Heat Capacities and Thermodynamic Properties of Two Tetramethylammonium Halides*

SHU-SING CHANG AND EDGAR F. WESTRUM, JR.

Department of Chemistry, University of Michigan, Ann Arbor, Michigan

(Received November 13, 1961)

Heat capacities of tetramethylammonium chloride and bromide were determined by low-temperature adiabatic calorimetry from 5° to 350°K. Derived thermodynamic properties were then calculated. Two transitions were found in the chloride: a sharp, apparently first-order transition occurs at 75.76°K with an entropy of transition of 0.37 cal mole⁻¹ °K⁻¹ and a lambda-shaped transition at 184.85°K with an entropy increment of 0.14 cal mole⁻¹ °K⁻¹. No anomaly has been observed in the bromide. Molal values of heat capacity, entropy, and free energy function at 298.15°K for the chloride and the bromide are: 37.51, 38.64, 45.58, 47.99, and -23.36, -25.36 cal mole⁻¹ °K⁻¹, respectively.

INTRODUCTION

CONTRIBUTORY part of the data establishing A thermodynamic evidence for the nature of the potential function of the [Cl-H-Cl] ion in tetramethyl ammonium hydrogen dichloride1 involved the determination of the heat capacity of tetramethylammonium chloride from 5° to 350°K. Two transitions were observed in the tetramethylammonium chloride crystal at 75.8° and 184.9°K with small transitional entropy increments. The lower transition appears as a sharp peak and is apparently a first-order transition; however, the anomaly at higher temperature is lambda shaped. It is probable that these transitions are due to the ordering of the cation. Since the tetramethylammonium fluoride is not readily available, and since the iodide has already been studied calorimetrically² (but showed no transitions) the bromide was chosen for comparative studies.

EXPERIMENTAL

Preparation and Purification of Halides

Tetramethylammonium chloride made by Eastman Kodak Company was purified by recrystallizing three times from anhydrous methanol. The original (impure) sample was highly hygroscopic, but this property is much less pronounced for the recrystallized calorimetric sample. The latter sample, however, was kept in a vacuum dessicator for about a week and then transferred into a dry box with an anhydrous nitrogen atmosphere in order to avoid possible contamination of the sample by solvent and moisture. Loading and unloading the calorimeter was also done in the dry box. Microchemical analysis indicated the following composition: 43.85% C, 11.19% H, and 12.89% N [calculated for (CH₃)₄NCl: 43.83% C, 11.04%H, and 12.78% N].

Tetramethylammonium bromide made by Eastman Kodak Company was purified by three recrystallizations from absolute methanol. Unlike those of the chloride, the bromide crystals appear as hard rectangular prisms, which are slightly hygroscopic in moist air. It was therefore kept in a vacuum dessicator and handling in ambient air was minimized in order to preserve its purity. Analytical data showed the following composition: 31.26% C, 7.74% H, 8.81% N, and 51.78% Br [calculated for (CH₃)₄NBr: 31.18% C, 7.85% H, 9.09% N, and 51.84% Br].

Cryogenic Technique

The Mark I adiabatic calorimetric cryostat was employed for the measurement of heat capacities in the range from 5° to 350°K. It is similar to the one described by Westrum, *et al.*³

A gold-plated copper calorimeter, laboratory designation W-9, was used for the heat-capacity measurements. It is about 3.8 cm in diameter and 7.7 cm in length with a shell thickness of about 0.4 mm. Four vanes of 0.1-mm copper foil aid the establishment of thermal equilibrium and a cupola of Monel facilitates fusing the solder seal on the removable cover without heating the sample. An axial entrant well is provided in the calorimeter to accommodate the heater-thermometer assembly which consists of a capsule-type platinumresistance thermometer within a cylindrical, copper, heater sleeve which carries 150 ohm of bifilarly wound, Fiberglas-insulated Advance wire. In determining heat capacities, calorimeter W-9 was loaded with samples of 30.021 and 47.643 g (in vacuo) of tetramethylammonium chloride and bromide, respectively. After brief evacuation helium gas at 13.7 and 8.2 cm Hg pressure at 300°K was put into the calorimeter sample space to facilitate heat conduction between the sample and the calorimeter.

Temperatures were measured by a platinum resistance thermometer (laboratory designation A-3) which was calibrated by the National Bureau of Stand-

^{*} This research was supported by the Division of Research of the United States Atomic Energy Commission. ¹ S. S. Chang and E. F Westrum, Jr., J. Chem. Phys. (to be

published).

² L. V. Coulter, K. S. Pitzer, and W. M. Latimer, J. Am. Chem. Soc. **62**, 2845 (1940).

³ E. F. Westrum, Jr., J. B. Hatcher, and D. W. Osborne, J. Chem. Phys. 21, 419 (1953).

<i>T</i> , °K	Cp	<i>T</i> , °K	<i>C</i> _p	<i>T</i> , °K	<i>C</i> _p	<i>T</i> , °K	C_p	<i>T</i> , °K	C _p	<i>Т</i> , °К	C,
Tetramethylammonium bromide						Tetramethylammonium chloride (continued)					
	[(CH	I₃)₄NBr, 1 r	nole = 154.0	64 g]		33.88	6.206	273.13	35.10	75.84	64.59
Sarias I		10 61	3 257	224 17	31 36	37.38	7.248	281.78	36.00	76.00	39.15
Sen	105 1	21 66	3 969	224.17	32 31	41.18	8.302	290.36	36.72	76.26	22.53
78.21	15.74	23 85	4 730	242 63	33 25	45.46	9.390	298.94	37.60	76.58	17.08
84.56	16.59	26.27	5 562	212.00	00.40	50.01	10.45			76.90	15.70
91.67	17.44	28.96	6.448	Seri	ies V	55.00	11.48	Serie	es V	- ·	
99.41	18.32	32.01	7.409	200		60.54	12.57	302 14	37 86	Serie	es X
107.32	19.27	35.41	8.403	248.63	33.88	65.86	13.45	311 87	38 78	175 44	27 40
115.39	20.23	39.11	9.371	257.46	34.83	71.88	14.42	321 43	30.70	177 14	27 65
123.78	21.24	43.17	10.312	266.26	35.38	A 17	1 1	330 84	40 58	178 20	27 89
132.27	22.20	47.63	11.243	275.30	36.30	ΔH run I	iumper 1	330 21	41 38	170 43	28 07
140.75	23.14			284.39	37.25	AHTINT	umber 2	346 70	47 14	180 55	28 32
149.39	24.10	Serie	e TIT	293.43	38.19			010.70	14,11	181 66	28.60
158.40	25.12	Serie	,5 III	302.49	39.13	Serie	e III	Serie	es VI	182 77	28.80
		40 88	11 67	311.61	40.06		.5 III			183 89	29.68
Seri	es II	55 40	12 63			85.97	16.39	66.89	13.61	184 00	30.26
1 00	0.020	61 62	13 58	Seri	es VI	93.55	17.39	72.47	14.43	186 00	27 58
4.99	0.038	68 24	14 48	210 10	40.70	101.21	18.40	76.71	25.09	187 24	27.50
5.01	0.000	75 40	15 37	318.12	40.72	109.64	19.49	79.62	14.56	180 01	27.64
0.03	0.113	13.10	15.57	321.30	41.03	118.31	20.59	83.43	16.02	101.35	27 70
7.04	0.201	a •		330.5/	42.03	127.00	21.68	C . ! .	1717	103 64	27 07
8.52	0.306	Serie	es IV	345.00	43.51	135.92	22.66	Serie	S V 11	170.01	21.71
9.45	0.441	141 20	05 44	o 1		144.90	23.89	71 75	14 37	Serie	s XI
10.51	0.628	101.70	25.44	Serie	es VII	153.99	24.96	74 85	14 87	00110	-3 2 11
11.67	0.872	179.59	27.19	157 20	04.06	162.90	26.01	75 37	15 37	163.64	26.08
12.92	1.172	188.32	28.01	157.32	24.90	171.46	27.14	75 56	34 65	172.96	27.23
14.28	1.540	197.02	28.82	100.00	25.92			75 67	75 35	179.98	28.26
15.80	2.030	205.94	29.00	175.28	20.75	$\Delta H \operatorname{run}$	number 3	75 76	93 19	182.70	28.86
17.66	2.605	215.07	30.51	183.44	27.53		, ,	75 80	58 61	183.20	29.13
						$\Delta H \operatorname{run}$	number 4	76 20	26 64	183.65	29.33
	Tetr	amethylam	monium chl	oride		108 47	28 41	76 65	16 88	184.00	29.73
		J.NCI 1	nole - 100 f	i05 al		190.47	20.41	77 75	15 31	184.25	30.18
	[(01	13/41101, 11	1010-109.0	05 g j		Sori	e TV	81 47	15.51	184.45	30.85
Seri	ies I	12.11	0.460	9.00	0.166	J Sen	C5 1 V	01.47	13.75	184.64	31.39
		13.29	0.601	12.93	0.559	200.15	28.49	Serie	s VIII	184.84	32.91
5.09	0.021	14.52	0.792	17.25	1.318	209.45	29.33			185.03	30.84
6.00	0.041	15.83	1.025	18.94	1,709	218.72	30,17	ΔH run	number 5	185.23	28.07
6.94	0.065	17.21	1.309	20.69	2.161	228.08	30.89	· ·	137	185.43	27.71
7.92	0.102			22.62	2,705	237.19	31.83	Serie	es 1X	185.64	27.60
8.97	0.164	Sari	es II	24.92	3.393	246.30	32.68	72.96	14.56	185.90	27.54
10.04	0.246	Jen	C2 11	27.63	4.233	255.35	33.54	75.45	32.44	186.31	27.53
11.01	0.334	8.03	0.110	30.59	5.176	264.32	34.37	75.75	78.21	187.22	27.55
						1					

TABLE I. Heat capacities of tetramethylammonium bromide and tetramethylammonium chloride. Units: cal mole⁻¹ °K⁻¹.

ards. The temperature scale is considered to correspond with the thermodynamic temperature scale within 0.03°K from 10° to 90°K and within 0.04°K from 90° to 350°K. The precision of the determination of tem-

perature increments is considerably better, and the increments are probably correct to a fraction of a millidegree after making adjustments for the quasiadiabatic drifts.

Time durations of the energy inputs were measured with electrical interval timers starting and stopping automatically as the energy was turned on and off by a master switch. The timers, operated by 60-cycle ac from a calibrated tuning fork, dividing circuit, and

FIG. 2. Differential heat capacities of $(CH_4)_4NCI$ minus $(CH_4)_4NBr$ (\bigcirc) and $(CH_4)_4NI$ minus $(CH_4)_4NBr$ (\square).

TABLE II. Thermodynamic properties of tetramethylammonium bromide and tetramethylammonium chloride. Units: cal, mole, °K.

<i>Т</i> , °К	C_p	S°	$H^{\circ}-H_{0}^{\circ}$ –	$(F^{\circ}-H_{0}^{\circ})T^{-1}$	Т, °К	<i>C</i> _p	S°	$H^{\circ}-H_{0}^{\circ}$ -	$-(F^{\circ}-H_{0}^{\circ})T^{-1}$
	Tetrame [(CH ₃)4	ethylammon NBr, 1 mole	ium bromide =154.064 g]		Tetramethylammonium chloride [(CH ₃) ₄ NCl, 1 mole=109.605 g]				
5 10 15 20 25	$\begin{array}{c} 0.042 \\ 0.534 \\ 1.757 \\ 3.397 \\ 5.128 \end{array}$	$\begin{array}{c} 0.013 \\ 0.147 \\ 0.575 \\ 1.299 \\ 2.244 \end{array}$	$\begin{array}{c} 0.047 \\ 1.154 \\ 6.630 \\ 19.42 \\ 40.74 \end{array}$	$\begin{array}{c} 0.003 \\ 0.032 \\ 0.133 \\ 0.328 \\ 0.614 \end{array}$	5 10 15 20 25	$\begin{array}{c} 0.030 \\ 0.242 \\ 0.877 \\ 1.976 \\ 3.417 \end{array}$	$\begin{array}{c} 0.010 \\ 0.072 \\ 0.275 \\ 0.667 \\ 1.259 \end{array}$	0.036 0.546 3.152 10.103 23.49	0.002 0.018 0.065 0.162 0.319
30 35 40 45 50	6.788 8.272 9.576 10.71 11.70	$\begin{array}{r} 3.328 \\ 4.488 \\ 5.680 \\ 6.875 \\ 8.056 \end{array}$	70.61 108.3 153.0 203.8 259.9	$\begin{array}{c} 0.975 \\ 1.393 \\ 1.854 \\ 2.346 \\ 2.858 \end{array}$	30 35 40 45 50	4.988 6.546 7.986 9.276 10.44	$\begin{array}{c} 2.020 \\ 2.907 \\ 3.876 \\ 4.893 \\ 5.931 \end{array}$	44.48 73.35 109.74 152.95 202.28	$\begin{array}{c} 0.537 \\ 0.811 \\ 1.133 \\ 1.494 \\ 1.886 \end{array}$
60 70 80 90 100	13.34 14.72 15.97 17.19 18.40	10.339 12.502 14.550 16.501 18.375	385.4 525.9 679.4 845.2 1023.1	3.916 4.990 6.058 7.111 8.144	60 70 80 90 100	$12.45 \\ 14.11 \\ 15.55 \\ 16.94 \\ 18.24$	$\begin{array}{r} 8.018 \\ 10.066 \\ 12.422 \\ 14.333 \\ 16.186 \end{array}$	317.05 450.11 627.0 789.3 965.3	$\begin{array}{c} 2.734 \\ 3.636 \\ 4.585 \\ 5.563 \\ 6.533 \end{array}$
110 120 130 140 150	19.60 20.80 21.96 23.09 24.18	20.185 21.942 23.653 25.322 26.953	1213.1 1415.1 1629.0 1854.3 2090.7	9.157 10.149 11.122 12.077 13.015	110 120 130 140 150	19.51 20.82 22.08 23.27 24.46	17.984 19.738 21.454 23.134 24.780	1154.1 1355.7 1570.3 1797.1 2035.7	7.492 8.440 9.375 10.298 11.209
160 170 180 190 200	25.23 26.24 27.22 28.17 29.11	28.547 30.107 31.635 33.132 34.601	2337.8 2595.2 2862.5 3139.4 3425.8	13.936 14.842 15.732 16.609 17.472	160 170 180 190 200	25.69 26.84 28.21 27.72 28.51	26.398 27.991 29.560 31.098 32.539	2286.5 2549.2 2823.7 3108.2 3389.3	$\begin{array}{c} 12.108 \\ 13.000 \\ 13.872 \\ 14.739 \\ 15.593 \end{array}$
210 220 230 240 250	30.06 31.01 31.97 32.95 33.93	36.044 37.464 38.864 40.245 41.610	3721.7 4027.0 4341.9 4666.5 5000.9	18.322 19.160 19.986 20.802 21.607	210 220 230 240 250	29.36 30.25 31.17 32.10 33.03	33.951 35.337 36.702 38.048 39.377	3678.6 3976.6 4283.7 4600.0 4925.6	$\begin{array}{c} 16.434 \\ 17.262 \\ 18.077 \\ 18.881 \\ 19.675 \end{array}$
260 270 280 290 300	34.91 35.88 36.85 37.83 38.83	42.960 44.296 45.618 46.928 48.227	5345.1 5699.0 6062.6 6436.0 6819.2	22.402 23.188 23.966 24.735 25.496	260 270 280 290 300	33.97 34.91 35.84 36.76 37.68	40.691 41.991 43.277 44.551 45.813	5260.7 5605.1 5958.8 6321.8 6694.1	$\begin{array}{c} 20.458 \\ 21.231 \\ 22.000 \\ 22.751 \\ 23.499 \end{array}$
350	44.02	54.601	8890.1	29.201	350	42.48	51.974	8695.7	27.129
273.15 298.15	36.18 38.64	44.71 47.99	5812 6747	23.43 25.36	273.15 298.15	35.20 37.51	42.40 45.58	5716 6624	21.47 23.36

TABLE III. Enthalpy and entropy increments over the transition regions in tetramethylammonium chloride. Units: cal, mole, °K.

Transition I, $T_t = 75.76^{\circ}$ K								
Energy increments	$T_{\rm final}$	$T_{initial}$	$H_{800K} - H_{700K}$	S800K-S700K				
2 1 8 4	81.55 78.53 78.63 76.09		176.70 176.83 176.81 177.11	2.351 2.352 2.353 2.356				
Average			176.86 ± 0.12	2.354				
Transition II, $T_i = 184.85^{\circ}$ K Energy								
increments	T_{final}	$T_{initial}$	$H_{1900K} - H_{1800K}$	$S_{1900K} - S_{1800K}$				
5 1 3 8	$185.54 \\ 185.53 \\ 186.65 \\ 190.20$	184.55 184.46 183.32 179.99	$\begin{array}{c} 284.31 \\ 284.47 \\ 284.51 \\ 284.58 \end{array}$	1.538 1.539 1.539 1.539				
Average		_	284.47 ± 0.10	1.539				

amplifier, provided a precision of 0.01 sec for the time interval measurement. Standard resistors used in the potential dividers of the measuring circuits and unsaturated Weston standard cells were calibrated by the National Bureau of Standards. The heat capacity of the empty calorimeter-heater-thermometer assembly represented from 30 to 20% of the total observed heat capacity from 5° to 20°K, increased from 20 to 50% from 20° to 100°K and decreased from 50 to 40% over the range 100° to 350°K.

CALORIMETRIC RESULTS

The experimental heat capacity determinations for the two compounds are listed in Table I in chronological order in terms of the thermochemical calorie defined as 4.1840 absolute joules and the ice point taken as 273.15°K. An analytically determined curvature correction was applied to the observed values of $\Delta H/\Delta T$. The approximate temperature increments usually can be inferred from the adjacent mean temperature in Table I. The reported values of the heat capacity data are believed to have probable errors less than 0.1% at temperatures above 25°K, about 1% at 10°K, and 5% at 5°K.

Molal values of the heat capacities at constant pressure, the entropies, the enthalpy increments, and the free-energy functions are listed at selected rounded temperatures in Table II. These values were obtained from a smooth curve fit by least squares to the experimental data by means of a digital computer or by appropriate integration based on the curve. The probable errors of the thermodynamic functions are considered to be less than 0.1% above 100° K.

Two transitions have been observed in the heatcapacity behavior of tetramethylammonium chloride (Fig. 1). A sharp, apparently first-order transition occurs at 75.75°K, while a lambda-type anomaly is found at 184.85°K. An approximate resolution of the transitional contributions from those of the lattice vibrations yields transitional enthalpy increments of 27.8 and 25.9 cal mole⁻¹, corresponding to entropy increments of 0.37 and 0.14 cal mole⁻¹ °K⁻¹ for the lower and higher temperature transitions, respectively. These probably represent minimal values.

Heat capacity-type runs and several enthalpy-type runs in the transitional regions are compared in Table III. These comparisons test the over-all accuracy of the calorimetric measurements and indicate excellent agreement.

The heat capacity vs temperature curve of tetramethylammonium bromide very closely follows that of the iodide and does not show any indication of anomaly in the temperature range studied. Deviation of the molal heat capacity of the iodide² from that of the bromide is obtained by subtracting from the actual heat capacity data points of the iodide the corresponding heat capacity value of the bromide as read from a smoothed curve, and is shown in Fig. 2. This figure also shows a similarly derived plot for the deviation of molal heat capacity of the chloride against that of the bromide.

DISCUSSION

It is of interest to note that the crystals of all three halides at room temperatures are isostructural.⁴ They belong to the same tetragonal lattice of the space group D_{4h}^{7} -P4/nmm and have two molecules for each unit cell. The cell dimensions a and b are: 7.78 and 5.53 A for the chloride, 7.76 and 5.53 A for the bromide, and 7.96 and 5.75 A for the iodide. Since the ionic radius for the chloride ion (1.81 A) is less than that of the bromide ion (1.95 A), it is apparent that the tetramethylammonium ion occupies a larger volume in the crystal of the chloride than that in the bromide or the iodide. This may result from the motions of the cation in the chloride lattice in the phase stable at room temperatures. However, the reason for the occurrence of two transitions in the chloride crystal is still not apparent. Further studies on dilatometry, precise xray patterns and even nuclear magnetic resonance, piezoelectricity and ferroelectricity are desiderata for the interpretation of the transitions occurring in the tetramethylammonium salts.

ACKNOWLEDGMENT

The partial financial support of the Division of Research of the U. S. Atomic Energy Commission is gratefully recognized.

⁴ R. W. G. Wyckoff, Z. Krist. 67, 91 (1928).