Erratum

Heat capacity of minerals in the system $Na_2O - K_2O - CaO - MgO - FeO - Fe_2O_3 - Al_2O_3 - SiO_2 - TiO_2 - H_2O - CO_2$: representation, estimation, and high temperature extrapolation

Robert G. Berman and Thomas H. Brown

Berman and Brown, Contrib Mineral Petrol (1985) 89:168–183 present the following equation for calculation of the heat capacity contribution arising from a phase undergoing a lambda transition:

$C_{\rm P} = T(l_1 + l_2 T)^2$

where T (in Kelvins) is greater than a reference temperature, T_{ref} , and less than the lambda transition temperature, T_{λ} . The l_1 and l_2 coefficients of their Table 3 are in error due to incorrect conversion of these coefficients from calories to Joules. This mistake can be corrected by dividing all l_1 and l_2 coefficients in their Table 3 by 2.055 (the square root of 4.184). The correct coefficients are presented below (Table 1) along with other transition properties which are correct in the original table.

Table 1	ι.	Coefficients f	or	calculation	of	transition	properties
---------	----	----------------	----	-------------	----	------------	------------

Phase	T_{λ}	$T_{\rm ref}$	ΔH_{t}	$l_1(\times 10^2)$	$l_2(\times 10^5)$
Carnegieite	970	298	8,741	5.609	17.059
Cristobalite	535	298	1,073	-14.216	44.142
Hematite	955	298	1,287	-7.403	27.921
Kaliophyllite	810	298	1,154	-7.096	21.682
Larnite $(\beta = \alpha')$	970	298	1,748		
$(\alpha' = \alpha)$	1,710	970	11,903	-22.815	23.196
Leucite	955	298	256	-9.731	33.730
Magnesium ferrite					
$(\alpha = \beta)$	665	298	931	15.236	- 53.571
$(\beta = \gamma)$	1,230	665	836		
Magnetite	848	298	1.565	-19.502	61.037
Nepheline $(\alpha = \beta)$	467	298	241	- 50.249	165.950
$(\beta = \gamma)$	1,180	467	2,393		
Quartz	848	373	499	-9.187	24.607
-					

 T_{λ} , T_{ref} in Kelvins; l_1 in $(J/\text{mol})^{0.5}/\text{K}$; l_2 in $(J/\text{mol})^{0.5}/\text{K}^2$ $\Delta H_t = \text{Additional heat of transition, modelled as first order (J/mol)}$