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HEAT KERNEL AND RIESZ TRANSFORM OF

SCHRÖDINGER OPERATORS

by Baptiste DEVYVER (*)

Abstract. — The goal of this article is two-fold: in the first part, we give a
purely analytic proof of the Gaussian estimates for the heat kernel of Schrödinger
operators ∆ + V whose potential V is “small at infinity” in a (weak) integral sense.
Our results improve known results that have been proved by probabilistic tech-
niques, and shed light on the hypotheses that are required on the potential V. In
a second part, we prove sharp boundedness results for the Riesz transform with
potential d(∆ + V)−1/2. A very simple characterization of p-non-parabolicity in
terms of lower bounds for the volume growth, which is of independent interest, is
also presented.

Résumé. — Le but de cet article est double : dans une première partie, nous
donnons une preuve analytique des estimées Gaussiennes pour un opérateur de
Schrödinger ∆ + V dont le potential V est « petit à l’infini » en un sens (faible)
intégral. Nos résultats améliorent des résultats connus, qui avaient été prouvés
précédemment par des techniques probabilistes, et éclairent les hypothèses qui
doivent être faites sur le potentiel V. Dans une seconde partie, nous prouvons des
résultats optimaux concernant l’action de la transformée de Riesz avec potentiel
d(∆ + V)−1/2 sur les espaces Lp. Une charactérisation particulièrement simple de
la non-p-parabolicité en terme de borne inférieure de la croissance du volume, qui
a un intérêt en tant que tel, est aussi obtenue.

1. Introduction

Notation. — For two real functions g and h, we will write g . h if there

is a positive constant C such that

Cg 6 h.

Keywords: Heat kernel, Schrödinger operators, Riesz transform, p-non-parabolicity.
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We also write g ∼ h if there exists a positive constant C such that

C−1g 6 h 6 Cg.

Convention. — The Laplacian ∆ is taken with the sign convention that

makes it non-negative. For example, on R
n endowed with the Euclidean

metric, ∆ = −∑n
k=1

∂2

∂x2
k

.

In this article, we shall be concerned with two related topics: heat ker-

nel estimates, and Riesz transform of Schrödinger operators, both in the

Riemannian manifold setting. On the one hand, heat kernel estimates for

Schödinger operators have been investigated for quite a long time (see

e.g. [24, 25, 29, 51, 52, 53, 54, 55, 56]), both by probabilistic and analytic

methods. The main question is to describe the behavior of the heat semi-

group e−t(∆+V), under assumptions on the potential V. A more restrictive

but still important question is to understand which assumptions on the

potential ensure Gaussian estimates for the heat kernel of the Schrödinger

perator; this corresponds to a heat diffusion that resembles the one of

the Laplacian in the Euclidean space. On the other hand, the work of

T. Coulhon and X. T. Duong [19] has made it clear that heat kernel

estimates have important consequences for the Riesz transform. Loosely

speaking, Gaussian upper-estimates estimates for the heat kernel of the

(scalar) Laplacian imply boundedness of the Riesz transform d∆−1/2 on

Lp for p ∈ (1, 2), while Gaussian estimates for the heat kernel of the Hodge

Laplacian ~∆ = dd∗ +d∗d, acting on 1-forms imply boundedness of the Riesz

transform on Lp for p ∈ (2,∞) (see [19, 20]). Also, as a consequence of the

Bochner formula and domination theory for semi-groups, if V(x) is the

negative part of the smallest eigenvalue of the (symmetric) Ricci curvature

operator at x ∈ M , then Gaussian estimates for the Schrödinger operator

∆+V imply that the heat kernel of ~∆ has Gaussian estimates, and thus the

Riesz transform is bounded on Lp for p ∈ (2,∞) (see [24, 26]). From this

last example, we see that understanding the behavior of the heat kernel of

a Schrödinger operator is important for the study of the Riesz transform

d∆−1/2.

The first part of this article deals with heat kernel estimates of Schröd-

inger operators and is of interest in its own right. We consider a complete,

non-compact, (weighted) Riemannian manifold M , endowed with a mea-

sure µ, absolutely continuous with respect to the Riemannian measure. The

(weighted) Laplacian is defined as ∆ = ∆µ = −div(∇·), where −div is the

formal adjoint of ∇ for the measure µ: more precisely, for every function u

ANNALES DE L’INSTITUT FOURIER
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and vector field X, both smooth and compactly supported,

−
∫

M

div(X)u dµ =

∫

M

(X,∇u) dµ.

Then, if V : M → R is a potential on M , one can consider the associated

Schrödinger-type operator ∆ + V. As we will be concerned with global

properties (particularly when we will apply our results to the study of

the Riesz transform) we will always assume the potential to be smooth,

in order not to be bothered with local regularity issues and add extra

technical difficulties to our results; as will be apparent from the proofs,

most of our results actually hold under weaker regularity assumptions on

V. The Friedrichs extension provides us with a self-adjoint extension of

∆+V, which will still be denoted by ∆+V for convenience. By the spectral

theorem, one can thus look at the associated heat operator e−t(∆+V), which

turns out to be an integral operator:

e−t(∆+V)f(x) =

∫

M

pV
t (x, y)f(y) dy, x ∈ M, f ∈ C∞

0 (M),

and by elliptic regularity, the heat kernel pV
t (x, y) is regular. An interesting

question to ask is whether pV
t satisfies the so-called Gaussian estimates,

meaning that the heat propagates in a similar fashion as in the Euclidean

space for the usual Laplacian. More specifically, one can ask whether Gauss-

ian upper-estimates are satisfied for pV
t :

(UEV) |pV
t (x, y)| . 1

V (x,
√
t)

exp

(

−cd
2(x, y)

t

)

, ∀ (x, y) ∈ M2, ∀ t > 0,

or whether a two-sided Gaussian estimates (or, Li-Yau estimate) holds:

(LYV)
1

V (x,
√
t)

exp

(

−c1
d2(x, y)

t

)

. |pV
t (x, y)| . 1

V (x,
√
t)

exp

(

−c2
d2(x, y)

t

)

,

for every (x, y) ∈ M2, and t > 0. Here, V (x, r) denotes the µ-volume

of the geodesic ball of center x and radius r. In the special case of the

Laplacian itself, that is when V = 0, these Gaussian estimates have been

completely characterized in terms of functional inequalities by A. Grigoryan

and L. Saloff-Coste. In order to recall their results, we first need to introduce

some more notations and definitions. The measure µ is called doubling if

(D) V (x, 2r) . V (x, r), for µ− a.e. x ∈ M, ∀ r > 0.

TOME 69 (2019), FASCICULE 2



460 Baptiste DEVYVER

As a consequence of (D), there exist two exponents 0 < ν′ 6 ν such that

(Dν,ν′)
(r

s

)ν′

.
V (x, r)

V (x, s)
.
(r

s

)ν

,

for all r > s > 0 and x ∈ M . Let us remark that by the Bishop–Gromov

volume comparison theorem, if µ is the Riemannian measure on M and the

Ricci curvature on M is non-negative, then one can take ν = N , the topo-

logical dimension of M , in (Dν,ν′). We also introduce the non-collapsing of

the volume of balls of radius 1, which may or may not hold on M :

(NC) 1 . V (x, 1), ∀ x ∈ M.

Thanks to the work of J. Cheeger, M. Gromov and M. Taylor [13], if the

Riemann curvature is bounded on M and µ is the Riemannian measure,

then (NC) is equivalent to a lower bound of the injectivity radius of M .

In other words, if the Riemann curvature is bounded on M , then (NC) is

equivalent to M having bounded geometry. Under milder assumptions on

M (for example, if µ is the Riemannian measure, Ricci curvature bounded

from below is enough), (NC) is equivalent to a local Sobolev inequality, as

we shall explain later. This is a much weaker requirement on M , however

we shall work in full generality and not assume (NC) in general.

Let us consider the heat semi-group e−t∆, and its kernel pt(x, y). Let us

introduce on- and off-diagonal estimates for pt(x, y):

(DUE) pt(x, x) .
1

V (x,
√
t)
, ∀ x ∈ M, ∀ t > 0.

and

(UE) pt(x, y) .
1

V (x,
√
t)

exp

(

−cd
2(x, y)

t

)

, ∀ (x, y) ∈ M2, ∀ t > 0.

It is a well-known fact (see e.g. [50]), using the Gaffney–Davies estimates

or equivalently, the finite speed propagation for the wave equation, that

under (D), (DUE) and (UE) are equivalent. We also consider the two-

sided Gaussian estimates (or Li-Yau estimates) for pt: for all x, y ∈ M and

t > 0,

(LY )
1

V (x,
√
t)
e−c1

d2(x,y)
t . pt(x, y) .

1

V (x,
√
t)
e−c2

d2(x,y)
t .

By the work of A. Grigoryan and L. Saloff-Coste (see e.g. [48, Theo-

rem 5.4.12]), (LY ) is equivalent to the conjunction of (D) together with

the scaled L2 Poincaré inequalities for the measure µ:

(P )

∫

B

|u− uB |2 dµ . r2

∫

M

|∇u|2 dµ,

ANNALES DE L’INSTITUT FOURIER
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for every ball B = B(x, r) in M , and every u ∈ C∞(B); here, uB =
1

µ(B)

∫

B
u dµ. Also, it is known from [30] that (UE) together with (D) is

equivalent to a family of relative Faber–Krahn inequalities: there exists

α > 0 such that

(RFK)
1

r2

(

V (x, r)

µ(Ω)

)α

. λ1(Ω),

for any ball B(x, r) and any relatively compact, open, subset Ω ⋐ B(x, r);

here, λ1(Ω) is the first eigenvalue of ∆ = ∆µ on Ω with Dirichlet boundary

conditions.

Another notion that will be important in order to further discuss heat

kernels of Schrödinger operators, is the notion of parabolicity of M . There

are various equivalent definitions of parabolicity on a manifold; we refer

the reader to the survey [31] for proofs and references, and limit ourselves

to stating some well-known facts. The manifold M is called parabolic if
∫ ∞

0

pt(x, y) dt = ∞,

for some (or equivalently, all) x 6= y in M . If M is not parabolic, it is called

non-parabolic. Non-parabolicity of M is equivalent to the existence of a

positive, minimal Green function G(x, y) for the Laplacian, which is then

defined by the following formula:

G(x, y) =

∫ ∞

0

pt(x, y) dt, x 6= y.

The positive, minimal Green function can also be constructed by an ex-

haustion procedure, which we describe now. In the whole paper, we fix

{Ωk}∞
k=0 an exhaustion of M , i.e. a sequence of smooth, relatively compact

domains of M such that Ω0 6= ∅, Ω̄k ⊂ Ωk+1 and

(1.1) M =

∞
⋃

k=0

Ωk.

If we denote by GΩn the Green function of ∆ on Ωn with Dirichlet bound-

ary conditions at the boundary, then it is well-known that the sequence

(GΩn)nN is increasing, and converges pointwise to G outside of the diago-

nal {(x, x), ; x ∈ M}. Yet another characterization of parabolic manifolds

is in terms of a Liouville property: M is parabolic if and only if every non-

negative superharmonic function is constant. Lastly, let us mention that

M is parabolic (resp. non-parabolic) if and only if the Brownian motion on

M is recurrent (resp. transient). As an example, R and R
2 are parabolic,

while R
n, n > 3 is non-parabolic.

TOME 69 (2019), FASCICULE 2



462 Baptiste DEVYVER

A closely related notion to parabolicity exists for a non-negative Schröd-

inger operator. Actually, we shall present this theory in a slightly more

general setting, but again, we will only state some facts, and refer the reader

to the survey [45] more details. Instead of just the (weighted) Laplacian,

we shall consider an operator P of the form

(1.2) P = −div(A∇·) + c,

where A is a locally elliptic, smooth section of the vector bundle of sym-

metric endomorphisms of the tangent bundle TM , and c is a smooth, real

function on M . The quadratic form q associated to P is defined by

q(u) =

∫

M

(

(A∇u,∇u) + cu2
)

dµ, u ∈ C∞
0 (M).

If we assume that P + V is non-negative (that is, its quadratic form is non-

negative), then we can consider the property of having positive, minimal

Green functions for P + V. If such Green functions exist, then the operator

P + V is called subcritical. If not, it is called critical. In the case of P = ∆,

V = 0, we recover the definition of parabolicity/non-parabolicity; that is,

∆ is subcritical (resp. critical) if and only if M is non-parabolic (resp.

parabolic). For the sake of brevity, we will call a potential V critical (resp.

subcritical) if ∆ + V is a critical (resp. subcritical) operator. As for the

case of ∆, for general P + V there are various equivalent definition of

subcriticality/criticality. In terms of heat kernels, the criticality of P + V
is equivalent to

∫ ∞

0

pP +V
t (x, y) dt = ∞,

for some (or equivalently, all) x 6= y in M , and in the subcritical case the

positive, minimal Green function can be obtained by the formula:

GP +V(x, y) =

∫ ∞

0

pP +V
t (x, y) dt, x 6= y.

As before, GP +V can also be obtained as the pointwise limit of the increas-

ing sequence of functions GΩn

P +V , where by definition GΩn

P +V is the Green

function of P + V on Ωn with Dirichlet boundary conditions. The char-

acterization of criticality in terms of Liouville property writes as follows:

P + V is critical if and only if the cone of positive functions u satisfying

(P+V)u > 0 in the weak sense is one-dimensional, generated by an element

ϕ; in this case, ϕ is called the ground state of P + V, and it necessarily

satisfies (P + V)ϕ = 0. In connection with this Liouville property, note

that the celebrated Allegretto–Piepenbrink theorem asserts that P + V is

non-negative if and only if there exists a positive function ϕ such that

ANNALES DE L’INSTITUT FOURIER
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(P +V)ϕ = 0. A notion that is closely related (but, in general, different) to

subcriticality is the notion of strong subcriticality, which was introduced by

E. B. Davies and B. Simon [25]: the potential V is called strongly subcritical

with respect to P , if there exists ε ∈ [0, 1) such that

(1.3) ε−1

∫

M

V−u
2 6 q(u) + V+u

2, ∀ u ∈ C∞
0 (M)

(recall that q denotes the quadratic form of P ). In the case P = ∆, if (1.3)

holds we will just say that V is strongly subcritical. This definition gives

a quantitative information concerning the posivity of the quadratic form

of P + V. For example, it implies that the inequality P + V > (1 − ε)P

holds at the level of quadratic forms, that is the quadratic form of P + V
is bounded from below by the quadratic form of (1 − ε)P . It can be shown

that in general, strong subcriticality of V with respect to P implies that

the operator P + V is subcritical, but the converse is not true in general.

However, the converse holds under more restrictive assumption on P and

on V. More details will be given later on.

After these definitions, let us come back to heat kernel estimates of

Schrödinger operators ∆ + V. Recall that the potential V is assumed to

be smooth for simplicity. In [24], it is shown that if V is negative and small

in an integral sense, then the heat kernel of ∆ + V has Gaussian estimates.

Later, building on ideas of Grigoryan [32], Takeda [53] proved by proba-

bilistic methods that the smallness of V at infinity (in an integral sense)

is enough to have the two-sided Gaussian estimates for the heat kernel of

∆+V. The strongest result available in the literature follows from the com-

bination of works of Chen [15] and Takeda [52, 53]; to explain their results,

let us assume that M is a non-parabolic manifold, so that it has a positive

minimal Green kernel G(x, y). As follows from Chen and Takeda’s work, a

two-sided Gaussian estimate for the heat kernel of ∆+V holds provided M

is a non-parabolic manifold satisfying the scaled L2-Poincaré inequalities,

and the potential V is regular enough and satisfies the following conditions

(warning: we use a terminology and a sign convention for the Laplacian

that differ from Takeda’s, and assume smoothness of the potential):

(1) V is strongly subcritical, i.e. there exists ε ∈ [0, 1) such that

ε−1

∫

M

V−u
2 6

∫

M

|∇u|2 + V+u
2, ∀ u ∈ C∞

0 (M).

(2) V− is in the Kato class at infinity K∞(M), i.e.

lim
R→∞

sup
x∈M

∫

M\B(x0,R)

G(x, y)V−(y) dy = 0.

TOME 69 (2019), FASCICULE 2
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(3) V+ is H-bounded, i.e.

sup
x∈M

∫

M

G(x, y)V+(y) dy < ∞.

Here, we have denoted V+ := max(V, 0) and V− = max(−V, 0). The proof

follows an idea introduced by Grigoryan [32] (who first proved the theo-

rem in the case of positive potentials): first, one proves that there exists a

positive function h, solution of (∆ + V)h = 0, such that, for some constant

C > 0,

(1.4) C−1 6 h 6 C.

Then, one uses the function h to perform the h-transform h−1(∆ + V)h =

∆h2 , a weighted Laplacian for which one knows how to estimate the heat

kernel. The main point is to prove the estimate (1.4), and this is where

the assumptions on V come into play. However, we feel that Chen and

Takeda’s arguments, being of probabilistic nature and not easily accessible

to analysts, have not been well understood in the analytic community; in

particular, the fact that if one is interested only in upper-estimates (and not

two-sided estimates) for the heat kernel of ∆+V, then the Poincaré inequal-

ities are too strong a requirement, has been overlooked (see e.g. [2, 3, 14]).

Also, it is not clear from Takeda’s argument whether the strong subcriti-

cality assumption on V is really necessary, or if it can be replaced by the

weaker assumption of subcriticality. Subcriticality and strong subcriticality

both aim to quantify to which extent the operator ∆ + V is non-negative,

or in other words the negative part of the potential V is not too big (com-

pared to ∆ + V+). Recall that strong subcriticality is indeed stronger than

subcriticality in general. The distinction between V strongly subcritical

and ∆ + V subcritical is an important but quite subtle point; in fact, the

equivalence of these two conditions for various classes of potentials (which

unfortunately do not cover potentials satisfying the hypotheses in Takeda’s

theorem) has been investigated by several authors (e.g. [15, 52]). Our first

result in this article is an elementary analytic proof of an improvement of

Takeda’s result; one of the features of the proof is that, contrary to Chen

and Takeda’s arguments, it will make it quite clear why the Kato class at

infinity comes into play. Before we present our result, let us introduce a

definition: we will say that V− satisfies the condition (K∞, 1) if

lim
R→∞

sup
x∈M

∫

M\B(x0,R)

G(x, y)V−(y) dy < 1.

This condition is weaker than requiring V− to be in the Kato class at

infinity. We will show that condition (K∞, 1) is the natural condition to

ANNALES DE L’INSTITUT FOURIER
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require on the negative part of the potential, by proving the following result

(see Theorem 4.1):

Theorem 1.1. — Let M be a complete, non-parabolic (weighted) man-

ifold with doubling measure (D), such that the heat kernel corresponding

to the Laplacian has Gaussian upper-estimates (UE). Let V be a smooth,

real potential, such that

(1) The operator ∆ + V is subcritical, i.e. V is subcritical.

(2) V+ is H-bounded.

(3) V− satisfies the condition (K∞, 1).

Then, the Gaussian upper-estimate for the heat kernel of ∆ + V holds. If

moreover the scaled L2 Poincaré inequalities (P ) are satisfied, then the

two-sided Gaussian estimates hold for the heat kernel of ∆ + V.

Thus, the Kato class at infinity can be replaced by the weaker condition

(K∞, 1). Note also that the subcriticality assumption on V is weaker than

the strong subcriticality assumed by Takeda; in fact, as we have explained

before, the relationship between subcriticality and strong subcriticality is

often not well understood in the literature. We emphasize that our proof

is entirely analytic and quite elementary, and we hope that it will help

clarifying the picture in the analytic community. As Takeda, we follow

Grigoryan’s idea and show the existence of a positive function h, solution

of (∆ + V)h = 0, such that (1.4) holds.

As a consequence of Theorem 1.1, we will prove a boundedness result

for the Riesz transform on a manifold whose Ricci curvature is “small at

infinity” in an integral sense (Corollary 4.3). Let us mention that our ap-

proach owes much in spirit to the theory of perturbation of Schrödinger

operators developed by Y. Pinchover and M. Murata (see in particular,

[39, 40, 41, 42, 44]).

In the second part of the article, we will present some results concerning

the Riesz transform with potential d(∆ + V)−1/2, also in the Riemannian

manifold setting. When the potential V is non-negative and lies in a reverse

Hölder class, the operator d(∆ + V)1/2 has been studied by Shen [49],

Auscher and Ben Ali [4], and Badr and Ben Ali [6]. For potentials that

can take negative values, Guillarmou and Hassell [35] have proved a sharp

boundedness result for d(∆+V)−1/2 on an asymptotically conic manifold, if

the potential V decays at rate O(|x|−3) as x goes to infinity. More precisely,

under these assumptions Guillarmou and Hassell prove that (in absence

of zero-modes and zero-resonances and in dimension larger than 3), the

operator d(∆ + V)−1/2 is bounded on Lp if and only if p ∈ (1, n), where n

TOME 69 (2019), FASCICULE 2
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is the dimension of the manifold. Their proof uses the difficult techniques

of the b−calculus of Melrose and his coauthors, and relies crucially on the

very precise description of the geometry of the manifold at infinity, and on

the precise decay rate at infinity of the potential V. Thus, there is no hope

to extend their proof to a more general setting. It is however natural to try

to extend Guillarmou–Hassell’s result to more general situations. In this

direction, Assaad [2], and Assaad and Ouhabaz [3] have obtained partial

results in a much more general setting. Recall that we denote by V (x, r)

the volume of the geodesic ball of center x and radius r > 0. A consequence

of Assaad–Ouhabaz’ results is the following:

Theorem 1.2 ([3]). — Let M be a complete, non-compact manifold

with doubling measure (D), and such that the heat kernel corresponding

to the Laplacian has Gaussian upper-estimates (UE). Assume that the

Riesz tranform d∆−1/2 on M is bounded on Lp for all p ∈ (2, δ). Let V
be a strongly subcritical potential, such that the heat kernel of ∆ + V has

Gaussian upper-estimates, satisfying the following smallness condition: for

some r1, r2 > 2,

(1.5)

∫ 1

0

∥

∥

∥

∥

|V |1/2

V ( · ,√s)1/r1

∥

∥

∥

∥

r1

ds√
s

+

∫ ∞

1

∥

∥

∥

∥

|V |1/2

V ( · ,√s)1/r2

∥

∥

∥

∥

r2

ds√
s
< ∞.

Let r = min(r1, r2). Then, d(∆ + V)−1/2 is bounded on Lp, for all p ∈
(2,min(δ, r)).

Assaad and Ouhabaz remark that when the volume is Euclidean, i.e.

V (x, s) ∼ sn, s > 0, then (1.5) holds for r = n, if the potential satisfies

the more familiar condition V ∈ L
n
2 −ε, ε > 0. As we shall see, when the

volume is not Euclidean, the condition (1.5) is not completely transparent,

because there are actually geometric restrictions on the exponent r2, and

hence on r, that can be taken in terms of the p−parabolicity of M . More

specifically, whatever the potential V 6= 0, r2 in (1.5) is necessarily less or

equal to the so-called parabolic dimension of M . Moreover, contrary to the

above-mentioned result by Guillarmou and Hassell, Assaad and Ouhabaz

do not prove whether or not the obtained range of boundedness (2, r) for

d(∆ + V)−1/2 is the largest possible even when δ = ∞. One of the main

goals of this article is to complement their work: under additional condi-

tions on the potential and the manifold, we show that their result provides

the largest interval of boundedness possible. We will also shed light on con-

dition (1.5), by relating it to the geometry of M , and will provide natural,

explicit conditions on V and on M for its validity.

ANNALES DE L’INSTITUT FOURIER



HEAT KERNEL AND RIESZ TRANSFORM 467

Roughly speaking, our results prove in great generality that the follow-

ing phenomenon occurs: when one adds a non-zero, smooth, fast decaying

potential to the Riesz transform, the range of boundedness shrinks to an

extent that is determined by the volume growth of geodesic balls of large

radius in M . In particular, the range of boundedness depends only on the

global geometry of M .

Let us now present our results concerning the Riesz transform with po-

tential with greater details. Like Assaad and Ouhabaz, we will work on

manifolds with doubling measure, and such that the heat kernel corre-

sponding to the Laplacian has Gaussian upper-estimates. We first recall

some additional notions from potential theory. Let p ∈ (1,∞), and intro-

duce the (weighted) p-Laplacian ∆p(u) = −div(|∇u|p−2∇u). The notion of

p-parabolicity of M has recently proved important to study the bounded-

ness of the Riesz transform, cf. [11, 27]. As its linear (p = 2) counterpart,

it has several equivalent definitions, some of which we now recall (see [21]

for more details and references). We say that M is p-parabolic if and only

if every positive supersolution of ∆p is constant (Liouville property). Here,

by supersolution of ∆p, we mean a function u ∈ W
1,p
loc (M), such that for

every non-negative ψ ∈ C∞
0 (M),

∫

M

|∇u|p−2(∇u,∇ψ) dµ > 0.

An equivalent definition of p-parabolicity is that the p-capacity of every

relatively compact, open subset of M is zero. Recall that the p-capacity of

U is defined as

Capp(U) = inf
u

∫

M

|∇u|p dµ,

where the infimum is taken over all smooth (or equivalently, Lipschitz)

functions u with compact support in M , such that u > 1 on U . If M is

not p-parabolic, it is called p-non-parabolic. Another characterization of

p-non-parabolicity, related to the above capacity characterization, is the

existence of a positive function ρ such that the following Lp Hardy-type

inequality holds (see [47]):

(1.6)

∫

M

ρ|u|p dµ 6

∫

M

|∇u|p dµ, ∀ u ∈ C∞
0 (M).

It is well-known that volume growth estimates are related to p-parabolicity:

it is shown in [21, Corollary 3.2] that for p ∈ (1,∞), a necessary condition

for M to be p-non-parabolic is that for some (all) x ∈ M ,

(Vp)

∫ ∞

1

(

t

V (x, t)

)1/p−1

dt < ∞.
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It is also known that in general, (Vp) is not sufficient. However, (Vp) is

known to be sufficient if in addition M satisfies (D) together with scaled Lp

Poincaré inequalities ([36]), or ifM has uniform volume growth and satisfies

Lp pseudo-Poincaré inequalities ([21, Proposition 3.4]). In particular, if the

Ricci curvature is non-negative on M , then (Vp) is equivalent to the p-non-

parabolicity of M . It is also true that if p = 2 and M satisfies (D) and (UE),

then without further assumptions (V2) is equivalent to the non-parabolicity

of M (see [31, Theorem 11.1]). We now introduce the parabolic dimension

of M , for which it will be useful to first define a family of local Poincaré

inequalities: for every 1 6 p < ∞, and every x ∈ M , r > 0, there exists a

constant Cr such that for all x ∈ M and all u ∈ C∞
0 (B(x, r)),

(Ploc)

∫

B(x,r)

|u− uB(x,r)|p dµ 6 Cr

∫

B(x,r)

|∇u|p dµ,

where uB(x,r) = 1
V (x,r)

∫

B(x,r)
u(y) dµ(y). As a consequence of [9], the in-

equalities (Ploc) are satisfied for all 1 6 p < ∞ if µ is the Riemannian

measure, and the Ricci curvature is bounded from below on M . Let

I = {p ∈ (1,∞) : M is p− parabolic}.
By an observation in [21, p. 1152–1153], if M satisfies (Ploc) for all 1 6

p < ∞, then r-parabolicity implies s-parabolicity for every r 6 s (we were

not aware of this fact in [27]). In particular, I is an interval (which is also

closed in all cases known by the author). Following [16], let us define

κ(M) = inf I,

the parabolic dimension of M (notice that the term “hyperbolic dimension”

has been used instead in [27]). Recall the exponents ν and ν′ from (Dν,ν′),

then by the fact that (Vp) is necessary for the p-non-parabolicity of M , we

see that

κ 6 ν.

We will see later, as a consequence of Theorem 5.1 that under (D), (UE)

and (Ploc), the inequality κ > ν′ also holds. Let us highlight these two facts

as a lemma:

Lemma 1.3. — Let M satisfying (D), (UE) and (Ploc) for all 1 6 p <

∞. Recall the exponents ν and ν′ from (Dν,ν′), and let κ be the parabolic

dimension of M . Then

ν′ 6 κ 6 ν.

One of our results is the following very simple characterization of κ (see

Theorem 5.1):
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Theorem 1.4. — Assume that M be a complete, non-compact mani-

fold having doubling measure (D), satisfying the local Poincaré inequali-

ties (Ploc) for all 1 6 p < ∞, and such that the heat kernel corresponding

to the Laplacian has Gaussian estimates (UE). Then, the parabolic dimen-

sion κ is equal to the supremum of p’s such that the following volume lower

estimates hold: there is constant Cp such that, for some (all) x0 in M and

all r > 1,

V (x0, r) > Cpr
p.

We will also characterize the reverse doubling exponent ν′ in terms of

lower bounds of the p-capacities of geodesic balls (see Theorem 5.6):

Theorem 1.5. — Assume that M has doubling measure (D) and the

heat kernel corresponding to the Laplacian has Gaussian estimates (UE).

Let p0 ∈ (2,∞]. The following are equivalent:

(1) For every p ∈ (1, p0), and every x ∈ M , r > 0, the p-capacity

Capp(B(x, r)) of the geodesic ball B(x, r) has the lower estimate:

Capp(B(x, r)) > Cp
V (x, r)

rp
.

(2) For all p ∈ (1, p0), and every x ∈ M , t > r > 0, the following reverse

doubling volume estimate holds:

V (x, t)

V (x, r)
> Cp

(

t

r

)p

.

These results have independent interest from the rest of the paper, and

greatly improve results of Coulhon–Holopainen–Saloff-Coste [21], and

Holopainen [36]. In light of Theorem 1.5, we make the following definition:

Definition 1.6. — Let M be a Riemannian manifold with doubling

measure (D) and whose heat kernel corresponding to the Laplacian has

Gaussian estimates (UE). Recall the parabolic dimension κ of M . We will

say that M is parabolic regular if, for every p < κ,

Capp(B(x, r)) > Cp
V (x, r)

rp
, ∀ x ∈ M,∀ r > 0.

For example, the Euclidean space is parabolic regular.

Coming back to the Riesz tranform with potential, we will show the

following result (see Theorem 7.8):

Theorem 1.7. — Let M be a complete, non-parabolic manifold having

doubling measure (D), satisfying the local Poincaré inequalities (Ploc) for

all 1 6 p < ∞, and such that the heat kernel corresponding to the Laplacian
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has Gaussian upper-estimates (UE). Assume that M is parabolic regular

in the sense of Definition 1.6, that κ, the parabolic dimension of M , is

strictly greater than 2 and that M is κ-parabolic. Assume that there is

δ > 0 such that d∆−1/2, the Riesz transform on M , is bounded on Lp for

all p ∈ (1, (1 + δ)ν). Let V be a smooth, subcritical potential such that

V ∈ L
ν′

2 −ε

(

M,
dx

V (x, 1)

)

∩ L
ν
2 +ε

(

M,
dx

V (x, 1)

)

,

for some ε > 0. Then, the Riesz transform with potential d(∆ + V)−1/2 is

bounded on Lp, if and only if p ∈ (1, κ).

The main novelty of Theorem 1.7 is the negative result, i.e. that d(∆ +

V)−1/2 is not bounded on Lp for p > κ. There are very few such optimal

negative results for Riesz tranforms in the literature. In fact, apart from the

previously mentionned result by Guillarmou and Hassell, we are only aware

of one such result: using the Lp cohomology and the Lp Hodge projector,

and building on earlier results from [12], Carron shows in [11] the following

result: if M is a non-parabolic manifold having at least two ends (meaning,

roughly speaking, that there are two ways for a continuous path on M to

“go to infinity”, much like a continuous path of real numbers can either tend

to +∞ or to −∞), then the Riesz transform without potential d∆−1/2 is

unbounded on Lp or L
p

p−1 provided p > 2 and M is p-parabolic. Notice that

the recent works [27], [11] demonstrate the relevance of the p-parabolicity

in Riesz transform problems. Moreover, concerning the boundedness part

of Theorem 1.7, we recover and even generalize Guillarmou–Hassell result

with a quite elementary proof, that is different from the one of Assaad and

Ouhabaz (see the proof of Corollary 7.4).

Let us mention that while this article was being written, Chen, Magniez

and Ouhabaz [14] have independently proved an unboundedness result for

the Riesz transform with potential, that is significantly weaker than our

Theorem 1.7: they essentially prove that if there exists a positive, bounded

solution h of (∆ + V)h = 0, then the Riesz transform with potential d(∆ +

V)−1/2 cannot be bounded on Lp, for p > ν. Let us make two remarks

concerning their result: first, they do not provide conditions on V and on

M for the existence of such a function h, and limit themselves to quote

results of Simon [51] for the case of Rn with V ∈ L
n
2 ±ε, and Takeda [52]

for positive H-bounded potentials. This allows them to prove that, on R
n,

if V ∈ L
n
2 ±ε such that V− is strongly subcritical, then the Riesz transform

with potential d(∆ + V)−1/2 cannot be bounded on Lp, for p > n. Note

that even in this very particular case, contrary our Theorem 1.7, it is not
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possible to conclude from their result that d(∆ + V)−1/2 is not bounded

on Ln. Secondly, there are examples where the “gap” between our result

and their is much more important: in fact, there are examples of manifolds

satisfying (D) and (UE), and for which κ < ν. In Remark 7.3, we present an

example of such a manifold with κ = 3 but ν = 4, and that has non-negative

Ricci curvature, hence Riesz transform without potential bounded on Lp

for all p ∈ (1,∞). This example satisfies all the hypotheses of Theorem 1.7,

hence, for a non-negative, smooth, compactly supported potential V, we

obtain unboundedness of d(∆ + V)−1/2 on Lp for p > 3, whereas from

the results of [14] one concludes only unboundedness on Lp for p > 4. In

particular, let us stress that the result of Chen, Magniez and Ouhabaz is far

from being optimal. This comes from the fact that their argument (which

is completely different from ours) is local, since they obtain a contradiction

to a local Morrey-type inequality of the form:

|h(x) − h(x′)| 6 C‖dh‖p,

if p > ν and the distance between x and x′ is less than 1. The idea of using a

Morrey inequality to show an unboundedness result for the Riesz transform

actually goes back to an article of Coulhon and Duong [19], in which such

an inequality is employed to show that d∆−1/2 is unbounded on Lp for all

p > n, on the connected sum of several Euclidean spaces. But it is well-

known in this case that this approach cannot yield the unboundedness of

d∆−1/2 on Ln; actually unboundedness on Ln was shown by a completely

different argument in [12]. On the contrary, our argument using the p-

parabolicity, is global in nature, and allows us to get a sharp result. It is

also completely new: indeed, it does not use either Morrey-type inequalities,

or any of Carron’s argument in [11] (in particular, the Lp cohomology), or

the b-calculus as in [12] and [35]. Instead, the idea consists in proving the

boundedness on Lp of the auxiliary operator d(h−1(∆ + V)−1/2), where h

is a positive solution of (∆ + V)h = 0 satisfying (1.4). The boundedness of

d(h−1(∆+V)−1/2), in turn, is proved using properties of h that follows from

the (integral) smallness assumption on V at infinity, and a perturbation

result of Coulhon and Dungey [18].

As a by-product of our approach, we can also prove an alternative Lp

inequality, in the case where d(∆ + V)−1/2 is not bounded on Lp. More

precisely, we get the following result (see Theorem 7.1):

Theorem 1.8. — Let M be a complete, non-parabolic manifold, having

doubling measure (D), local Poincaré inequalities (Ploc) for all 1 6 p < ∞,

and such that the heat kernel corresponding to the Laplacian has Gaussian
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upper-estimates (UE). Assume that the Riesz transform d∆−1/2 on M is

bounded on Lp, for all p ∈ (1,∞). Let V be a smooth, subcritical potential

such that

V ∈ L
ν′

2 −ε

(

M,
dx

V (x, 1)

)

∩ L∞(M),

for some ε > 0. Then, there is a positive function h satisfying (1.4), such

that (∆ + V)h = 0 and such that, for every p ∈ (2,∞), the following

inequality takes place:

(1.7) ‖du− u[d(log h)]‖p 6 C‖(∆ + V)1/2u‖p, ∀ u ∈ C∞
0 (M).

To the author’s knowledge, such an alternative Lp inequality is com-

pletely new, even in the very special case of Rn with a potential V decaying

at infinity as r−α, α > 2. It is interesting in that it quantifies precisely to

which extent d(∆ + V)−1/2 fails to be bounded on Lp, for p > κ.

To conclude this introduction, we emphasize again that a key point, used

in many of our proofs, is that roughly speaking, if V is “small at infinity”

in an integral sense, then there exists a function h, bounded above and

below by positive constants, such that (∆ + V)h = 0. That the existence of

such a function h has consequences for the Riesz transform d(∆ + V)−1/2

is reminiscent of [35], and also to some extend of [12] : indeed, in [12], the

unboundedness of the Riesz transform on Lp, p > n (p > 2 if n = 2) on the

connected sum R
n♯Rn of two Euclidean spaces relies on the existence of a

non-zero harmonic function with gradient in L2.

The plan of this article is as follows: in Section 2, we introduce the

setting. In Section 3, we prove a general perturbation result for positive

solutions of a Schrödinger operator. In Section 4, we use the results of Sec-

tion 3 to prove Theorem 1.1. We discuss some consequences for the Riesz

transform d∆−1/2. Section 5 is devoted to a characterizations of p-non-

parabolicity, based on volume growth, and which is of independent inter-

est (Theorems 1.4 and 1.5). In Section 6, we introduce a natural scale of

weighted Lp spaces, to define an appropriate notion of “smallness at infin-

ity” for a potential, in the case where the underlying Riemannian manifold

does not satisfy a global Sobolev inequality. Finally, in Section 7, we use

the results of Sections 1–6 to prove Theorems 1.7 and 1.8.

2. Preliminaries

2.1. Sobolev inequalities

In order to compare our results with existing results in the literature,

and present simpler cases of our theorems, we will sometimes assume that
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M satisfies a global Sobolev inequality of dimension ν:

(Sν) ‖u‖ 2ν
ν−2

. ‖∇u‖2.

The Sobolev inequality (Sν) implies the following mapping properties for

the operators ∆− α
2 , as well as the following Gagliardo–Nirenberg type in-

equalities (see [23]):

(2.1) ∆− α
2 : Lp → Lq,

for every 1 < p < ν
α and 1

q = 1
p − α

ν ; and

(2.2) ‖u‖∞ 6 C(ν, r, s)‖∆u‖θ
r/2‖u‖1−θ

s/2 , ∀ u ∈ C∞
0 (M),

for all s > r > ν, and θ = ν/s
1−(ν/r)+(ν/s) .

It is well-known that the Sobolev inequality (Sν) is related to the volume

growth. In fact (see [48, Theorem 3.1.5]), if (Sν) holds, then

(2.3) rν . V (x, r), ∀ x ∈ M, ∀ r > 0,

which implies that the exponent ν in (Sν) must be greater or equal to the

topological dimension of M . This rules out some interesting manifolds that

satisfy (D) and (UE): for example, a complete, non-compact manifold with

non-negative Ricci curvature (hence, satisfying (D) and (UE)), satisfies the

Sobolev inequality (Sν) if and only if it has maximal volume growth, i.e.

V (x, r) ∼ rν , for all x ∈ M , r > 0 (ν being the topological dimension of M).

An obvious consequence of (2.3) is that the Sobolev inequality (Sν) implies

the non-collapsing of balls (NC). Under mild geometric assumptions, the

non-collapsing of balls (NC) is in fact equivalent to a local Sobolev inequal-

ity, as we explain now. Assume that M satisfies the doubling condition (D)

for balls of radius less than 1, and the heat kernel estimate (UE) for times

less than 1. For example, this is the case if µ is the Riemannian measure,

and the Ricci curvature on M is bounded from below. Then (NC) implies

the following ultracontractivity estimate for small times:

‖e−t∆‖1,∞ . t−
ν
2 , ∀ t ∈ (0, 1),

where ν is the exponent in (Dν,ν′). By the work of Varopoulos (see [23,

Theorem II.4.2]), this ultracontractivity estimate is equivalent to a local

Sobolev inequality:

(Sν
loc) ‖u‖ 2ν

ν−2
. ‖∇u‖2 + ‖u‖2, ∀ u ∈ C∞

0 (M).

So, (NC) implies (Sν
loc), where ν is the exponent in (Dν,ν′), under the as-

sumption that M satisfies the doubling condition (D) for balls of radius less

TOME 69 (2019), FASCICULE 2



474 Baptiste DEVYVER

than 1, and the heat kernel estimate (UE) for times less than 1. Conversely,

assume that M satisfies (Sν
loc). Then, by [48, Theorem 3.2.13],

rν . V (x, r), ∀ x ∈ M, ∀ r 6 1,

and in particular (NC) holds. Hence, under (D) (for balls of small radius),

(UE) (for small times), the non-collapsing of balls (NC) is equivalent to

the local Sobolev inequality (Sν
loc). Note that these hypotheses on M are in

particular satisfied if µ is the Riemannian measure, and the Ricci curvature

of M is bounded from below.

2.2. Criticality and perturbation theory for Schrödinger

operators

Let us recall that we have fixed {Ωk}∞
k=0 an exhaustion of M , i.e. a

sequence of smooth, relatively compact domains of M such that Ω0 6= ∅,

Ω̄k ⊂ Ωk+1 and

M =

∞
⋃

k=0

Ωk.

We also denote

Ω∗
k := M \ Ωk,

and we associate to this exhaustion a sequence of smooth cut-off functions

{χk}∞
k=0 such that χk ≡ 1 on Ωk, χk ≡ 0 on Ω∗

k+1, and 0 6 χk 6 1 on M .

We consider P a general Schrödinger-type elliptic operator on M in di-

vergence form (1.2), and q its quadratic form. As we have recalled in the

introduction, the positivity and criticality theory of these operators is well-

established. Let us denote by CP (M) the cone of positive (smooth) func-

tions u satisfying Pu = 0. Recall that P is defined to be non-negative

if its associated quadratic form q is non-negative, and by the celebrated

Allegretto–Piepenbrink theorem, this is equivalent to CP (M) 6= ∅. If V is a

real potential, we have already defined in the introduction the concepts of

criticality/subcriticality of P + V, as well as the concept of strong subcrit-

icality of V with respect to P . As has been mentioned, in general strong

subcriticality implies subcriticality, but the converse is not true. However,

under additional assumptions, the two concepts are equivalent; in this re-

spect, we think the following lemma is enlightening:

Lemma 2.1. — Assume that M satisfies the Sobolev inequality (Sν),

and V− belongs to L
ν
2 . Then, V is subcritical if and only if it is strongly

subcritical (with respect to ∆).
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Proof. — It is shown in [26, Definition 6] that if (Sν) holds and V− ∈ L
ν
2 ,

then V− is strongly subcritical if and only if KerH1
0
(∆+V) = {0}, where H1

0

is the completion of C∞
0 (M) for the norm

√
Q(u) =

(∫

M
|∇u|2 + V+u

2
)1/2

.

But, if there exists ϕ ∈ KerH1
0
(∆+V)\{0}, then for every sequence (ϕn)n∈N

in C∞
0 (M), converging to ϕ in H1

0 ,

(2.4) lim
n→∞

Q(ϕn) −
∫

M

V−ϕ
2
n = 0.

Also, the Sobolev inequality implies that H1
0 →֒ L

2ν
ν−2 , hence

(2.5) lim
n→∞

‖ϕn − ϕ‖ 2ν
ν−2

= 0.

Then, (2.4) and (2.5) imply that (ϕn)n∈N is a null-sequence (see [46, Defi-

nition 1.1]), hence ∆ + V is critical. Therefore, V is subcritical if and only

if V− is strongly subcritical. �

The perturbation theory by a potential for Schrödinger-type operators

has been the topic of active research over the past 30 years. Various classes

of perturbations have been introduced, in order to prove results such as the

stability of the Martin boundary, or the (semi-)equivalence of the Green

functions. Recall that semi-equivalence of the Green functions means that

the Green functions of the operator and its perturbation are equivalent,

provided the pole is fixed (but the constants of equivalence may depend on

the pole). Actually, both an analytic and a probabilistic approach to the

perturbation theory have been developped in parallel. For example, the

equivalence of the Green functions of P and of P + V when both operators

are subcritical and V is a small perturbation (S∞(M) class in the proba-

bilistic terminology), first proved by analytic means by Y. Pinchover in [41],

has been later rediscovered with a probabilistic proof by Z. Q. Chen [15]

and M. Takeda [52], building on earlier work by Z. Zhao [57]. Let us also

mention the work of A. Ancona [1], who proves the equivalence of the Green

functions of two elliptic operators when the difference of their coefficients

is small in a quantitative sense. We warn the reader that the terminology

of the perturbation classes in the probabilistic community is often different

from the ones in the analytic community.

We now introduce some known classes of perturbation, as well as two

new ones that are close to some classes introduced by Murata in [39], and

that are tailored to the purposes of this article. Since we are not interested

in local regularity issues, we recall that the potential V will be assumed to

be smooth, which simplifies the definitions given below (indeed, in the case

where V is a measure one needs to consider local Kato classes as well).
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Let P be subcritical of the form (1.2). We say that V is a small pertur-

bation of P if

(2.6) lim
k→∞

sup
x,y∈Ω∗

k

∫

Ω∗

k

GP (x, z)|V(z)|GP (z, y)

GP (x, y)
dz = 0.

Small perturbations have first been introduced in [41]. We say that V is a

G-bounded perturbation of P if

(2.7) sup
x,y∈M

∫

M

GP (x, z)|V(z)|GP (z, y)

GP (x, y)
dz < ∞

The notion of G-bounded perturbation has been introduced in [39]. Of

course, if V is a small perturbation then it is G−bounded. Let h ∈ CP (M),

i.e. h is a positive solution of Pu = 0. We say that V is in the Kato class

at infinity with respect to (P, h), denoted K∞(M,P, h), if

(2.8) lim
k→∞

sup
x∈Ω∗

k

∫

Ω∗

k

GP (x, y)|V(y)|h(y)

h(x)
dy = 0.

In the case P = ∆ and h ≡ 1, we will simply speak of the Kato class at

infinity of M , denoted K∞(M). For example, if P = ∆, M = R
n for n > 3,

and for |x| > A,

|V(x)| 6 ϕ(|x|)
|x|2 ,

where ϕ is a non-increasing, continuous function which satisfies
∫ ∞

A

ϕ(s)

s
ds < ∞,

then V ∈ K∞(Rn) (see [43, Lemma 2.3]).

More generally, we introduce the following new definition: for ε > 0, we

will say that V satisfies the condition (K∞,M, P, h, ε) if

(2.9) lim
k→∞

sup
x∈Ω∗

k

∫

Ω∗

k

GP (x, y)|V(y)|h(y)

h(x)
dy < ε.

When P = ∆ and h ≡ 1, we will simply speak of the condition (K∞, ε).
By the Maximum Principle, in (2.6), (2.8) and (2.9), one can replace the

supremum over Ω∗
k by the supremum over M (see [39, Lemma 2.1]). Finally,

we introduce a notion closely related to the H−boundedness introduced by

M. Murata in [39]: for a positive solution h of Pu = 0, we say that V is

(H,h)−bounded if

(2.10) sup
x∈M

∫

x∈M

GP (x, y)|V(y)|h(y)

h(x)
dy < ∞.
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If V is (H,h)−bounded, then we define

‖V‖H,h := sup
x∈M

∫

x∈M

GP (x, y)|V(y)|h(y)

h(x)
dy < ∞.

Obviously, if V satisfies condition K∞(M,P, h, ε) for some ε > 0, then

V is (H,h)−bounded. In particular, if V is in the Kato class at infinity

K∞(M,P, h), then V is (H,h)−bounded. Furthermore, it is a direct appli-

cation of Martin’s theory that if V is a small (resp. G−bounded) pertur-

bation of P , then for every h ∈ CP (M), V is in K∞(M,P, h) (resp., V is

(H,h)−bounded) (see [39, 40, 41]).

We warn again the reader that equivalent classes may be found in the

literature, under different names. To conclude this discussion, let us give a

particular but important example of potentials in K∞(M):

Example 2.2. — Assume that M satisfies the Sobolev inequality (Sν),

and let V ∈ L
n
2 ±ε, for some ε > 0. Then V ∈ K∞(M).

Remark 2.3. — This example will be generalized later (in Proposition 6.7)

to manifolds which only satisfy (D) and (UE), but not the Sobolev inequal-

ity (Sν).

Proof. — Let

u(x) =

∫

M

G(x, y)|V(y)|dy,

that is, u = ∆−1|V|. Then by the fact that V ∈ L
n
2 −ε and (2.1), there is

s > n defined by 2
s = 1

n
2 −ε − 2

n , such that u ∈ Ls/2. Also, ∆u = V ∈ Lr/2

with r
2 = n

2 + ε, therefore by (2.2), we deduce that

(2.11) ‖u‖∞ 6 C(n, ε)‖V‖θ
n
2 +ε‖u‖1−θ

s
2

6 C(n, ε)‖V‖θ
n
2 +ε‖V‖1−θ

n
2 −ε.

Let Vk = Vχk, then

lim
k→∞

‖Vk‖ n
2 ±ε = 0.

Applying (2.11) with Vk instead of V, and letting k → ∞, we deduce that

lim
k→∞

sup
x∈M

∫

Ω∗

k

G(x, y)|V(y)|dy = 0,

i.e. V belongs to K∞(M). �

2.3. h-transform

We recall a standard procedure to eliminate the zero-order term of an

operator P of the form (1.2). Let h ∈ CP (M), and define a map

(2.12) Th : v → hv .
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Notice that Th is an isometry between L2(M, h2dν) and L2(M, dν). The

operator Ph := T−1
h ◦ P ◦ Th, that is,

(2.13) Phu =
P (hu)

h

is called the h-transform (or Doob transform) of P . Notice that

Ph1 = 0.

Also, it is not hard to see that Ph is explicitly given by

(2.14) Phu = − 1

h2
div(h2A(x)∇u),

and Ph is self-adjoint on L2(M, h2dν). Moreover, P and Ph are unitary

equivalent. It is also easy to prove that Ph is subcritical if and only if P is

subcritical, and in this case, the corresponding Green function satisfies

GPh
(x, y) =

GP (x, y)

h(x)h(y)
.

On the other hand, in the critical case 1 is the ground state of the equation

Phu = 0 in M . Finally, notice that the use of the h−transform allows to

rewrite (2.9), i.e. the condition (K∞, P, h, ε), as

lim
k→∞

‖P−1
h |V|‖L∞(Ω∗

k
)→L∞(Ω∗

k
) < ε.

3. Perturbation result for positive solutions of a
Schrödinger operator

In [39], Murata introduced the class of semi-small perturbations, and

proved that if V is a semi-small perturbation of a subcritical operator P ,

then the minimal Martin boundaries of P and P + V are homeomorphic.

By the Martin representation theorem, every positive solution h of Pu = 0

in M can be written as

h(x) =

∫

∂m(M,P )

K(x, ξ) dν(ξ),

for some probability measure dν on the minimal Martin boundary

∂m(M,P ). Here, K(x, ξ) denotes the Martin kernel. This implies that if

V is a semi-small perturbation of P , then there is a bijection that preserves

order from the cones of positive solutions of P , CP (M), into CP +V(M). In

this section, we will be concerned with the following related problem:
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Problem 3.1. — Let P in the form (1.2) be subcritical. If h is a positive

solution of Pu = 0 inM , under which conditions on V does there exist g ∼ h

such that (P + V)g = 0?

In the case P = ∆ and h ≡ 1, an answer to Problem 3.1 can be extracted

from Takeda’s article [53]. Takeda’s arguments are of probabilist nature;

the main idea goes back to the pioneering work of B. Simon [51], who first

proved by a probabilistic argument that on R
n, n > 3, if V ∈ L

n
2 −ε ∩Ln

2 +ε

then the existence of g ∼ 1 solution of (∆+V)u = 0, is equivalent to ∆+V
being subcritical. Problem 3.1 was also studied by Pinchover, who solved

it for small perturbations (see [40, Lemma 2.4], [41, Lemma 1.1]). In this

section, we will present an answer to Problem 3.1, more precisely we will

give an analytic proof of the following result:

Theorem 3.2. — Let P be subcritical. Let h be a positive solution of

Pu = 0 in M , and let V be a potential such that V− satisfies (K∞, P, h, 1)

and V+ is (H,h)−bounded. Assume that P + V is subcritical. Then there

exists g ∼ h, positive solution of (P + V)u = 0. Furthermore, g satisfies

g(x) = h(x) −
∫

M

GP (x, y)V(y)g(y) dy.

Remark 3.3. — Theorem 3.2 applies in particular for potentials V in the

Kato class at infinity K∞(M,P, h).

Remark 3.4. — In fact, as the proof will show, the following lower esti-

mate of g holds (compare with Equation (3.2) in [53]):

e−‖V+‖H,h 6
g

h
.

In [53], in the case P = ∆, h ≡ 1 and under the extra assumption that

V− is strongly subcritical with respect to ∆ + V, an upper-bound, with a

probabilistic flavor, for g is given:

g

h
6 sup

x∈M
Ex exp

(

−
∫ ∞

0

V(Bs) ds

)

,

where Bs is the Brownian motion on M , and Ex is the conditional expec-

tation, starting from x.

In the case P = ∆ and h ≡ 1, and V− strongly subcritical with respect

to ∆+V+, Theorem 3.2 follows from Theorem 1, Equation (3.2), as well as

Lemma 2, in [53]. It was not noticed in [53] that the strong subcriticality

of V− can be replaced by the weaker assumption that ∆ + V is subcritical.

Also, our assumption that V− satisfies (K∞, P, h, 1) is weaker than the

assumption that V− belongs to K∞(M,P, h). In the case where V is a
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small perturbation of P (which is a much stronger condition), Theorem 3.2

follows from [40, Lemma 2.4] and [41, Lemma 2.4].

Let us start with the following lemma, which is essentially well-known

(see [44, Lemma 3.3]), but whose proof is provided since it will be instru-

mental in the proof of Theorem 3.2:

Lemma 3.5. — Assume that V is (H,h)−bounded and that

‖V‖H,h <
1

2
.

Then there exists g ∼ h solution of (P + V)u = 0. Furthermore, if V is

non-positive, then the existence of g is guaranteed as soon as

‖V‖H,h < 1.

For the convenience of the reader, we give the proof of Lemma 3.5:

Proof of Lemma 3.5. — let

ε := sup
x∈M

∫

M

GP (x, y)|V(y)|h(y)

h(x)
dy < 1.

We want to define g by the formula

g = (I + P−1V)−1h.

In fact, let us define g by the Neumann series

g =

∞
∑

k=0

(−1)k(P−1V)kh.

If the series converges, then it is easy to see that g is solution of (P +V)u =

0. Define hk := (P−1V)kh. Then,

hk(x) =

∫

M

GP (x, y)V(y)hk−1(y) dy,

and by an easy induction,

|hk| 6 εkh.

Hence
(

1 −
∞
∑

k=1

εk

)

h 6 g 6

( ∞
∑

k=0

εk

)

h,

that is
1 − 2ε

1 − ε
h 6 g 6

1

1 − ε
h,
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hence the result in the general case. In the case where V is non-positive,

then P−1V 6 0, which implies that h 6 g from the definition of g. Thus,

by the previous computation,

h 6 g 6
1

1 − ε
h,

hence g ∼ h as soon as ε < 1. �

Proof of Theorem 3.2. — We split the proof into two parts.

Step 1: case V > 0. — Without loss of generality, one can assume that

V 6= 0, that is ‖V‖H,h > 0. For t > 0, define

gt(x) = h(x) − t

∫

M

GP +tV(x, y)V(y)h(y) dy.

We will employ the following lemma:

Lemma 3.6. — For every t > 0, gt is a positive solution of (P+tV)u = 0.

Furthermore, let 0 6 t0 < t1 < t2 < ∞, and define α ∈ (0, 1) by

t1 = (1 − α)t0 + αt2.

Then

gt1
6 g1−α

t0
gα

t2
.

Assuming for the moment the result of Lemma 3.6, let us finish the proof

of Step 1. We apply Lemma 3.6 with t0 = 0, t1 = ε and t2 = t > ε. It yields

g
ε/t
t > gεh

−1+ε/t.

Since V > 0, one has GP +tV 6 GP , therefore, for all x ∈ M ,

∫

M

GP +tV(x, y)V(y)h(y) dy 6

∫

M

GP (x, y)V(y)h(y) dy

6 ‖V‖H,h h(x).

Consequently, if Cε = 1 − ε‖V‖H,h, one has for ε < ‖V‖−1
H,h,

Cεh 6 gε 6 h.

Thus

gt > Ct/ε
ε h = e−C′

εth,

where C ′
ε = −ε−1 log(1 − ε‖V‖H,h). Letting ε → 0, one gets

gt > e−t‖V‖H,hh.

Applying this for t = 1 and defining g = g1, we find that g is a positive

solution of (P + V)u = 0 such that

e−‖V‖H,h 6
g

h
6 1.
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This concludes the proof in the case where V > 0.

Step 2: general case. — Since V− satisfies condition (K∞, P, h, 1), we

can fix k ∈ N such that

sup
x∈M

∫

Ω∗

k

GP (x, y)V−(y)h(y)

h(x)
dy < 1.

Define

V−,0 = V−χk, V−,∞ = V− − V−,0.

Notice that V−,0 has compact support, and that ‖V−,∞‖H,h < 1. By Step

1, there exists g1 ∼ h, solution of (P + tV+)u = 0, and g1 is given by

g1 = h− (P + V+)−1V+h.

Since GP +V+ 6 GP ,

sup
x∈M

∫

M

GP +V+
(x, y)V−,∞(y)h(y)

h(x)
dy < 1.

By Lemma 3.5, there exists g2 ∼ g1 solution of (P + V+ − V−,∞)u = 0, and

g2 is given by

g2 = (I − (P + V+)−1V−,∞)−1g1.

Define

g = g2 + (P + V)−1V−,0 g2.

Obviously, g satisfies (P + V)g = 0, and g2 6 g. We are going to show that

g 6 Cg2, and for this purpose it is clearly enough to show that there is a

constant C such that for every x ∈ M ,

(3.1)

∫

M

GP +V(x, y)V−,0(y)g2(y) dy 6 Cg2(x).

Denote L = P +V+ −V−,∞. By [40], since V−,0 has compact support, there

is a constant C such that

C−1GP +V 6 GL 6 CGP +V .

Consequently,
∫

M

GP +V(x, y)V−,0(y)g2(y) dy 6 C

∫

M

GL(x, y)V−,0(y)g2(y) dy.

Denote f(y) = V−,0(y)g2(y), then f is non-negative and has support in-

cluded in Ωk. Notice that u(x) =
∫

M
GL(x, y)f(y) dy is a positive solution

of Lv = f on M , and

u(x) = lim
n→∞

un,

with

un =

∫

M

GΩn

L (x, y)f(y) dy.
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Notice that for n > k, un is solution of Lu = 0 in Ωn \ Ωk, and vanishes

identically on the boundary of Ωn. Therefore, by the Maximum Principle,

there exists a constant

Cn =
sup∂Ωk

g2

inf∂Ωk
un

such that

un(x) 6 Cng2(x), ∀ x ∈ Ωn \ Ωk.

Notice that (un)∞
n=0 is increasing, so that Cn 6 Ck. Letting n → ∞, one

deduces that

u(x) 6 Ckg2(x), ∀ x ∈ Ω∗
k.

Since u and g2 are positive and continuous on Ωk, one can increase Ck to

ensure that

u(x) 6 Cg2(x), ∀ x ∈ M.

Thus, (3.1) holds. This implies that

g ∼ g2,

and since g1 ∼ h and g2 ∼ g1, one concludes that

g ∼ h.

In order to finish the proof of Theorem 3.2, one has to prove that g satisfies

the equation

(3.2) g(x) = h(x) −
∫

M

GP (x, y)V(y)g(y) dy.

For n > N , denote by hn the restriction of h to Ωn, and define g1,n, g2,n

and gn by

g1,n(x) = hn(x) −
∫

Ωn

GΩn

P +V+
(x, y)V+(y)hn(y) dy,

g2,n = (I − Tn)−1g1,n,

where Tn is the operator

Tnu(x) =

∫

Ωn

GΩn

P +V+
(x, y)V−,∞(y)u(y) dy,

and

gn(x) = g2,n(x) +

∫

Ωn

GΩn

P +V(x, y)V−,0(y)g2,n(y) dy.

It follows from the hypotheses that there is a constant C such that for

every n > N and i = 1, 2,

C−1h 6 gi,n 6 Ch,
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and

C−1h 6 gn 6 Ch.

Since V is (H,h)-bounded, the Dominated Convergence Theorem implies

that pointwise,

lim
n→∞

gi,n = gi, i = 1, 2,

and

lim
n→∞

gn = g.

Define

wn(x) = hn(x) −
∫

Ωn

GΩn

P (x, y)V(y)gn(y) dy,

and notice that by the fact that V is (H,h)-bounded and the Dominated

Convergence Theorem, as n → ∞, wn converges pointwise to

w(x) = h(x) −
∫

M

GP (x, y)V(y)g(y) dy.

One wishes to show that w = g. Notice that for every n > N , wn and gn

are solutions of the following Dirichlet problem:
{

Pu = −Vgn in Ωn

u|∂Ωn
= h|∂Ωn

The Maximum Principle implies that

wn = gn.

Passing to the limit as n → ∞ gives

w = g,

that is, (3.2). �

Proof of Lemma 3.6. — We first prove the inequality

(3.3) gt1
6 g1−α

t0
gα

t2
.

Let {Ωn}∞
n=0 be an exhaustion of M , and for t > 0, define

gt,n(x) = h|Ωn(x) − t

∫

M

GΩn

P +tV(x, y)V(y)h(y) dy.

Since {GΩn

P +tV}n∈N is non-increasing and converges pointwise to GP +tV
as n → ∞, the Monotone Convergence Theorem implies that {gt,n}∞

n=0
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converges pointwise to gt as n → ∞. Let us remark that gt,n is solution of

the following Dirichlet problem in Ωn:
{

(P + tV)u = 0 in Ωn,

u|∂Ωn
= h|∂Ωn

.

Let us consider

un = g1−α
n,t0

gα
n,t2

.

By an easy computation (see the proof of [42, Theorem 3.1] or [28, Lem-

ma 5.1]), un is a supersolution of (P + t1V) in Ωn, i.e. (P + t1V)un > 0,

and un is equal to h on the boundary of Ωn. Therefore, by the Maximum

Principle,

un > gn,t1
,

that is

gn,t1 6 g1−α
n,t0

gα
n,t2

.

Letting n → ∞, one finds (3.3). Let us show that (3.3) implies that gt is

positive for all t > 0. Take 0 < ε < ‖V‖−1
H,h, then

Cεh 6 gε 6 h,

where Cε = 1 − ε‖V‖H,h > 0. By (3.3) with t0 = 0, t1 = ε and t2 = t, one

has

gε 6 h1−ε/tg
ε/t
t ,

therefore

Ct/ε
ε h 6 gt,

which implies that gt is positive. This finishes the proof. �

To conclude this section, we give a simple analytic proof of a result of

Takeda [52] and Chen [15]; it provides conditions under which the strong

subcriticality of V with respect to P is equivalent to the subcriticality of

P + V:

Theorem 3.7. — Let P be subcritical of the form (1.2). Assume that

V is a potential such that V− is a small perturbation of P and V+ is

G−bounded. Then, P+V is subcritical if and only if V is strongly subcritical

with respect to P .

Proof. — The proof relies on the following:

Lemma 3.8. — Let V− be a small perturbation of P and V+ is

G−bounded with respect to P , and assume that L = P + V is subcrit-

ical. Then the Green function GP of P is equivalent to the Green function

GL of L. That is, there is a positive constant C such that, for every x 6= y,

C−1GL(x, y) 6 G(x, y) 6 CGL(x, y).
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Lemma 3.8 follows from [41, Lemma 2.4] and [42, Corollary 3.6]. Let h

be a positive solution of Pu = 0. Since V− is a small perturbation of P , in

particular it is (H,h)-bounded:

sup
x∈M

∫

M

GP (x, y)V−(y)h(y) dy < ∞.

By Lemma 3.8, it follows that

sup
x∈M

∫

M

GL(x, y)V−(y)h)(y) dy < ∞.

According to Lemma 3.5, for ε < ‖V‖−1
H,1, there is g ∼ h (in particular, pos-

itive) solution of (L−εV−)u = 0. By the Allegretto–Piepenbrink Theorem,

it follows that L− εV− is non-negative, i.e. the inequality

ε

∫

M

V−u
2 6 q(u) + V+u

2 − V−u
2, ∀ u ∈ C∞

0 (M),

is satisfied, where q is the quadratic form of P . Equivalently,
∫

M

V−u
2 6 (1 + ε)−1

{

q(u) + V+u
2
}

, ∀ u ∈ C∞
0 (M).

This shows that V− is strongly subcritical. �

4. Heat kernel estimates

In this section, we give consequences of Theorem 3.2 for the heat kernel

of ∆ + V. Recall that we denote by pV
t the heat kernel of ∆ + V. Our main

result in this section is the following:

Theorem 4.1. — Let (M,µ) be a non-parabolic weighted manifold

with heat kernel satisfying (D) and (UE). Let V be a smooth subcrit-

ical potential, such that V− satisfies the condition (K∞, 1) and V+ is

(H,1)−bounded. Then the Gaussian upper-estimate (UEV) for the heat

kernel of ∆ + V holds. If moreover the scaled Poincaré inequalities (P ) are

satisfied, then the full Li-Yau estimates (LYV) hold for the heat kernel of

∆ + V .

Remark 4.2. — In fact, using domination theory, it will be apparent from

the proof that (UEV) holds under the following weaker assumption on V+:

it is enough to assume that V+ > W for some (H,1)−bounded potential

W , such that W − V− is subcritical. In the forthcoming paper [17], (UEV)

is proved with no assumption on V+.
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In the case where (P ) is satisfied, Theorem 4.1 has been proved in [53,

Theorem 2] under the stronger assumptions that V is strongly subcritical

instead of subcritical, and that V− ∈ K∞(M) instead of satisfying condi-

tion (K∞, 1). As we have already mentionned for Theorem 3.2, the result

of Theorem 4.1 holds under much weaker local regularity hypotheses on

V, but we will not pursue this here. Let us also mention that under (P ),

Theorem 4.1 has first been proved in [32, Theorem 10.5] under the assump-

tion that V > 0. Also, the idea that Theorem 4.1 follows from Theorem 3.2

originally comes from [32]; the proof uses a very useful device traditionally

called the Doob transform or h-transform with respect to a positive solu-

tion h of (∆ + V)h = 0, and that allows one to pass from the Schrödinger

operator ∆+V to the weighted Laplacian ∆h2µ. Recall that the h-transform

has been discussed in Section 2.3. In our proof of Theorem 4.1, we will use

the same idea, and indeed, besides weakening the hypotheses on the poten-

tial V, the only new element in our proof of Theorem 4.1 is that one can

treat upper-bounds of the heat kernel only, using the caracterization of the

Gaussian upper-estimates for a (weighted) Laplacian in terms of relative

Faber–Krahn inequalities.

Proof of Theorem 4.1. — Let P = ∆+V (recall that ∆ is a notation for

the weighted Laplacian ∆µ). By Theorem 3.2, there exists h ∼ 1 solution

of Pu = 0. Let us consider the h-transform Ph:

Ph = h−1(∆ + V)h,

which is self-adjoint on L2(Ω, h2 dµ). By (2.14), the operator Ph is nothing

but the weighted Laplacian ∆h2µ. Furthermore, the heat kernel ph
t (x, y) of

Ph on L2(Ω, h2 dµ) is given by

ph
t (x, y) =

pV
t (x, y)

h(x)h(y)
.

Since h ∼ 1, it is thus enough to prove the Gaussian upper-estimates (resp.

the two-sided Gaussian estimates) for ph
t (x, y). Let us start by proving the

upper-bound. Since (D) and (UE) hold, (M,µ) satisfies the relative Faber–

Krahn inequalities (RFK). Since h ∼ 1, it follows that (M,h2µ) also satis-

fies the relative Faber–Krahn inequality (RFK). Therefore, by [30], we con-

clude that the heat kernel of Ph = ∆h2µ has Gaussian upper-estimates. The

case where (M,µ) satisfies the scaled L2 Poincaré inequalities (P ) follows

the same idea: according to the work of Grigoryan and Saloff-Coste (see

e.g. [48, Theorem 5.4.12]), the two-sided Gaussian estimates for ph
t (x, y) are

equivalent to doubling together with the scaled L2 Poincaré inequalities,

both for the measure h2µ. But since h ∼ 1, these are a direct consequence
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of the corresponding inequalities (P ) and (D) for the measure µ. This con-

cludes the proof of Theorem 4.1. �

Upper-estimates for the heat kernel of Schrödinger operators have con-

sequences for the boundedness of the Riesz transform, as we explain now.

Ten years ago, it was discovered by Coulhon and Duong [20] (see also

Sikora [50]) that Gaussian estimates for the heat kernel of the Hodge–De

Rham Laplacian ~∆ = dd⋆ + d⋆d acting on 1−forms have consequences for

the boundedness on Lp, p ∈ (2,∞) of the Riesz transform d∆−1/2. More

precisely, they show that if M satisfies (D) and (UE), and if the heat kernel

of ~∆ acting on 1-forms has Gaussian estimates, then the Riesz transform

d∆−1/2 is bounded on Lp, for all p ∈ (1,∞). The Bochner formula asserts

that ~∆ acting on 1−forms can be written as

~∆ = −∇∗∇ + Ric,

where for every x ∈ M , Ricx is an symmetric endomorphism of the fiber

T ∗
xM , canonically associated with the Ricci curvature. Define a potential

V by the requirement that V(x) is the lowest eigenvalue of Ricx. As a

consequence of the domination theory, for every t > 0 and x, y ∈ M ,

‖e−t~∆(x, y)‖ 6 |e−t(∆+V)(x, y)|.

Therefore, if the heat kernel of ∆ + V has Gaussian estimates, so does the

heat kernel of ~∆. This has been used in [24] to prove that if M satisfies (D)

and (UE), if V− is strongly positive with respect to ∆ and, if for δ > 0

small enough,

(4.1) sup
x∈M

∫ ∞

0

∫

M

1

V (x,
√
t)
e− d2(x,y)

t V−(y) dydt < δ,

then e−t~∆ has Gaussian estimates and the Riesz transform is bounded

on Lp for every p ∈ (1,∞). Notice that (4.1) is closely related (see [10,

Theorem 2.9]) to the validity of

(4.2) sup
x∈M

∫

M

G(x, y)V−(y) dy < ε,

for ε small enough (indeed, if M satisfies the Poincaré inequalities (P ),

then (4.1) for small δ is equivalent to (4.2) for small ε). Under (P ),

Takeda [53, Theorem 2] proves a far better result: in order that e−t~∆ has

Gaussian estimates, it is enough that V is strongly positive, V− is in the

Kato class at infinity K∞(M), and V+ is (H,1)-bounded. That is, the

smallness of V in an integral sense is required only at infinity, and not
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globally as in (4.1) or (4.2). As a consequence of Theorem 4.1, we can get

rid of the extra hypothesis (P ):

Corollary 4.3. — Let M be a non-parabolic Riemannian manifold,

endowed with its Riemannian measure, satisfying (D) and (UE). Let V(x)

be the lowest eigenvalue of Ricx; assume that V is subcritical, that V−
satisfies the condition (K∞, 1), and that V+ is (H,1)-bounded. Then the

Riesz transform on M is bounded on Lp for every p ∈ (1,∞).

Remark 4.4. — The hypothesis that is needed for V+ comes from the fact

that in order to apply Theorem 4.1, one needs V+ to be (H,1)-bounded.

However, as one should expect, it is not necessary; this is proved in the

forthcoming paper [17].

Corollary 4.3 greatly improves on [24, Corollary 3.1]. In light of [27,

Theorem 4], it is natural to make the following conjecture:

Conjecture 4.5. — Let M be a non-parabolic Riemannian manifold,

endowed with its Riemannian measure satisfying (D) and (UE) such that
~∆ is strongly positive, and |Ric−| satisfies (K∞, 1). Then the heat kernel

of the Hodge Laplacian has Gaussian estimates, and the Riesz transform

is bounded on Lp for every p ∈ (1,∞).

Remark 4.6. — As this article was being written, Conjecture 4.5 has

been proved in the forthcoming work [17].

5. A criterion for p-non-parabolicity

As we have already mentioned in the Preliminaries, the p-non-parabol-

icity of a manifold is tightly related to its volume growth. The aim of this

section is to prove the following characterization of p-non-parabolicity in

terms of volume growth:

Theorem 5.1. — Let M be a manifold satisfying (UE) and (D), and

let p0 ∈ (2,∞]. The following are equivalent:

(1) For all p ∈ (1, p0), M is p-non-parabolic.

(2) For all p ∈ (1, p0), and for some (all) point x0 ∈ M , there is a

constant C = C(x0, p) such that for all t > 1,

V (x0, t) > Ctp.

Remark 5.2. — Notice that in contrast to [36] or [21, Proposition 3.4],

no global Poincaré-type inequality is required. Furthermore, the volume
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growth condition is particularly simple. The drawback is that the above

equivalence may not hold at the boundary of the interval, i.e. for p0 itself.

However, in all the examples known by the author, the set of p’s such that

M is p-non-parabolic is an open set, so it does not seem to be too serious

a restriction.

Corollary 5.3. — Let M be a manifold satisfying (UE) and (D),

and (Ploc), and assume that κ, the parabolic dimension of M , satisfies

κ > 2. Then κ is the supremum of p’s having the following property: for

some (all) x0 in M , there is a constant C = C(p, x0) such that, for all t > 1,

V (x0, t) > C(p, x0)tp.

Before proving Theorem 5.1, we need some preliminary results. For p ∈
(1,∞), let us introduce the following volume condition: for some (all) x ∈
M ,

(Ṽp)

∫ ∞

1

dt

V (x, t)1/p
< ∞.

Lemma 5.4. — Assume that (Ṽp) holds. Then, ∆−1/2 : Lp → L
p
loc is

bounded.

Proof. — Let us start by some preliminary observations. Write

∆−1/2 =

∫ 1

0

e−t∆ dt√
t

+

∫ ∞

1

e−t∆ dt√
t

= R+ S.

Using the fact that e−t∆ is a contraction semi-group on Lp, p ∈ [1,∞], we

see that R is bounded on Lp, p ∈ [1,∞]. Hence, ∆−1/2 : Lp → L
p
loc if and

only if S : Lp → L
p
loc. We are going to see that S is in fact bounded from

Lp to L∞
loc. Introduce the notation: for x ∈ M , and a continuous function

f : M → R, we denote

|f |L∞(x) := |f(x)|.
Thus, ‖S‖Lp→L∞(x) 6 C means that for every function f in Lp,

|Sf(x)| 6 C‖f‖p.

We estimate

‖S‖Lp,L∞(x) 6

∫ ∞

1

‖e−t∆‖Lp,L∞(x)
dt√
t
.

From the Gaussian estimate satisfied by e−t∆,

‖e−t∆‖Lp,L∞(x) 6
C

V (x,
√
t)1/p
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(this follows by interpolation from the obvious cases p = 1,∞). Therefore,

‖S‖Lp,L∞(x) 6 C

∫ ∞

1

dt√
tV (x,

√
t)1/p

= C

∫ ∞

1

dt

V (x, t)1/p
.

By hypothesis, the integral
∫∞

1
dt

V (x,t)1/p converges for some (all) x ∈ M . It

is easy to see that the convergence is uniform with respect to x, if x belongs

to a fixed compact set. Consequently, S : Lp → L∞
loc, and therefore

∆−1/2 : Lp → L
p
loc.

�

There is also a link between p-non-parabolicity and the fact that ∆−1/2 is

bounded from Lp to Lp
loc. Indeed, let us recall the following result from [27,

Proposition 2.2]:

Proposition 5.5. — Let p ∈ (1,∞) such that M is p-non-parabolic.

Assume that the Riesz transform d∆−1/2 is bounded on Lp. Then

∆−1/2 : Lp → L
p
loc

is a bounded operator. Conversely, if the Riesz transform is bounded on

Lp′

, 1
p + 1

p′
= 1, and if

∆−1/2 : Lp → L
p
loc

is a bounded operator, then M is p-non-parabolic.

Proof of Theorem 5.1. — Consider the following four assertions:

(i) For all p ∈ (1, p0), M is p-non-parabolic.

(ii) For all p ∈ (1, p0), (Vp) is satisfied.

(iii) For all p ∈ (1, p0), (Ṽp) is satisfied.

(iv) For all p ∈ (1, p0), ∆−1/2 : Lp → L
p
loc.

We are going to show the chain of implications

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i),

and that (2) is equivalent to (iii), which will prove the theorem. First,

by [21, Corollary 3.2], (i) implies (ii).

Let us assume (ii), and let p ∈ (1, p0). By Hölder’s inequality,

∫ ∞

1

dt

V (x, t)1/p
6

(

∫ ∞

1

(

t

V (x, t)

)

q
p(q−1)

)

q−1
q (

∫ ∞

1

t−
q
p dt

)
1
q

.

If p < q < p0, then the second integral converges. For the first one, define

r by
q

p(q − 1)
=

1

r − 1
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If q is close enough to p, then p < r < p0. By (ii), (Vr) is satisfied, that is

∫ ∞

1

(

t

V (x, t)

)
1

r−1

du < ∞.

Therefore, the integral
∫∞

1
dt

V (x,t)1/p converges. This shows (ii) ⇒ (iii).

The implication (iii) ⇒ (iv) is the result of Lemma 5.4.

Assume (iv). Since M satisfies (UE) and (D), by [19] the Riesz transform

d∆−1/2 is bounded on Ls, s ∈ (1, 2]. Hence, by Proposition 5.5, M is p-

non-parabolic for all p ∈ (2, p0). This shows (iv) ⇒ (i).

It remains to show that (2) is equivalent to (iii). Obviously, (2) im-

plies (iii). The converse is elementary, and has been proved in [14]. For

the sake of completeness, we reproduce the argument here. Let us assume

that (Ṽp) holds. Let us denote f(t) = V (x0, t)
−1/p, then f is non-negative,

non-increasing and integrable over (1,∞). It follows that for every t > 1,

(t− 1)f(t) 6

∫ t

1

f(u) du 6

∫ ∞

1

f(u) du = C < ∞.

Therefore,

f(t) 6 C(t− 1)−1,

which implies that for every t > 2,

V (x0, t) > Cpt
p.

This shows that (iii) implies (2), and concludes the proof of the

theorem. �

In fact, using the same ideas as in the proof of Theorem 5.1, one can also

treat relative volume estimates:

Theorem 5.6. — Let M satisfying (D) and (UE). Let p0 ∈ (2,∞],

r0 > 0 and x0 ∈ M . Consider the following two inequalities, where Cp is a

positive constant:

(1) for all p ∈ (1, p0),

Capp(B(x, r)) > Cp
V (x, r)

rp
.

(2) for all p ∈ (1, p0),

V (x, t)

V (x, r)
> Cp

(

t

r

)p

, ∀ t > r.

Then (1) and (2), for all r > r0 and x = x0, are equivalent.

Remark 5.7. — One can also show the equivalence of (1) and (2) in

Theorem 5.6 under one of the following alternative conditions on x and r:
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• For all x ∈ M , and r = r0.

• For all x ∈ M and all r > r0.

The proof is the same.

Remark 5.8. — The result of Theorem 5.6 shows that in [11, Theorem A],

the second part does not improve on the first one.

Definition 5.9. — Let p ∈ (1,∞). A manifold M such that, for some

positive constant Cp, for all x ∈ M and all r > 1,

Capp(B(x, r)) > Cp
V (x, r)

rp
,

will be called p-regular. Recall the parabolic dimension κ. We will call M

parabolic regular if, for every p < κ, M is p-regular.

Proof. — Let us introduce a third inequality:

(3)
∫ ∞

r

(

V (x, r)

V (x, t)

)1/p

dt 6 Cp r.

We show the equivalence of (1), (2) and (3) under the condition (b), the

two other cases being similar. We first show that (1) and (3) are equivalent.

According to [21], the p-capacity of B̄(x0, r) can be estimated by

Capp(B̄(x0, r)) 6

(

∫ ∞

r

(

t

V (x0, t)

)
1

p−1

dt

)1−p

.

Assume that (1) holds true for all 1 < p < p0 and all r > 1, at the point

x = x0. One obtains that for all r > 1,

∫ ∞

r

(

tV (x0, r)

rpV (x0, t)

)
1

p−1

dt 6 C1−p
p .

The argument based on Hölder’s inequality and used in the proof of The-

orem 5.1 (see the implication (2) ⇒ (3)) shows that for every p ∈ (1, p0),

(3) is satisfied for all r > r0, at the point x0.

Conversely, assume that (3) is satisfied for all r > r0, at the point x0. As

in the proof of Proposition 5.4, let us introduce the operators:

Rr =

∫ r2

0

e−t∆ dt√
t
,

and

Sr =

∫ ∞

r2

e−t∆ dt√
t
,
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so that

∆−1/2 = Rr + Sr.

Using the uniform boundedness of e−t∆ on Lp, we see that

‖Rr‖p,p 6 Cr.

We want to estimate ‖Sr‖Lp→Lp(B(x0,r)). The computations done in the

proof of Proposition 5.4 show that

‖Sr‖Lp→L∞(x) 6 C

∫ ∞

r

dt

V (x, t)1/p
.

Using (D), we see that for every x ∈ B(x0, r),

‖Sr‖Lp→L∞(x) 6
C

V (x0, r)1/p

∫ ∞

r

(

V (x0, r)

V (x, t)

)1/p

dt

6
C

V (x0, r)1/p

∫ ∞

r

(

V (x0, r)

V (x0, t)

)1/p

dt.

Thus,

‖Sr‖Lp→Lp(B(x0,r)) 6 V (x0, r)
1/p‖Sr‖Lp→L∞(B(x0,r))

6

∫ ∞

r

(

V (x0, r)

V (x0, t)

)1/p

dt,

and by (3) one obtains

‖Sr‖Lp→Lp(B(x0,r)) 6 Cr.

Consequently,

‖∆−1/2‖Lp→Lp(B(x0,r)) 6 Cr.

We now recall an argument from [27, Proposition 2.2] (we refer to this

paper for more details): from the above inequality, one can conclude that

‖u‖Lp(B(x0,r)) 6 Cr‖∆1/2u‖p, ∀ u ∈ C∞
0 (M).

Since M satisfies (UE) and (D), by [19] the Riesz transform d∆−1/2 is

bounded on Ls, s ∈ (1, 2]. In particular, it is bounded on Lp′

, 1
p + 1

p′
= 1.

But it is well-known (see [20, Proposition 2.2]) that the boundedness of the

Riesz transform on Lp′

, implies the inequality

‖∆1/2u‖p 6 C‖∇u‖p, ∀ u ∈ C∞
0 (M).

Thus,

‖u‖Lp(B(x0,r)) 6 Cr‖∇u‖p, ∀ u ∈ C∞
0 (M).
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Using this inequality for a sequence (un)n∈N of C∞
0 functions, such that

un > 1 on B(x0, r) and

lim
n→∞

∫

M

|∇un|p = Capp(B̄(x0, r)),

one finds that

V (x0, r)
1/p 6 Cr

(

Capp(B(x0, r))
)1/p

,

that is (1). This concludes the proof of the equivalence between (1) and (3).

We now prove the equivalence between (2) and (3). Of course, (2) im-

plies (3). The converse uses the same idea as in the proof of Theorem 5.1:

for r > r0, denote fr(t) =
(

V (x0,r)
V (x0,t)

)1/p

, then fr is non-negative, non-

increasing, so that by (2),

(t− r)fr(t) 6

∫ t

r

fr(s) ds 6

∫ ∞

r

fr(s) ds 6 Cr.

Therefore,

fr(t) 6 Cr(t− r)−1, ∀ t > r,

that is,
(

V (x0, r)

V (x0, t)

)

> Cp

(

t− r

r

)p

, ∀ t > r,

which by (D) implies (2). �

6. Weighted spaces

In general, a manifold M for which (D) and (UE) hold, do not need to

satisfy the Sobolev inequality (Sν), nor the non-collapsing of balls (NC).

In particular, in general the operators ∆−α do not behave well on the Lp

spaces. In order to overcome these difficulties, weighted spaces have to be

considered. Weighted estimates on the Lp spaces for the heat kernel have

recently been considered in [8] (see also [3]), and their equivalence with

weighted resolvent estimates on Lp spaces has been demonstrated. Here,

we will push this idea one step further, and introduce a natural class of

weighted Lp spaces. For p ∈ [1,∞], define

L
p
V (M) := Lp

(

M,
dµ(x)

V (x, 1)

)

.

Notice that L∞
V (M) = L∞(M). Note also that by Bishop–Gromov, if the

Ricci curvature of M is bounded from below, and M satisfies the non-

collapsing (NC), then V (x, 1) ∼ 1 and Lp
V (M) identifies to Lp(M). Let us

recall the following result from [3] or [8]:
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Proposition 6.1. — Let 1 6 p 6 q 6 ∞. Let δ and γ be real numbers

so that δ + γ = 1
p − 1

q . Let P be a non-negative, self-adjoint operator on

L2(M,µ), such that the Gaussian estimates hold for its heat kernel. Then

sup
t>0

‖V ( · ,
√
t)γe−tPV ( · ,

√
t)δ‖p,q < ∞.

We will need a similar estimate for the gradient of the heat kernel:

Proposition 6.2. — Assume (D) and (UE), and that for some q ∈
(1,∞),

sup
t>0

√
t‖∇e−t∆‖q,q < ∞.

Then for every 1 6 p < q, and δ, γ real numbers so that δ + γ = 1
p − 1

q ,

sup
t>0

√
t‖V ( · ,

√
t)γ∇e−t∆V ( · ,

√
t)δ‖p,q < ∞.

Remark 6.3. — By analyticity on Lp of the heat semi-group of ∆, if the

Riesz transform is bounded on Lq, then the gradient estimate

sup
t>0

√
t‖∇e−t∆‖q,q < ∞

holds. Conversely, it is shown in [5] that if the above gradient estimate

holds, and M satisfies (D) and (P ), then the Riesz transform is bounded

on Lp, for all p ∈ (1, q).

Proof. — Denote V√
t(x) := V (x,

√
t). Writing ∇e−t∆ = ∇e− t

2 ∆e− t
2 ∆

and using Proposition 6.1 and (D), it is easy to see that the result holds

true if γ = 0. In order to prove the result for all γ, we will use some ideas

from [8]. By complex interpolation for the family of operators

Tz = V ( · ,
√
t)γ1z+(1−z)γ2∇e−t∆V ( · ,

√
t)δ1z+(1−z)δ2 ,

and using supt>0

√
t‖∇e−t∆‖q,q < ∞, it is enough to prove the result for

p = 2. Therefore, let us take δ, γ real numbers so that δ+γ = 1
2 − 1

q . Define

Φ = Fa to be the Fourier transform of t 7→ (1 − t2)a
+. It can be checked

(see the proof of Proposition 4.1.6. in [8]) that the following transmutation

formula holds:

e−t∆ =

∫ ∞

0

Fa(
√
st∆)sa+ 1

2 e−s/4 ds.

Therefore, using (Dν,ν′),

√
t
∥

∥

∥
V

γ√
t
∇e−t∆V δ√

t

∥

∥

∥

2,q

6

∫ ∞

0

√
st
∥

∥

∥
V

γ√
st

∇Fa(
√
st∆)V δ√

st

∥

∥

∥

2,q

(√
s+

1√
s

)ν(|γ|+|δ|)
sae−s/4 ds.
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Hence, if a is big enough,

sup
t>0

√
t
∥

∥

∥
V

γ√
t
∇e−t∆V δ√

t

∥

∥

∥

2,q
6 sup

t>0

√
t
∥

∥

∥
V

γ√
t
∇Fa(

√
t∆)V δ√

t

∥

∥

∥

2,q
.

Setting Tr = ∇Fa(r
√

∆), it follows from the finite propagation speed prop-

erty for the wave equation that if f1 has support in B1, f2 has support

with B2 and d(B1, B2) > r, then 〈Trf1, f2〉 = 0. By [8, Proposition 4.1.1.],

‖V γ
r TrV

δ
r ‖2,q 6 C

∥

∥

∥

∥

TrV
1
2 − 1

q
r

∥

∥

∥

∥

2,q

.

By a straightforward adaptation of [8, Lemma 4.1.4.], if

sup
λ

|(1 + λ2)N+1Φ(λ)| < ∞,

then
∥

∥

∥

∥

∇Φ(
√
t∆)V

1
2 − 1

q√
t

∥

∥

∥

∥

2,q

6 C

∥

∥

∥

∥

∇(I + t∆)−NV
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

.

One easily checks that the condition supλ |(1+λ2)N+1Φ(λ)| < ∞ is satisfied

for Φ = Fa if 2N + 1 6 a. Therefore, if a is large enough and a > 2N + 1,

sup
t>0

√
t
∥

∥

∥
V

γ√
t
∇e−t∆V δ√

t

∥

∥

∥

2,q
6 C sup

t>0

√
t

∥

∥

∥

∥

∇(I + t∆)−NV
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

.

We now use

(I + t∆)−N =
1

Γ(N)

∫ ∞

0

e−ssN−1e−st∆ ds,

so that, using (Dν,ν′),

sup
t>0

√
t

∥

∥

∥

∥

∇(I + t∆)−NV
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

6 C

∫ ∞

0

e−ssN− 3
2

(√
s+

1√
s

)ν(|δ|+|γ|) √
st

∥

∥

∥

∥

∇e−st∆V
1
2 − 1

q√
st

∥

∥

∥

∥

2,q

ds.

Hence, if N is big enough,

sup
t>0

√
t

∥

∥

∥

∥

∇(I + t∆)−NV
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

6 C sup
t>0

√
t

∥

∥

∥

∥

∇e−t∆V
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

.

Consequently, if one chooses N and a big enough satisfying a > 2N + 1,

one obtains

sup
t>0

√
t
∥

∥

∥
V

γ√
t
∇e−t∆V δ√

t

∥

∥

∥

2,q
6 sup

t>0

√
t

∥

∥

∥

∥

∇e−t∆V
1
2 − 1

q√
t

∥

∥

∥

∥

2,q

.

This last quantity is finite by the remark we made at beginning of the

proof, and this concludes the proof of Proposition 6.2. �
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We now rephrase Proposition 6.1 and Proposition 6.2 in term of action of

the heat kernel on the weighted spaces Lp
V . Let P = ∆+V be a Schrödinger

operator. Using (Dν,ν′), we see that if the heat kernel of P has Gaussian

estimates, then
∥

∥

∥
V ( · ,

√
t)−1/qe−tPV ( · ,

√
t)1/p

∥

∥

∥

p,q

=

∥

∥

∥

∥

∥

(

V ( · ,
√
t)

V ( · , 1)

)−1/q

V ( · , 1)−1/qe−tPV ( · , 1)1/p

(

V ( · ,
√
t)

V ( · , 1)

)1/p
∥

∥

∥

∥

∥

p,q

> C (ϕp,q(t))
−1 ‖e−tP ‖Lp

V
,Lq

V
,

where

ϕp,q(t) =

{

t−
ν′

2p + ν
2q , t > 1

t−
ν

2p + ν′

2q , t 6 1

Thus, one can rephrase Proposition 6.1 in the following way:

Corollary 6.4. — Assume (D) and let P = ∆ + V be a Schrödinger

operator whose heat kernel have Gaussian estimates. Let 1 6 p 6 q 6 ∞,

then for every t > 0,

‖e−tP ‖Lp
V

,Lq
V
. ϕp,q(t).

Concerning Proposition 6.2, one has the following:

Corollary 6.5. — Assume (D) and (UE), and that for some q ∈
(1,∞),

sup
t>0

√
t‖∇e−t∆‖q,q < ∞.

Then for every 1 6 p 6 q,
√
t‖∇e−t∆‖Lp

V
,Lq

V
. ϕp,q(t).

In Section 7, we will need the following slight generalization of a pertur-

bation result by T. Coulhon and N. Dungey [18, Theorem 2.1]:

Proposition 6.6. — LetM satisfying (D) and (UE). LetH=−divA∇,

A symmetric, and a = A − Id, and assume that for some q ∈ [1,∞),

a ∈ L
q
V ∩L∞. Let p0 > 2 such that ∇∆−1/2 and ∇(I+H)−1/2 are bounded

on Lp for every p ∈ (2, p0), and such that ∇H−1/2 is bounded on Lp, for

p ∈ (p′
0, 2). Then ∇H−1/2 is bounded on Lp for every p ∈ (2, p0).

T. Coulhon and N. Dungey show this result under the stronger assump-

tions that a ∈ Lq ∩ L∞ and that for every t > 1, ‖e−t∆‖1,∞ 6 Ct−D/2.

Such an ultracontractivity estimate for e−t∆ is known to be equivalent to

a Nash inequality at infinity ([22]), however in this paper, we want to work
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in greater generality and avoid this type of hypothesis. Therefore, we have

to work with the weighted spaces Lp
V .

Proof. — The only part of the proof of [18, Theorem 2.1] where the

ultracontractivity estimate ‖e−t∆‖1,∞ 6 Ct−D/2 and the hypothesis a ∈ Lq

are used, is to show that for p ∈ (2, p0), there is ε > 0 such that

‖a∇(I + t∆)−1‖p,p 6 Ct−
1
2 −ε, ∀ t > 0.

Let us show how to prove a similar estimate in our context, which allows

us to make Coulhon and Dungey’s proof work. Write

(I + t∆)−1 =

∫ ∞

0

e−se−st∆ ds,

so that

‖a∇(I + t∆)−1‖p,p 6

∫ ∞

0

e−s‖a∇e−st∆‖p,p ds.

Using Hölder’s inequality,

‖a∇e−st∆‖p,p 6 ‖aV ( · , 1)−1/q‖q‖V ( · , 1)1/q∇e−st∆‖p,r,

where r is defined by 1
p = 1

q + 1
r . Notice that

‖aV ( · , 1)−1/q‖q = ‖a‖Lq
V
< ∞.

Since a ∈ L
q
V ∩L∞, by interpolation we can assume that q is large enough

so that 2 < r < p0. Then, the Riesz transform ∇∆−1/2 is bounded on Lr,

and by a classical argument involving analyticity of the heat semi-group

e−t∆ on Lp,

sup
t>0

√
t‖∇e−t∆‖r,r < ∞.

By (Dν,ν′) and Proposition 6.2,

‖V ( · , 1)1/q∇e−st∆‖p,r =

∥

∥

∥

∥

∥

(

V ( · ,
√
st)

V ( · , 1)

)−1/q

V ( · ,
√
st)1/q∇e−st∆

∥

∥

∥

∥

∥

p,r

6 C(st)− ν′

2q − 1
2 + C(st)− ν

2q − 1
2

6 C(st)− 1
2 −ε1 + C(st)− 1

2 −ε2 ,

where ε1 = ν′

2q , ε2 = ν
2q . Therefore, if q is big enough so that ε1 < 1

2 ,

ε2 <
1
2 ,

‖a∇(I + t∆)−1‖p,p 6 C(t−
1
2 −ε), ∀ t > 0,

with ε = min(ε1, ε2). With this at hand, the proof of Proposition 6.6 follows

the lines of the proof of [18, Theorem 2.1]. �
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Let us conclude this section by presenting a sufficient condition for a po-

tential to belong to the Kato class at infinity, which generalizes Example 2.2

to manifolds that do not satisfy (Sν):

Proposition 6.7. — Let M satisfying (D) and (UE), and let V ∈
L

ν′

2 −ε

V ∩ L
ν
2 +ε

V , for some ε > 0. Then V ∈ K∞(M), and there is q ∈ [1,∞)

such that ∆−1|V| ∈ L
q
V .

Proof. — Let us show that for some constant C independent of V,

(6.1) ‖∆−1|V‖|∞ 6 C

(

‖V‖
L

ν′

2
−ε

V

+ ‖V‖
L

ν
2

+ε

V

)

.

Write

∆−1 =

∫ ∞

0

e−t∆ dt,

so that

‖∆−1|V‖|∞ 6

∫ ∞

0

‖e−t∆|V‖|∞ dt.

Using Corollary 6.4 with P = ∆, we get

‖∆−1|V‖|∞ 6

(
∫ 1

0

t−
ν

ν+2ε dt

)

‖V‖
L

ν
2

+ε

V

+

(
∫ ∞

1

t
− ν′

ν′
−2ε dt

)

‖V‖
L

ν′

2
−ε

V

6 C

(

‖V‖
L

ν′

2
−ε

V

+ ‖V‖
L

ν
2

+ε

V

)

,

which shows (6.1). For k > 0, let Vk = Vχk. Then

lim
k→∞

(

‖Vk‖
L

ν′

2
−ε

V

+ ‖Vk‖
L

ν
2

+ε

V

)

= 0,

which implies, by (6.1) applied to Vk,

lim
k→∞

sup
x∈M

∫

Ω∗

k

G(x, y)|V(y)| dy = 0,

i.e. V ∈ K∞(M). Let us now check that ∆−1V ∈ L
q
V for some q < ∞. We

use again Corollary 6.4, to get

‖∆−1|V|‖Lq
V
6

(
∫ 1

0

t−
ν

ν+2ε + ν
2q dt

)

‖V‖
L

ν
2

+ε

V

+

(
∫ ∞

1

t
− ν′

ν′
−2ε

+ ν′

2q dt

)

‖V‖
L

ν′

2
−ε

V

.

Consequently, if q is big enough so that

− ν′

ν′ − 2ε
+
ν′

2q
< −1,
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then ‖∆−1|V‖|Lq
V
< ∞. �

7. Riesz transform with potential

From now on, µ is assumed to be the Riemannian measure on M .

In this section, we will obtain boundedness and unboundedness results for

the Riesz transform with potential d(∆+V)−1/2. Let us start by introducing

a local class of potentials: we say that V satisfies condition (Lp) if there is

a constant C such that for every x ∈ M ,

(Lp) ‖V‖Lp(B(x,1)) . V (x, 1)1/p′

,

where 1
p + 1

p′
= 1. If M has Ricci curvature bounded from below and (NC)

holds, then the condition (Lp) for p = ∞, is equivalent to V ∈ L∞. Let

us now state our main technical result, from which will be derived various

consequences:

Theorem 7.1. — Let M be a 2-non-parabolic manifold, satisfying (D)

and (UE). Assume that for some p0 > 2, the Riesz transform d∆−1/2

on M is bounded on Lp, for all p ∈ (1, p0). Recall the exponents ν, ν′

from (Dν,ν′). Let V be a subcritical potential, and consider the following

two assumptions:

(1) p0 6 ν, ν′ > 2, the Ricci curvature on M is bounded from below,

and V ∈ L
ν′

2 −ε
(

M,
dµ(x)
V (x,1)

)

∩ L
ν
2 +ε

(

M,
dµ(x)
V (x,1)

)

satisfies (Lp) for

some p > N , N > 2 being the topological dimension of M .

(2) p0 > ν, and V ∈ Lq1

(

M,
dµ(x)
V (x,1)

)

∩ Lq2

(

M,
dµ(x)
V (x,1)

)

, where

q1 =
ν′

2
− ε, q2 = max

(

p0

2
,

νp0

p0 + ν′ + ε

)

.

Assume that either (1) or (2) is satisfied. Let h ∼ 1 be the solution of

(∆ + V)u = 0, provided by Theorem 3.2. Then the operator

d(∆ + V)−1/2 − (d log h)(∆ + V)−1/2

is bounded on Lp, for every p ∈ [2, p0). Equivalently, for every p ∈ [2, p0),

the following inequality holds:

(7.1) ‖du− u(d log h)‖p 6 C‖(∆ + V)1/2u‖p, ∀ u ∈ C∞
0 (M).

One of the main features of Theorem 7.1 is to provide an alternative

inequality (7.1) in the case the Riesz transform d(∆+V)−1/2 is unbounded

on Lp. In turns, as we shall see, the validity of the inequality (7.1) gives
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a necessary condition (the p−non-parabolicity of M) for the boundedness

of d(∆ + V)−1/2 on Lp, which will turn out to be sufficient under further

assumptions on V.

Corollary 7.2. — Under the assumptions of Theorem 7.1 and if V 6≡
0, a necessary condition for d(∆ + V)−1/2 to bounded on Lp, for some

p ∈ (2, p0) is that M is p-non-parabolic.

Remark 7.3. — In [14, Theorem 6.1], a related result to Corollary 7.2 is

proved: more precisely, the authors prove that if V > 0 and there exists

a positive, bounded function h such that (∆ + V)h = 0, then a necessary

condition for d(∆ + V)−1/2 to be bounded on Lp is that p 6 ν. Notice that

unlike our result, the existence of h > 0 bounded, solution of (∆ + V)h = 0

is assumed, and moreover the necessary condition is p > ν, instead of

M being p-non-parabolic. Thus, even in the case of a smooth, compactly

supported non-negative potential V in R
n, it is not possible from their result

to conclude that d(∆+V)−1/2 cannot be bounded on Ln. Notice also that in

some cases, our Corollary 7.2 yields a much sharper condition than p > ν:

indeed, there are examples for which κ, the parabolic dimension, is strictly

less than ν. For instance, consider the Taub-NUT metric g on R
4 (see [37]):

it is a complete metric with zero Ricci curvature such that

V (x, r) ∼ r3, ∀ x ∈ R
4, ∀ r > 1.

In fact, at infinity the metric is asymptotic to the product metric on R
3 ×

S1. Thus, (R4, g) has parabolic dimension κ equals to 3, and by Bakry’s

celebrated result [7], the Riesz transform on (R4, g) is bounded on Lp for

all p ∈ (1,∞). Thus, our Corollary 7.2 applies, and gives the necessary

condition p < 3, for the boundedness of d(∆ + V)−1/2. On the other hand,

looking at balls of small radius in (Dν,ν′), one sees that 4 6 ν, and in fact

4 = ν by Bishop–Gromov. Thus, the necessary condition provided by [14,

Theorem 6.1] is only p 6 4.

Notice also that while the proof of [14] is local, and the idea consists

in using the function h to contradict a local Lp Morrey inequality. This

argument goes back to [18], where it was used to prove that the Riesz

transform is unbounded on Lp for p > n, on the connected sum of Euclidean

spaces. On the contrary, our argument is different, and is of global nature,

which allows us to get the optimal result.

As a consequence of Theorem 7.1, one can give a quick proof of the

following result, which can also be obtained (except the borderline case

p = n) as a combination of [2] and [14], with different arguments:
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Corollary 7.4. — Let M be a manifold satisfying the Sobolev in-

equality (Sν) for some ν > 2, and having Euclidean volume growth:

V (x, r) ∼ rν ,

for all x ∈ M and r > 0. Let V ∈ L
ν
2 +ε∩L ν

2 −ε, ε > 0 be subcritical. Assume

that the Riesz transform d∆−1/2 is bounded on Lp, p ∈ (1, (1 + δ)ν + ε),

δ > 0. Then d(∆ + V)−1/2 is bounded on Lp if and only if p ∈ (1, ν).

Remark 7.5. — From Corollary 7.4, one recovers the first half of a result

by C. Guillarmou and A. Hassell [34, Theorem 1.5], which states that if M

is an asymptotically conic manifold of dimension ν > 3, and V = O(r−3),

then d(∆ + V)−1/2 is bounded on Lp if and only if p ∈ (1, ν). In particu-

lar, we obtain an elementary (i.e. without using the b−calculus) proof of

Guillarmou and Hassell’s result, which is also of perturbative nature.

In [3, Theorem 3.9], a boundedness result for the Riesz transform is

proved. Actually, looking closely at the proof and using our Proposition 6.7,

together with Theorems 4.1 and 5.1, one can improve it and show:

Theorem 7.6. — Let M satisfying (D), (UE) and (Ploc). Let κ the

parabolic dimension of M , and assume that κ > 2. Assume also that the

Riesz transform on M is bounded on Lp, for all p ∈ (1, p0). Let V ∈
L

ν′

2 −ε
(

M,
dµ(x)
V (x,1)

)

∩L ν
2 +ε

(

M,
dµ(x)
V (x,1)

)

be subcritical such that for all p < κ,

close enough to κ,
∫ ∞

1

∥

∥

∥

∥

|V|1/2

V ( · , t)1/p

∥

∥

∥

∥

p

dt < ∞.

Then, d(∆ + V)−1/2 is bounded on Lp, for every p ∈ (1,min(κ, p0)).

Remark 7.7.

(1) Actually, as follows from Theorem 5.1, p 6 κ is necessary for having

∫ ∞

1

∥

∥

∥

∥

|V|1/2

V ( · , t)1/p

∥

∥

∥

∥

p

dt < ∞.

(2) Assume that M satisfies (Ploc). If V ∈ L∞ is subcritical with com-

pact support, by Theorem 5.1 one has, for all p ∈ (1, κ),

∫ ∞

1

∥

∥

∥

∥

|V|1/2

V ( · , t)1/p

∥

∥

∥

∥

p

dt < ∞.

Therefore, d(∆+V)−1/2 is bounded on Lp for all p ∈ (1,min(κ, p0)).

This shows that Corollary 7.2 is optimal.
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One can in fact complement Theorem 7.6, and extend Corollary 7.4 to

more general manifolds; in the next theorem, which is one of the main

results of this article, we prove a sharp boundedness result for the Riesz

transform with potential:

Theorem 7.8. — Let M satisfying (D), (UE) and (Ploc). Recall the

exponents ν, ν′ from (Dν,ν′). Let κ be the parabolic dimension ofM , assume

that κ > 2 and that M is κ-parabolic. Assume also that M is p-regular,

for all p < κ, close enough to κ. Assume that the Riesz transform on

M is bounded on Lp0 for some p0 > ν. Let V ∈ L
ν′

2 −ε
(

M,
dµ(x)
V (x,1)

)

∩
L

ν
2 +ε

(

M,
dµ(x)
V (x,1)

)

be subcritical. Then d(∆ + V)−1/2 is bounded on Lp if

and only if p ∈ (1, κ).

Remark 7.9. — The fact that p < κ is sufficient for the boundedness on

Lp of d(∆ + V)−1/2 follows from Theorem 7.6, together with our Theo-

rems 4.1 and Theorems 5.1. Therefore, in a sense it is a consequence of the

results of [3]. The converse, however, is the main point of our result, and is

entirely new.

The rest of this subsection is devoted to the proof of Theorem 7.1, Corol-

laries 7.2 and 7.4, and Theorem 7.8. One of the main technical ingredients

in the proof of Theorem 7.1 is a perturbation result by Coulhon and Dungey

([18, Theorem 4.1]).

Proof. — Let P = ∆ + V, and D be the first-order differential operator:

Du = d(h−1u),

where h ∼ 1 is the positive solution of Pu = 0 given by Theorem 3.2.

Consider the operator Th which is multiplication by h, and the h-transform

Ph = T−1
h PTh. By (2.14), Ph is the weighted Laplacian ∆h2 , self-adjoint

on L2(M,h2µ) ≃ L2(M, dµ). It is clear by spectral theory that

P
−1/2
h = T−1

h P−1/2Th.

Notice also that

T−1
h DTh = h−1d.

Consequently,

T−1
h DP−1/2Th = h−1d∆

−1/2
h2 .

Notice that Th is an isometry from Lp(M,dµ) to Lp(M,hpdµ). Given that

h ∼ 1, there is a natural identification Lp(M,hpdx) ≃ Lp(M,dx), and so

DP−1/2 is bounded on Lp(M,dx) if and only if d∆
−1/2
h2 is bounded on

Lp(M, dx). We claim that
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Lemma 7.10. — The operator d∆
−1/2
h2 is bounded on Lp, for every p ∈

[2, p0).

The proof of this claim relies on the above-mentioned perturbation result

of Coulhon and Dungey [18, Theorem 4.1], and is postponed. Assuming

the result of Lemma 7.10 for the moment, we obtain that D(∆ + V)−1/2 is

bounded on Lp, p ∈ (2, p0). But

D(∆ + V)−1/2 = d(h−1)(∆ + V)−1/2 + h−1d(∆ + V)−1/2,

hence the operator

d(∆ + V)−1/2 − (d log h)(∆ + V)−1/2

is bounded on Lp, p ∈ (2, p0). It remains to prove the inequality (7.1). Let

v ∈ C∞
0 (M). By the above, one has for every u ∈ Lp,

(7.2) ‖d(∆ + V)−1/2u− (d log h)(∆ + V)−1/2u‖p 6 C‖u‖p.

We want to apply inequality (7.2) with the choice u = (∆+V)1/2v. In order

for this to be licit, one has to prove that (∆ + V)1/2C∞
0 ⊂ Lp. Conjugating

by h, one sees that this is equivalent to ∆
1/2
h2 C

∞
0 ⊂ Lp. This has been proved

in [27, Lemma 2.2]. Hence, plugging in (7.2) the function u = (∆ + V)1/2v,

one finds (7.1). This concludes the proof of Theorem 7.1. �

Proof of Corollary 7.2. — Let us prove the first part. Assume that

d(∆ + V)−1/2 is bounded on Lp for some p ∈ (2, p0). Let D = d ◦ h−1.

We claim that for every q ∈ [2,∞),

(7.3) ‖(∆ + V)1/2u‖q 6 C‖Du‖q, ∀ u ∈ C∞
0 (M).

To show this, let us start with the inequality

(7.4) ‖∆
1/2
h2 v‖q 6 C‖dv‖q, ∀ v ∈ C∞

0 (M).

Inequality (7.4) for every q ∈ [2,∞) follows from h ∼ 1 and the fact that

d∆
−1/2
h2 is bounded on Lq, q ∈ (1, 2] (this will be proved in Lemma 7.12),

together with a classical duality argument (see [20, Proposition 2.1]). Now,

by (2.14),

h−1(∆ + V)1/2h = ∆
1/2
h2 ,

and we use inequality (7.4) with u = hv, to obtain that for every u ∈
C∞

0 (M),

‖h−1(∆ + V)1/2u‖q 6 C‖Du‖q.

Since h ∼ 1, we get (7.3). By Theorem 7.1, the operator (dh)(∆ + V)−1/2

has to be bounded on Lp, therefore

‖(dh)u‖p 6 C‖(∆ + V)1/2u‖p, ∀ u ∈ C∞
0 (M),
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which, together with (7.3) for q = p, implies that

‖(dh)u‖p 6 C‖Du‖p, ∀ u ∈ C∞
0 (M).

If we let v = h−1u, we obtain that

‖(d log h)v‖p 6 C‖dv‖p, ∀ u ∈ C∞
0 (M).

Since V 6≡ 0, h is not constant, and thus d log h 6≡ 0. Thus, (1.6) holds with

a non-zero ρ = |∇ log h|p, and it follows that M is p−non-parabolic. �

Proof of Corollary 7.4. — if (Sν) holds, then for V− ∈ L
ν
2 , subcriticality

of V is equivalent to strong subcriticality of ∆ + V (see Lemma 2.1). Thus,

there exists η > 0 such that

η

∫

M

|∇u|2 6

∫

M

|∇u|2 + Vu2, ∀ u ∈ C∞
0 (M).

Hence, ∆ + V satisfies the Sobolev inequality

‖u‖ 2ν
ν−2

6 C

∫

M

|∇u|2 + Vu2, ∀ u ∈ C∞
0 (M).

By Example 2.2, a potential V belonging to L
ν
2 +ε ∩ L

ν
2 −ε is in the Kato

class at infinity K∞(M), therefore by Theorem 4.1, e−t(∆+V) has Gaussian

estimates, and thus is bounded uniformly on L1. According to [23, Theo-

rem 2.7], the Sobolev inequality for ∆ + V and the fact that e−t(∆+V) is

bounded uniformly on L1 implies that for every p ∈ (1, ν), (∆ + V)−1/2

is bounded from Lp to Lq, 1
q = 1

p − 1
ν . By Theorem 7.1, d(∆ + V)−1/2 is

bounded on Lp if and only if (dh)(∆ + V)−1/2 is bounded on Lp. Thus, in

order to conclude the proof, it is enough to show that dh ∈ Lν . This will

be proved in Lemma 7.11. �

Proof of Theorem 7.8. — By Corollary 7.2, d(∆ + V)−1/2 is unbounded

on Lp if M is p-parabolic. By Theorem 5.6, the hypothesis on capacities

implies that for every p < κ, the following reverse volume estimate holds:

(7.5) rp .
V (x, r)

V (x, 1)
, ∀ x ∈ M, ∀ r > 0.

Hence, ν′ > κ−δ, ∀ δ > 0. Since V ∈ L
ν′

2 −ε
(

M,
dµ(x)
V (x,1)

)

∩L ν
2 +ε

(

M,
dµ(x)
V (x,1)

)

,

by interpolation and Lemma 1.3, one obtains that V ∈ L
p
2

(

M,
dµ(x)
V (x,1)

)

, for

every p < κ, close enough to κ. Therefore, one sees that for p < κ, close

enough to κ,
∫ ∞

1

∥

∥

∥

∥

|V|1/2

V ( · , t)1/p

∥

∥

∥

∥

p

dt < ∞.
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Also, by Proposition 6.7, V ∈ K∞(M). Thus, by Theorem 7.6, the Riesz

transform d(∆ + V)−1/2 is bounded on Lp for all 1 < p < min(κ, p0). This

concludes the proof of Theorem 7.8. �

To prove Lemma 7.10, we will need the following result concerning the

positive function h, solution of (∆ + V)u = 0, whose existence is provided

by Theorem 3.2.

Lemma 7.11. — The function h satisfies the following properties:

(1) There exists q ∈ [1,∞) such that h− 1 ∈ Lq
(

M,
dµ(x)
V (x,1)

)

.

(2) Under assumption (1), dh ∈ L∞.

(3) Under assumption (2), dh ∈ Lr
V , for r < p0, close enough to p0.

(4) Under the assumptions of Corollary 7.4, dh ∈ Lν .

Proof. — By Theorem 3.2, h satisfies the following equation:

1 = h+ ∆−1Vh.
Therefore, |1 − h| 6 ∆−1|V|h . ∆−1|V|. By Proposition 6.7, there exists

q ∈ [1,∞) such that ∆−1|V| ∈ L
q
V . Consequently, 1 − h ∈ L

q
V . Again

according to Proposition 6.7, V is in K∞(M), and by definition of K∞(M),

∆−1|V| ∈ L∞.

Let us now assume (1). By the gradient estimate of Cheng–Yau (see

e.g. [38, Theorem 6.1]), as a consequence of the bound from below of the

Ricci curvature, there is a constant C such that for every x ∈ M ,

(7.6) |∇ logG(x, y)| 6 C, ∀ y ∈ M \B(x, 1),

and,

(7.7) |∇ logG(x, y)| 6 Cd(x, y)−1, ∀ y ∈ B(x, 1) \ {x}.
As a consequence of (D) and (UE), there holds:

G(x, y) 6

∫ ∞

d(x,y)

rdr

V (x, r)

(see e.g. [33, Exercise 15.8]). Using (Dν,ν′) and the fact that ν′ > 2, we see

that there is a constant C such that for all x ∈ M ,
∫ ∞

1

rdr

V (x, r)
6

C

V (x, 1)
.

Also, by Bishop–Gromov and our assumption on Ricci, for every x ∈ M

and r 6 1,

(7.8)
V (x, r)

V (x, 1)
> CrN , V (x, r) 6 CrN ,
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where N is the dimension of M . Therefore, for all (x, y) ∈ M2 such that

d(x, y) 6 1,

G(x, y) 6 C
d(x, y)2−N

V (x, 1)
+

C

V (x, 1)
6 C

d(x, y)2−N

V (x, 1)
.

This implies, using (7.7) and (7.8), that for all q < N
N−1 , there exists some

constant Cq so that for every x ∈ M ,

(7.9) ‖∇G(x, · )‖Lq(B(x,1)) 6 CqV (x0, 1)− 1
q .

Using the hypothesis that V satisfies (Lp) and (7.9) for q = p′ < N
N−1 , we

get that there is a constant C such that for every x ∈ M ,

(7.10)

∫

B(x,1)

|∇G(x, y)| |V(y)|dy 6 C.

Also, by (7.6) and the fact that V is in K∞(M),

(7.11) sup
x∈M

∫

M\B(x,1)

|∇G(x, y)| |V(y)|dy < ∞.

Combining (7.10) and (7.11), one obtains that |dh| 6 |d∆−1Vh| ∈ L∞.

Let us now assume (2). We write

‖dh‖Lr
V
6

∫ 1

0

‖∇e−t∆‖L
s1
V

,Lr
V

‖V‖L
s1
V

dt+

∫ ∞

1

‖∇e−t∆‖L
s2
V

,Lr
V

‖V‖L
s2
V

dt.

For r < p0, using Corollary 6.5, one finds

‖dh‖Lr
V
6 ‖V‖L

s1
V

∫ 1

0

ϕs1,r(t)
dt√
t

+ ‖V‖L
s2
V

∫ ∞

1

ϕs2,r(t)
dt√
t
.

By definition of ϕp,q, the two integrals converge if and only if

− ν

2s1
+
ν′

2r
> −1

2
, − ν′

2s2
+

ν

2r
< −1

2
.

Since r is arbitrarily close to p0, it is enough to have these two inequalities

satisfied for r = p0, i.e.

− ν

s1
+
ν′

p0
> −1, − ν′

s2
+

ν

p0
< −1.

This is equivalent to

s2 <
ν′p0

p0 + ν
, s1 >

νp0

p0 + ν′ .

We now choose s2 = ν′p0

p0+ν − ε, and s1 = νp0

p0+ν′
+ ε. By hypothesis, V ∈

Ls1

V ∩ Ls2

V , and the result is proved. �
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Proof of Lemma 7.10. — For p = 2, by a direct consequence of the Green

formula, d∆
−1/2
h2 is an isometry on L2(M,h2 dµ) ≃ L2(M, dµ). For p > 2,

we want to apply Proposition 6.6, with A = h2. Indeed, assuming that

the hypotheses of Proposition 6.6 are satisfied for the choice A = h2, we

obtain that dL−1/2 = d∆
−1/2
h2 is bounded on Lp for every p ∈ (2, p0), hence

the result of Lemma 7.10. It thus remains to check that the hypotheses

of Proposition 6.6 are fulfilled. We check this in the following sequence of

lemmas.

Lemma 7.12. — Under the assumptions of Theorem 7.1, the Riesz

transform associated to the weighted Laplacian d∆
−1/2
h2 is bounded on Lp

for every 1 < p 6 2.

Proof. — The boundedness on L2(M, dµ) ≃ L2(M, h2dµ) follows from

the fact that by the Green formula, d∆
−1/2
h2 is an isometry on L2(Ω, h2dµ).

Since h ∼ 1, the relative Faber–Krahn inequality (RFK) is satisfied for

the weighted Laplacian ∆h2 , and consequently the heat kernel e−t∆h2 has

Gaussian upper-estimates. Also, the measure h2dµ is doubling since dµ is.

By [19, Theorem 1.1], the Riesz transform d∆
−1/2
h2 is bounded on Lp for

every 1 < p 6 2. �

Lemma 7.13. — Under assumptions (1) or (2), the local Riesz trans-

form d(∆h2 + 1)−1/2 is bounded on Lp, for all p ∈ (2, p0).

Proof. — Notice that d(∆h2 +1)−1/2 is bounded on L2. By interpolation,

it is thus enough to prove the boundedness of d(∆h2 + 1)−1/2 on Lp for p

close enough to p0. Thus, for the rest of the proof, we assume that p < p0

is close enough to p0. Conjugating by h and using h ∼ 1, we easily see that

the boundedness of d(∆h2 + 1)−1/2 on Lp is equivalent to

D(∆ + V + 1)−1/2 : Lp → Lp,

where we recall that D is the differential operator of degree one defined by

D = d ◦ h−1.

Also,

(7.12) D(∆+V +1)−1/2 = d(h−1)(∆+V +1)−1/2 +h−1d(∆+V +1)−1/2.

It is thus enough to prove that (dh)(∆ + V + 1)−1/2 and d(∆ + V + 1)−1/2

are bounded on Lp. We start with d(∆ + V + 1)−1/2. By a straightforward

adaptation of the proof of [3, Theorem 3.9], if V satisfies

(7.13)

∫ 1

0

∥

∥

∥

∥

∥

|V|1/2

V ( · ,
√
t)

1
r1

∥

∥

∥

∥

∥

r1

dt√
t

+

∫ ∞

1

∥

∥

∥

∥

∥

|V|1/2

V ( · ,
√
t)

1
r2

∥

∥

∥

∥

∥

r2

e−t dt√
t
< ∞,
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then (∆ + 1)1/2(∆ + V + 1)−1/2 is bounded on Lr, r ∈ (1,min(r1, r2)). The

additional e−t in the second integral comes from the fact that one considers

∆ + 1 and ∆ + V + 1 instead of ∆ and ∆ + V as in [3]. Using (Dν,ν′) and

the hypothesis on V, one sees that (7.13) is satisfied for r1 = r2 = ν + 2ε

in case (1), and r1 = r2 = p0 in case (2). Also, by analyticity of e−t∆ on

Lp, ∆−1/2(∆ + 1)1/2 is bounded on Lp. Thus, writing

d(∆ + V + 1)−1/2 =
(

d∆−1/2
)(

∆1/2(∆ + 1)−1/2
)

(

(∆ + 1)1/2(∆ + V + 1)−1/2
)

,

we see that d(∆ + V + 1)−1/2 is bounded on Lp for all p ∈ (1, p0). Let us

now treat the operator (dh)(∆ + V + 1)−1/2, for which we distinguish two

cases.

Case 1: assume that (1) is satisfied. — Let us first notice that (∆ + V +

1)−1/2 is bounded on Lp: indeed,

(7.14) ‖(∆ + V + 1)−1/2‖p,p 6 C

∫ ∞

0

e−t‖e−t(∆+V)‖p,pdt,

furthermore by Theorem 4.1, e−t(∆+V) has Gaussian estimates and so it

is uniformly bounded on Lp. So, the integral in (7.14) converges, therefore

(∆ + V + 1)−1/2 is bounded on Lp. By Lemma 7.11, dh ∈ L∞. Therefore,

(dh)(∆ + V + 1)−1/2 is bounded on Lp.

Case 2: assume that (2) is satisfied. — Write

(dh)(∆ + V + 1)−1/2 =

∫ ∞

0

(dh)e−t(∆+V)e−t dt√
t
.

Since e−t(∆+V) has Gaussian estimates, by Corollary 6.4 and Hölder’s in-

equality, one has

‖(dh)(∆ + V + 1)−1/2‖p,p 6 ‖dh‖Lr
V

∫ ∞

0

ϕp,q(t)e−t dt√
t
,

with 1
r = 1

p − 1
q . The integral

∫∞
0
ϕp,q(t)e−t dt√

t
converges if and only if

(7.15)
ν′

2q
− ν

2p
> −1

2
.

Since p0 > ν, (7.15) is satisfied if p is close enough to p0, and q is big

enough. By Lemma 7.11, dh ∈ Lr
V , for r < p0 close enough to p0. Taking

p close enough to p0, and q big enough, one can arrange for r < p0 as

close as we want to p0, as well as (7.15) satisfied. Therefore, the operator

(dh)(∆ + V + 1)−1/2 is bounded on Lp. �
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