedul-
ing them in an SMT achieves high throughput. However, Symbio-
sis considers only k-thread subsets. If a thread has a power density
problem then running it withfewerco-scheduled threads may be
better. Consequently, HRTA may run a power-density-constrained
thread with fewer than k-1 other threads on a k-context SMT. Mod-
ifying Symbiosis to consider up to k threads is not easy because
doing so would require considering exponentially more schedule
combinations.

In another paper [11] Symbiosis is extended to ensure fair CPU
usage in an SMT. In [11] a non-symbiotic thread may run alone to
ensure that the threads get its fair share. Fairness is ensured by
sampling and comparing each thread’s instruction throughput
alone and co-scheduled with other threads. The schedule that
achieves fair shares for the threads involved is chosen to run until
the next sampling period. Because running threads alone on an
SMT results in underutilization of the pipeline, the sampling phase
(e.g., one-two OS quanta) is must be much shorter than the running
phase (e.g., tens of quanta). However, the coarse granularity of the
run phase implies that the schedule does not change in this long
time even if power-density problems arise. In contrast, HRTA’s
schedule granularity is much finer (e.g., one-tenth to one quantum)
so that HRTA goes over several schedules during one run phase.
One could consider HRTA to be finer-grained scheduling occurring
within [11]’s run phases.

3.2 HRTA and HRTM Analytical Example: 2 cores
In this section, we provide a analytical example of how HRTA

and HRTM leverage spatial slack to achieve higher throughput
than a stop-go-based technique through SMT.

Our techniques rely heavily on the ability of SMT to achieve
high throughput through inter-thread symbiosis and require us to
quantify that capacity. Of course, for single-thread throughput, it is
better to run fewer threads per core, even on an SMT. When two
threads are running, we define theSMT factor, α, as the fraction of
throughput for a thread compared to that if it were running alone
on the same core. (We note thatα is related to weighted speedup as
defined in [10].) In general,α is different for different threads, but
to simplify our example we assumeα to be the same for both
threads. Anα of 1 is ideal and implies that two threads running on
the same core each achieve throughput equal to that of running
alone on different cores. Anα of 0.5 implies that two equally-long
(in terms of execution time) threads running together achieve the
same throughput as if they were run sequentially alone (i.e., SMT
has no benefit). Anα less than 0.5 implies SMT hurts throughput.

In our example, we have a CMP with 2 cores and 2 contexts per
core. There are 2 threads available to run. Because the maxout
number of threads (defined in Section 1 as the number of cores

multiplied by the number of contexts per core) is 4, there is spat
slack available. We assume that the duty cycle is a constan
regardless of if the core is running single thread or SMT, and tha
is greater than 0.5. A throughput of 1 is equivalent to uninterrupt
execution of a single thread on a single core, and we ignore mig
tion overhead in this example but include it in our experiment
evaluation. While this is a simple example, it serves well to illu
trate our techniques. The example is illustrated in Figure 1.

Using stop-go, throughput is simply the sum of the throughpu
for each core or the duty cycles of each core added together.

Using HRTA and HRTM, when one core is paused due to he
we run its threads on another core. We examine the execution p
file of the first core. The second core has a duty cycle of d and
therefore paused at the fraction (1-d) of the time. The first co
must run two threads during that time. Of the remaining time wh
the first core is not paused

the core runs a single thread to maximize throughput. Throug
put for the core is

The execution and throughput for the second core is the sam
when the first core is paused, the second core runs two threads
Figure 1). Simplifying the throughput and multiplying by the num
ber of cores gives total throughput of

Now we wish to determine when this throughput is greater th
throughput in the stop-go case

FIGURE 1: Execution profile of one operating period on
2 core CMP running 2 threads.

Stop-go
T

im
e

No power-d HRTA and HRTM
constraint

Through-
- 2d 4d-2 + 4α(1-d)

d

1-d

1-d

2d-1

2
put

core running 1 thread core paused

core running 2 threads SMT

d d+ 2d=

d 1 d–()– 2d 1–=

2d 1–() 2α 1 d–()+

4d 2– 4α 1 d–()+

4d 2– 4α 1 d–()+ 2d>

om
ing
text

e
not
f a
c-
la-
e

ks
is
tic
les
al

en-

st
lly
te,
ng

tly
ce

a-
ti-

of
nce
is in
evi-
hat
wer-

to
n be
1
in,

ted
The duty cycles cancel in this inequality, yielding

This result is important for two reasons. First, it indicates that
as long asα is greater than 0.5, HRTA and HRTM outperform
stop-go for our example. Recall that anα is 0.5 or less only if there
is zero or negative throughput symbiosis for the SMT threads. For
many thread pairings,α will be 0.6 or higher. Second, duty cycle
cancels in the equation. In our example, HRTA and HRTM outper-
form stop-go regardless of duty cycle as long as there is some IPC
symbiosis from SMT. For example, with a duty cycle of 80% andα
of 0.7, throughput with stop-go is 1.60 while throughput with
HRTA and HRTM is 1.76.

We can extend our analysis beyond the simple example. First,
we assumed that SMT and single-thread duty cycles are the same.
If they are not, duty cycles do not cancel in the equation, and a
large decrease in duty cycle will degrade performance unless offset
by a high value ofα. Second, we assumed the duty cycle is greater
than 0.5, which is reasonable for almost all cases without extreme
power-density problems. However, with a duty cycle of 0.5 or less,
it is optimal to run the threads together all of the time migrating
between cores when one overheats and stalling when both are
overheated. Total throughput using migration is 2(2αd) versus 2d
using stop-go, making migration better ifα > 0.5. In the case of a
duty cycle of 0.5, exactly one core is idle at all times.

It is important to note the uniqueness of the duty cycle 0.5 for
the two-core case. 0.5 is (n-1)/n where n is the number of cores and
n = 2. We define (n-1)/n as thenatural duty cyclefor HRTA and
HRTM. The natural duty cycle helps to extend our example to mul-
tiple cores. For example, with four cores, the natural duty cycle is
0.75. If the duty cycle is equal to the natural duty cycle and the
number of threads is less than maxout by the number of contexts
on one core, then it is optimal to leave one core idle at all times,
rotating the idle core to achieve cooling. If the duty cycle is less
than the natural duty cycle (and/or if there are more threads), then
there are times when more than one core is idle. If the duty cycle is
greater than the natural duty cycle (and/or if there are fewer
threads), then there are times when all cores should be active, as in
our example.

3.3 HRTA and HRTM Implementation Details
Thread assignment and migration occur though the operating

system using guidance from hardware counters and temperature
sensors to assign threads. Thread assignment is conventionally per-
formed at the OS level and incurs some overhead. We must enable
fast migration to minimize overhead of HRTA and HRTM com-
pared to core operating periods which are determined by heating
rates and cooling times and are generally in the range of millisec-
onds.

Hardware temperature sensors, as discussed in Section 2.2,
indicate when a resource on a core has overheated and the core
must cool. [9] places thermal sensors on key pipeline components
and functional units, such as register files and ALUs, for a super-
scalar core. We assume the same per-core sensor granularity in our
design, but migrate computation away from the entire core when a
resource reaches a critical temperature. To reduce migration over-
head, we also assume that the sensors trigger a fast trap, which
consumes at most a few microseconds.

Upon a fast trap, the OS decides where to assign the threads
using the strategies discussed in Section 3.1, which are imple-

mented using hardware counters of execute IPC. Threads fr
overheated cores are then migrated to their destination by copy
register state and assigning their program counter to a free con
on the destination core.

The overhead of our thread migration comes primarily from th
fast trap and the transfer of register state between cores. While
completely negligible, this overhead should be on the order o
few microseconds compared an operating period of a few millise
onds. Furthermore, scaling trends favor the reduction of the re
tive overhead. The migration overhead is based on the wall tim
required for the fast interrupt and state migration, which shrin
with increasing clock frequency. The operating period, however,
based on heating period and thermal time constant. A drama
decrease in heating period is unlikely because such low duty cyc
would drastically impact performance, and because the therm
time constant does not scale according to Moore’s law, as m
tioned in Section 2.1.

3.3.1 Optimizations
An additional migration overhead occurs when threads mu

warm up stateful resources on their destination core, specifica
the branch predictor and the caches. Branch prediction sta
though not required for correctness, could be transferred alo
with the register state. This transfer, however, would grea
increase the volume of data transferred and gain little performan
improvement. Branch predictors warm up after only a few iter
tions through the working-set of code, so we do not apply this op
mization in our results.

A recently-migrated thread also faces cold (in the sense
state, not temperature) L1 caches. Although the cache-cohere
protocol ensures correctness of memory accesses whose data
the previous core’s cache, cache-to-cache transfers from the pr
ous core or cache-to-memory transfers may be slow. (Note t
cache-to-cache transfers from an overheated core are not a po
density problem because L1-cache SRAM arrays are too large
become an overheated resource.) The cache warmup time ca
mitigated by having an idle core’s cache snarf bus traffic from L
misses of the running cores to keep its own cache warm. (Aga
such snarfing is not a power-density problem for the overhea

α 0.5>

Table 1: System parameters.

Architectural Parameters

Instruction issue 6, out-of-order

L1 64KB 4-way i & d, 2-cycle

L2 2M 8way shared 12-cycle

RUU/LSQ 128/32 entries

Memory ports 2

Off-chip memory latency 150 cycles

CMP and SMT 4 cores, 2 contexts/core

Power Density Parameters

Vdd 1.1

Base Frequency 4.0 GHz

 Convection resistance 0.8 K/W

Heatsink thickness 6.9 mm

Maximum temp 85 degrees C

Thermal RC cooling time 10 ms for a core

In
o
an
d
res

ay
ds

sec-
se
que
h

in
ds
er-

PC
ut
gh-

ir
le
les
is
in

li-
ns
ts

he
ore
f

ry.
ds
re
ds
We
We
m
MT
nd

m-
core’s cache either.) This snarfing, however, may be unnecessary as
even large L1 caches tend to warm up within a million cycles,
which is orders of magnitude less than the operating period of
cores using HRTA and HRTM.

4 METHODOLOGY
In this section we discuss our simulation environment, design

parameters, and benchmarks. Our base simulator is Wattch [2]
extended to include code from SimpleScalar 3.0b [3] to execute the
Alpha ISA. We extend Wattch to include SMT and CMP capabil-
ity. The architectural configuration of our simulator is shown in
Table 1. Our SMT cores fetch from up to two threads per cycle and
use the ICount fetch policy [14]. We implement common SMT
optimizations including memory offsetting to reduce cache con-
flicts between threads and thread squash upon L2 misses to avoid
pollution of the issue queue [13]. Each core has private L1 caches;
the cores share a unified L2. We enable snarfing by idle cores’ L1
caches as described in Section 3.3.1. We model a 5 microsecond
overhead for each thread HRTM migration between CMP cores to
account for the fast trap and state copy.

We use the HotSpot [9] model to extend our Wattch-based sim-
ulator for power density, sensing temperature at 100,000 cycle
intervals (well under the thermal RC time constant of any
resource). Circuit and packaging parameters are also in Table 1.
For each CMP core, we use the single-core floorplan provided in
[9] and without private L2 cache, assuming the CMP cores are lat-
erally thermally isolated by the cooler shared L2 cache. We use a
chipwide Vdd of 1.1 V and a clock frequency of 4.0 GHz. The
parameters are consistent with estimates for high-performance
designs in the next 5 years according to the ITRS [7]. They are
substantially more aggressive than those of [9] due to the higher
clock frequency and smaller area. Our thermal packaging is also
consistent with an air-cooled, high-performance system.

For our simulations, we run multithread groupings of
SPEC2000 [12]. Because our default configuration includes 4
cores with 2 contexts each, it is impossible to show all permuta-
tions of applications. Therefore we show groupings of high-IPC,
low-IPC, and mixed-IPC applications as well as integer and float-
ing-point mixes. We fast-forward each thread two billion instruc-
tions to pass initialization code and warm up the caches (cache
state, not temperature). We use initial thermal conditions consistent
with SMT workloads on our core. Our simulations run until one
thread completes 400 million instructions, measuring instruction
throughput in instructions per second (IPS). Because we show pre-
vious techniques which involve clock-frequency scaling, we need
to show throughput in IPS and not instructions per cycle (IPC).

5 RESULTS
We present our experimental results in this section.

Section 5.1, we show that power-density limitations of stop-g
techniques on SMT CMPs limit the number of threads to less th
maxout. Section 5.2 evaluates policies for HRTA and HRTM an
shows throughput compared to stop-go. Section 5.3 compa
HRTA and HRTM to superscalar power-density techniques.

5.1 Throughput of stop-go
Adding threads to a power-density-constrained SMT CMP m

not improve instruction throughput because the additional threa
can cause cores to overheat, as mentioned in Section 1. In this
tion, we evaluate SMT CMP instruction throughput as we increa
the number of threads. We use the stop-go power-density techni
as our baseline, which is similar to global clock gating and fetc
toggling with coarse temporal granularity, as described
Section 2.3. We do not expect increasing the number of threa
beyond the number of processor cores to consistently improve p
formance across our applications, especially for high execute-I
(i.e., high heat) application pairings. We expect running maxo
threads to aggravate the power density problem and hurt throu
put.

Table 2 shows our SPEC 2000 applications along with the
instruction throughput (IPC) and duty cycle running as sing
threads using stop-go. Only nine applications have duty cyc
under 100%; the rest do not exhibit power density problems in th
configuration. We also show the execute IPC (ex-IPC, as defined
Section 3.1.1, not to be confused with commit IPC) for each app
cation, which includes misspeculated instructions. For applicatio
with duty cycles under 100%, or “hot” applications, ex-IPC reflec
only active periods anddoes NOT include the stopped time.

We divide applications into two categories — high and low—
based on ex-IPC and will use this categorization throughout t
results. As discussed in Section 3.1, high ex-IPC reflects high c
activity and can indicate potential power-density problems. All o
our hot single-thread applications are in the high-ex-IPC catego

Figure 2 shows instruction throughput for 5 through 8 threa
running on our 4-core SMT CMP using stop-go. Applications a
paired to form workloads as shown on the x-axis and workloa
are grouped by the ex-IPC categories of the two applications.
show the average for each group on the right of each group.
build n-thread workloads from these pairs by replicating the
enough times. When applications are co-scheduled on an S
core, each application is co-scheduled with the other in its pair a
not with another copy of itself (e.g.,gap is paired withgzip in the
leftmost results). The bars for each workload increase in the nu

Table 2: Spec2000 applications with single-thread: stop-go commit IPC, execute IPC, and duty cycle.

Low Execute IPC (L) High Execute IPC (H)

name ammp applu apsi art lucas bzip crafty eon equake fma3d galgel (f) gap

IPC (Int/Fp) 0.06 0.98 (f) 0.94 (f) 0.54 (f) 0.44 (f) 1.19 (i) 1.03 (i) 1.73 (i) 1.28 (f) 1.25 (f) 1.35 (f) 1.44 (i)

ex-IPC 0.06 0.99 0.95 0.66 0.44 3.27 3.58 3.07 4.22 4.90 3.66 2.90

duty cycle 1.00 1.00 1.00 1.00 1.00 0.58 0.53 1.00 0.38 0.46 0.40 0.68

name mcf mgrid parser swim vpr gzip mesa perl sixtrack twolf vortex

IPC (Int/Fp) 0.20 (i) 1.27 (f) 0.75 (i) 1.00 (f) 0.95 (i) 1.11 (i) 1.85 (i) 1.33 (i) 1.50 (f) 0.90 (i) 1.85 (i)

ex-IPC 0.42 1.28 1.28 1.00 1.26 3.48 2.88 2.75 3.35 1.96 2.13

duty cycle 1.00 1.00 1.00 1.00 1.00 0.61 0.79 1.00 0.48 1.00 1.00

max-
he

ni-
to a

ly

g a

not
er,
ot
A
n.
e
a-
ces

.

ber of threads to the right. The number of threads is shown below
the x-axis. Due to space limitations, we show only 14 pairings, but
we ran a total of 35 pairings which gave similar overall results.
Integer and floating-point mixes are shown by the color of the bars.
The duty cycle for the co-scheduled applications on a single core is
shown below the bars. Instruction throughput is relative to that
with 4-cores running single threads, two with each application
from a pair.

For high ex-IPC workloads, adding threads does not improve
throughput because of power-density problems created by running
threads in SMT. For the high+high workloads, relative average
throughput degrades from 0.96 with 5 threads to 0.83 with 8. Aver-
age throughput for each workload monotonically degrades as
threads are added with only one exception (crafty+gap). All work-
loads exceptperl+vortex (which just perform poorly together)
have duty cycles below 100%, and two are below 50%. These low
duty cycles compared to single-thread runs are representative of
the challenge posed by SMT for power density, as discussed in
Section 1.

For mixed workloads, average throughput increases by 2%,
10%, 10%, and 17% for 5, 6, 7, and 8 threads, indicating benefits
from SMT in spite of power-density constraints when pairing high
and low ex-IPC applications. Three workloads (applu+equake,
eon+parser,andmgrid+galgel), have duty cycles below 100%, but
each of the workloads excepteon+parserexperiences some benefit
from adding threads. In addition, these three duty cycles are higher
than those experienced by most of the high ex-IPC pairings.

Our low-ex-IPC workloads do not experience power-density
problems. Each has a duty cycle of 100%.mcf+lucasexperiences
good SMT symbiosis, althoughparser+mcfdoes not. Throughput
increases an average of 13% for 8 threads, and all duty cycles are
100%. Low-ex-IPC is advantageous for these workloads because it
1) does not conflict with SMT symbiosis and 2) causes fewer
power density problems for the SMT configuration, as indicated by
the high duty cycles. These advantages make these workloads less
interesting from a power-density standpoint.

When workloads from all three groups are considered, as
shown at the far right of the figure, there is no substantial benefit
from adding threads due to the throughput penalties of stop-go.
Averaged over all workloads shown, throughput stays within 3%

below the base case as the number of threads increases to the
out of 8, with degradations as high as 20% to 30% for some of t
high-ex-IPC workloads.

Note that relative throughput does not necessarily monoto
cally increase/decrease as threads are added. Adding thread X
core previously running only thread Y has a different effect onthe
changein throughput than adding thread Y to a core previous
running only thread X. An example of this behavior isgal-
gel+lucas. Adding the fifth thread,lucas, to a core runninggalgel
reduces throughput compared to 4 threads. However, addin
sixth thread,galgel, to a core runninglucas increases throughput.

5.2 HRTA and HRTM
We have shown that running close to maxout threads does

benefit throughput due to power-density constraints. Howev
intra-core spatial slack created by running fewer threads is n
exploitable by stop-go, which results in reduced throughput. HRT
and HRTM make it possible to leverage the slack using migratio
We expect HRTA and HRTM to outperform stop-go, and w
expect the best performance from HRTA and HRTM configur
tions which co-schedule threads using complementary resour
and spread heat throughout the chip.

5.2.1 HRTA thread-assignment policy evaluation
HRTA thread assignments affect both HRTA and HRTM

In
st

ru
ct

io
n

T
hr

ou
gh

pu
t (

IP
S

)
R

el
at

iv
e

to
 4

 th
re

ad
s

H + H avg

applu+equake
bzip+art

parser+mcf

vortex+equake

gap+eon
gap+perl

perl+vortex
gap+gzip

gzip+crafty

crafty+gap

mgrid+galgel

galgel+lucas

eon+parser

all-w
orkload avg

0.38 0.68

0.6

0.8

1.0

1.2

1.4

1.6

H + L avg

integer + integer integer + floating point floating point + floating point

High + High High + Low Low + Low

FIGURE 2: Stop-go for 5-8 threads grouped by individual-thread execute-IPC.

2-thread
 duty cycle

5 6 7 8

mcf+lucas
L+L avg

0.45 0.57 0.59 0.63 1.00 0.70 0.81 0.85 1.00 1.00 1.00 1.00
of threads

Table 3: 4-application groupings.

Label Applications Int/FP Ex-IPC

A bzip+fma3d+mesa+art IFFF HHHL

B crafty+gzip+apsi+twolf IIFI HHLH

C eon+swim+mcf+parser IFII HLLL

D galgel+mgrid+twolf+lucas FFIF HLHL

E gap+bzip+mcf+eon IIII HHLH

F gap+crafty+vpr+gzip IIII HHLH

G gzip+lucas+mcf+crafty IFII HLLH

H perl+gap+sixtrack+ammp IIFF HHHL

I vortex+perl+applu+equake IIFF HHLH

licy
er-
C
gh
put
ly
ot

e-
the
f
igh-
r

no
and
C

r-

ims
e
val
k-

tial

ca-
nd
-
T

es

-
to
Thread assignment dictates not only resource utilization for a sin-
gle core but also directs migration of execution (and heat) among
cores.

Figure 3 shows throughput for HRTA and HRTM relative to
stop-go running the same threads. The workloads are 5-thread
workloads constructed from the 4-thread groupings in Table 3 plus
an additional copy of 1 of the applications as shown on the x-axis
of the graph. The average over all workloads is shown at the far
right. Table 3 also shows the Int/FP composition and ex-IPC cate-
gory of each workload’s components. We also ran 6-thread work-
loads but found their thread-assignment-policy results to be
similar; 6-thread workloads will be shown in Section 5.3.

The four bars for each workload (α−δ) represent different
thread assignment policies for migration described in
Section 3.1.1:α) co-schedule applications with the most different
utilization of integer and floating-point resources,β) co-schedule
applications with the most disparate ex-IPC,χ) co-schedule appli-
cations to spread the ex-IPC across the chip, generating pairs with
a combined ex-IPC near the chipwide per-core average,δ) co-
schedule applications with small combined usage of resources
prone to overheating. Nearly all overheatings we experience come
from the register files, integer issue queue, and floating-point units,
so we consider those units for policyδ. These policies are applied
to assign threads both when a core overheats (and tries to migrate
its threads elsewhere if there is spatial slack on other non-over-
heated cores) and when a core cools (and migrates threads from
other cores). In each case, statistics since the previous migration
are considered in the decision.

Co-scheduling based on different integer and floating-point uti-
lization (policy α) experiences the smallest throughput gain over
stop-go, 4.7% on average, mainly because it is effective only when
appropriate applications are available to migrate. The workloads
for which this policy achieves more than 1% performance
improvement (E, F, G, H, and I) all have a good mix of integer and
floating-point utilization, including workloads E and F, where the
integer applicationsgap and eon have substantial floating-point
utilization.

Co-scheduling based solely on difference in ex-IPC (policyβ)
has the second smallest throughput gain, 5.4% on average. A prob-
lem with this policy is that while it pairs applications with widely
different ex-IPCs, it may not effectively spread heat across the
cores because such pairings may not result in per-core ex-IPCs
near the chipwide per-core average.

Co-scheduling to evenly spread ex-IPC across the cores (po
χ) is more effective at spreading heat across cores while still gen
ating effective thread pairings. (A pairing with a combined ex-IP
near the chipwide per-core average is unlikely to include two hi
ex-IPC applications.) This policy achieves an average through
gain of 7.2% over stop-go. However, this policy performs poor
for some workloads (e.g., A and F) where ex-IPC alone does n
seem the best assignment policy.

Policy δ co-schedules threads based on the utilization of sp
cific resources that overheat, not the generalized ex-IPC of
thread. This policy pairs threads with a low combined utilization o
these strained resources to reduce overheating and maintain h
duty cycles. Policyδ has the best overall throughput, 9.2% highe
than stop-go. While it does not outperform policyχ for all work-
loads, it avoids the poorer performance of policyχ in workloads A
and F. We use policyδ for the remainder of our results.

There are two 5-thread workloads for which HRTA and HRTM
seem ineffective regardless of policy. Workload D experiences
change in throughput because it experiences no overheating (
thus needs no migration). Workload B contains 4 high-ex-IP
threads, two of which (crafty andgzip) have low duty cycles when
run in isolation, and the workload is unable to find effective pai
ings using our policies.

5.2.2 Cache Snarfing
All of our HRTA and HRTM results shown include snarfing by

idle cores’ L1 caches as described in Section 3.3.1. Snarfing a
to avoid cold L1 caches immediately after a migration. Overall, w
expect snarfing to have a small effect because of the long inter
between migrations (milliseconds), but it may benefit some wor
loads. For our 5-thread workloads using policyδ, snarfing provides
only a 1% average throughput increase but provides substan
gains of 4% and 12% for workloads A and G respectively.

5.3 Comparison to superscalar techniques
Other power-density techniques have been applied to supers

lar processors, such as dynamic frequency scaling (DFS) a
dynamic voltage scaling (DVS) [1, 8, 9]. In this section, we com
pare HRTA and HRTM to these techniques applied to an SM
CMP. We expect HRTA and HRTM to outperform these techniqu
by exploiting spatial slack through migrating threads.

We implement DFS and DVS in our simulator using a PI con
troller with a gain of 10 and setpoint of 81.8 degrees C, similar

In
st

ru
ct

io
n

T
hr

ou
gh

pu
t (

IP
S

)
R

el
at

iv
e

to
 s

to
p-

go

FIGURE 3: Evaluation of HRTA policies for 5-thread workloads.

1.3

A +
 a

rt

B +
 tw

olf

C +
 p

ar
se

r

D +
 lu

ca
s

E +
 e

on

F +
 g

zip

G +
 cr

af
ty

H +
 a

m
m

p

I +
 e

qu
ak

e
Avg

.

1.2

1.1

1.0

0.9
α β χ δ

β: co-schedule hi/low ex-IPCα: co-schedule INT/FP χ: evenly spread ex-IPC δ: reduce usage of overheating resources

ich
ffi-
as

”
ts.

m
dle
do

gis-
e

t or
ch-
n at
of
e
PI-

.3.
s
e.

to
ck

age
ro-
es

se
ral

ity.
ent
ent
ng

en-
sor
in-
that in [9]. Each core is voltage and frequency scaled independent
of the other cores. We assume the core must stall for 10µs on each
voltage and frequency change to stabilize the PLL; this overhead is
the same as that modeled in [9]. For both DFS and DVS, we allow
6 evenly-spaced frequency steps between the maximum and half of
the maximum clock frequency. For DVS, we scale frequency and
also allow corresponding voltage steps between 1.1V (Vdd) and
0.95V (0.86*Vdd).

We do not aggressively scale the voltage for DVS below 0.95V.
While voltage scaling provides a desirable quadratic reduction in
heat, reducing supply voltage becomes increasingly difficult for
scaled, low-voltage technologies because transistor threshold volt-
age scales more slowly than the supply voltage [7]. As the gap
between the supply voltage (e.g., 1.1V) and the threshold voltage
(e.g., 0.25 V) closes, there is substantially less flexibility for DVS.
Additional supply-voltage reduction may cause soft errors or pre-
vent transistors from switching even at reduced clock frequencies.
The ITRS does not predict supply voltages below 0.9 V for high-
performance designs in the near term (through 2009) [7].

Figure 4 shows throughput for HRTA and HRTM relative to
stop-go (α), DFS (β), and DVS (χ). 5-thread workloads are shown
in the left graph, and 6-thread workloads are shown on the right.
(The 5-thread results relative to stop-go are the same as the right-
most bar in Figure 3 but are kept for reference.) For 5-thread work-
loads, HRTA and HRTM outperform stop-go, DFS, and DVS by
9.2%, 9.6% and 6.2% respectively. For 6-thread workloads, HRTA
and HRTM outperform stop-go, DFS, and DVS by 5.9%, 10.8%,
and 7.1% respectively. Note that for 6 thread workloads, there is
less spatial slack and thus less opportunity for HRTA and HRTM
compared to stop-go.

Intuitively, DFS and stop-go (which both exploit temporal slack
at different granularities) should perform about the same, while
DVS, which has the advantage of voltage scaling, should do better.
However, there are exceptions. DFS and DVS do not always out-
perform stop-go because they may scale frequency and voltage
prior to a core actually overheating, such as in workload D, which
gets warm but never overheats. (Recall from Section 5.2.1 that
workload D experiences no migration.) In these cases HRTA and
HRTM have a bigger advantage over DFS and DVS than over stop-
go.

5.3.1 Other Superscalar Techniques
We do not compare against a number of other techniques wh

are either not generally applicable or create implementation di
culties. Temperature-Tracking Frequency Scaling (TTDFS),
proposed in [9], allows the processor to heat above its “maximum
temperature by slowing the clock and relaxing timing constrain
As stated in [9] TTDFS is effective only if the sole limitation on
power density is circuit timing. TTDFS does not reduce maximu
temperature or prevent physical overheating and cannot han
large increases in temperature, which may damage the chip. We
not compare to resource duplication as demonstrated for the re
ter file in [9] or for various pipeline components in [5] because th
technique adds substantial complexity within individual cores.

6 RELATED WORK
Several previous proposals address thermal managemen

power density in superscalars. The authors of [1] evaluate te
niques to balance the rate of heat production to heat dissipatio
chip-level granularity. [8] proposes toggling techniques and use
PID controllers to manage power density. [9] introduces th
HotSpot temperature model used in this paper and proposes
controlled DFS/DVS and TTDFS, as discussed in Section 5
Finally, [5] proposes “ping-ponging” resource activity for variou
pipeline resources between duplicates within a superscalar cor

7 CONCLUSIONS
Power density in high-performance processors continues

increase with technology generations as scaling of current, clo
speed, and device density outpaces downscaling of supply volt
and the thermal ability of packages to dissipate heat. Future p
cessors are likely to be SMT CMPs, which pose unique challeng
and opportunities for power density. SMT and CMP increa
throughput and thus on-chip heat, but they also provide natu
granularities for managing power-density. We proposeheat-and-
run which uses the OS and hardware to control power dens
Heat-and-run has two key components: SMT thread assignm
and CMP thread migration. Heat-and-run thread assignm
(HRTA) increases processor-resource utilization before cooli
becomes necessary by co-scheduling threads that use complem
tary resources. HRTA aims to avoid large decreases in proces
duty cycle and to offset inevitable decreases in duty cycle by ma

R
el

at
iv

e
In

st
ru

ct
io

n
T

hr
ou

gh
pu

t (
IP

S
)

FIGURE 4: Evaluation of HRTA and HRTM for 5-thread and 6-thread workloads.

1.3

A +
 a

rt

B +
 tw

olf

C +
 p

ar
se

r

D +
 lu

ca
s

E +
 e

on

F +
 g

zip

G +
 cr

af
ty

H +
 a

m
m

p

I +
 e

qu
ak

e
Avg

.

1.2

1.1

1.0

0.9
α β χ

β: relative to DFSα: relative to stop-go χ: relative to DVS

α β χ

A +
 a

rt
+

m
es

a

B +
 tw

olf
 +

 a
ps

i

C +
 p

ar
se

r +
 m

cf

D +
 lu

ca
s +

 tw
olf

E +
 e

on
 +

 m
cf

F +
 g

zip
 +

 vp
r

G +
 cr

af
ty

+
m

cf

H +
 a

m
m

p
+

six
tra

ck

I +
 e

qu
ak

e
+

qp
plu Avg

.

5-thread workloads 6-thread workloads

0.9 0.9

-

c-

c-

-
nd

i-

,
are

a

-
s

-
-

G-

ec
/.

r-

.

d-

s

on

li-
taining high throughput. Heat-and-run thread migration (HRTM)
migrates threads away from overheated cores and assigns them to
free SMT contexts on alternate cores using HRTA. HRTM lever-
ages availability of SMT contexts on alternate CMP cores to main-
tain throughput while allowing overheated cores to cool.

We show that running the maximum possible number of
threads (maxout threads) on a power-density-constrained SMT
CMP using existing stop-go techniques degrades or does not
improve throughput compared to running threads equal to the num-
ber of cores. The extra heat added by running multiple threads sub-
stantially reduces duty cycle compared to single-threaded
configurations. Stop-go is unable to exploit spatial slack that is
available when fewer than maxout threads are run. We show that
HRTA and HRTM are able to exploit the spatial slack, improving
throughput over stop-go and previous superscalar techniques. For a
4-core CMP running 5 threads, HRTA and HRTM achieve 9%
higher average throughput than stop-go and 6% higher average
throughput than dynamic voltage scaling.

As power density worsens with technology scaling, and as volt-
age scaling becomes more difficult due to the shrinking gap
between the supply and threshold voltages, alternate techniques
like heat-and-run will become more important.

8 ACKNOWLEDGEMENTS
This research is supported in part by NSF under CAREER

award 9875960-CCR, NSF Instrumentation grant CCR-
9986020 and a Purdue Research Foundation Fellowship.

9 REFERENCES
[1] D. Brooks and M. Martonosi. Dynamic thermal manage-

ment for high-performance microprocessors. InSeventh In-
ternational Symposium on High Performance Computer
Architecture (HPCA), pages 171–182, Jan. 2001.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 83–94, June
2000.

[3] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report 1342, Computer Sciences De-
partment, University of Wisconsin–Madison, June 1997.

[4] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Man-
aging the impact of increasing microprocessor power con-
sumption. InIntel Technology Journal Q1 2001, Q1 2001.

[5] S. Heo, K. Barr, and K. Asanovic. Reducing power density
through activity migration. InProceedings of the Interna-
tional Symposium on Low Power Electronics and Design,
pages 217–222, Aug. 2003.

[6] F. Pollack. New microarchitecture challenges in the com
ing generations of cmos process technologies. InKeynote
speech: 32nd International Symposium on Microarchite
ture, Dec. 1999.

[7] SIA. International Technology Roadmap for Semicondu
tors (ITRS). http://public.itrs.net/Files/2002Update/
2002Update.htm, 2002.

[8] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theo
retic techniques and thermal-rc modeling for accurate a
localized dynamic thermal management. InEighth Interna-
tional Symposium on High Performance Computer Arch
tecture (HPCA), pages 17–28, Feb. 2002.

[9] K. Skadron, M. R. Stan, W. Huang, S. Velusamy
K. Sankaranarayanan, and D. Tarjan. Temperature-aw
microarchitecture. InProceedings of the 30th International
Symposium on Computer Architecture (ISCA 30), pages 2–
13, June 2003.

[10] A. Snavely and D. Tullsen. Symbiotic jobscheduling for
simultaneous multithreading processor. InProceedings of
the Ninth International Conference on Architectural Sup
port for Programming Languages and Operating System
(ASPLOS IX), pages 234–244, Nov. 2000.

[11] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job
scheduling with priorities for a simultaneous multithread
ing processor. In International Conference on
Measurement and Modeling of Computer Systems (SI
METRICS), June 2002.

[12] The Standard Performance Evaluation Corporation. Sp
CPU2000 suite. http://www.specbench.org/osg/cpu2000

[13] D. M. Tullsen and J. A. Brown. Handling long-latency
loads in a simultaneous multithreading processor. InPro-
ceedings of the 34th International Symposium on Microa
chitecture (MICRO 34), pages 318–327, Dec. 2001.

[14] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L
Lo, and R. L. Stamm. Exploiting choice: instruction fetch
and issue on an implementable simultaneous multithrea
ing processor. InProceedings of the 23rd Annual Interna-
tional Symposium on Computer Architecture, pages 191–
202, June 1996.

[15] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneou
multithreading: maximizing on-chip parallelism. InPro-
ceedings of the 22nd Annual International Symposium
Computer Architecture, pages 392–403, June 1995.

[16] R. Viswanath, V. Wakharkar, A. Watwe, and
V. Lebonheur. Thermal performance challenges from si
con to systems. InIntel Technology Journal 3Q 2000, Q3
2000.

	Abstract
	1 Introduction
	2 Microprocessor power density
	2.1 Heat generation and removal
	2.2 Spatial Granularity
	2.3 Temporal Granularity

	3 Leveraging SMT and CMP
	3.1 HRTA and HRTM concepts
	3.1.1 HRTA
	3.1.2 HRTM
	3.1.3 Difference From Symbiotic Jobscheduling

	3.2 HRTA and HRTM Analytical Example: 2 cores
	FIGURE 1: Execution profile of one operating period on 2 core CMP running 2 threads.

	3.3 HRTA and HRTM Implementation Details
	3.3.1 Optimizations
	Table 1: System parameters.

	4 Methodology
	5 Results
	5.1 Throughput of stop-go
	Table 2: Spec2000 applications with single-thread: stop-go commit IPC, execute IPC, and duty cycle.
	FIGURE 2: Stop-go for 5-8 threads grouped by individual-thread execute-IPC.

	Table 3: 4-application groupings.

	5.2 HRTA and HRTM
	5.2.1 HRTA thread-assignment policy evaluation
	5.2.2 Cache Snarfing
	FIGURE 3: Evaluation of HRTA policies for 5-thread workloads.

	5.3 Comparison to superscalar techniques
	5.3.1 Other Superscalar Techniques
	FIGURE 4: Evaluation of HRTA and HRTM for 5-thread and 6-thread workloads.

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	9 References

