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Heat kernel estimates for Δ + Δα/2 in C1,1 open sets

Zhen-Qing Chen, Panki Kim and Renming Song

Abstract

We consider a family of pseudo differential operators {Δ + aαΔα/2; a ∈ (0, 1]} on R
d for every

d � 1 that evolves continuously from Δ to Δ + Δα/2, where α ∈ (0, 2). It gives rise to a family
of Lévy processes {Xa, a ∈ (0, 1]} in R

d, where Xa is the sum of a Brownian motion and an
independent symmetric α-stable process with weight a. We establish sharp two-sided estimates
for the heat kernel of Δ + aαΔα/2 with zero exterior condition in a family of open subsets,
including bounded C1,1 (possibly disconnected) open sets. This heat kernel is also the transition
density of the sum of a Brownian motion and an independent symmetric α-stable process with
weight a in such open sets. Our result is the first sharp two-sided estimates for the transition
density of a Markov process with both diffusion and jump components in open sets. Moreover,
our result is uniform in a in the sense that the constants in the estimates are independent of
a ∈ (0, 1] so that it recovers the Dirichlet heat kernel estimates for Brownian motion by taking
a → 0. Integrating the heat kernel estimates in time t, we recover the two-sided sharp uniform
Green function estimates of Xa in bounded C1,1 open sets in R

d, which were recently established
in (Z.-Q. Chen, P. Kim, R. Song and Z. Vondracek, ‘Sharp Green function estimates for Δ + Δα/2

in C1,1 open sets and their applications’, Illinois J. Math., to appear) using a completely different
approach.

1. Introduction

Many physical and economic systems should be and in fact have been successfully modeled
by discontinuous Markov processes; see, for example, [25–27] and the references therein.
Discontinuous Markov processes are also very important from a theoretical point of view,
since they contain stable processes, relativistic stable processes and jump diffusions as special
cases. Owing to their importance both in theory and in applications, discontinuous Markov
processes have been receiving intensive study in recent years.

In general, Markov processes may have both diffusion and jump components. A Markov
process having continuous sample paths is called a diffusion. Diffusion processes in R

d and
second-order elliptic differential operators on R

d are closely related in the following sense. For
a large class of second-order elliptic differential operators L on R

d, there is a diffusion process
X in R

d associated with it so that L is the infinitesimal generator of X, and vice versa. The
connection between L and X can also be seen as follows. The fundamental solution p(t, x, y) of
∂tu = Lu (also called the heat kernel of L) is the transition density of X. Thus, obtaining sharp
two-sided estimates for p(t, x, y) is a fundamental problem in both analysis and probability
theory. In fact, two-sided heat kernel estimates for diffusions in R

d have a long history, and
many beautiful results have been established. See [21, 23] and the references therein. But,
owing to the complication near the boundary, two-sided estimates on the transition density of
killed diffusions in a domain D (equivalently, the Dirichlet heat kernel) have been established

Received 4 March 2010; revised 11 October 2010; published online 16 May 2011.

2000 Mathematics Subject Classification 60J35, 47G20, 60J75 (primary), 47D07 (secondary).

The research of Zhen-Qing Chen was partially supported by NSF Grant DMS-0906743. The research of
Panki Kim was supported by the Mid-career Researcher Program through NRF grant funded by the MEST
(No. 2010-0027491).



HEAT KERNEL ESTIMATES 59

only recently. See [22–24] for upper bound estimates and [30] for the lower bound estimate of
the Dirichlet heat kernels in bounded C1,1 domains.

The infinitesimal generator of a discontinuous Markov process in R
d is no longer a

differential operator, but rather a non-local (or integro-differential) operator L. For instance,
the infinitesimal generator of a rotationally symmetric α-stable process in R

d with α ∈ (0, 2)
is the fractional Laplacian Δα/2 := −(−Δ)α/2. Most of the recent studies concentrate on pure
jump Markov processes, like the rotationally symmetric α-stable processes, that do not have
a diffusion component. For a summary of some of these recent results from the probability
literature, one can see [1, 7] and the references therein. We refer the readers to [4–6] for a
sample of recent progress in the PDE literature.

Recently in [9], we obtained sharp two-sided estimates for the heat kernel of the fractional
Laplacian Δα/2 in D with zero exterior condition (or equivalently, the transition density
function of the symmetric α-stable process killed upon exiting D) for any C1,1 open set D ⊂ R

d

with d � 1. As far as we know, this was the first time sharp two-sided estimates were established
for Dirichlet heat kernels of non-local operators. Since then, studies on this topic have been
growing rapidly. In [10–12], the ideas of Chen et al. [9] were adapted to establish two-sided
heat kernel estimates of other pure jump Markov processes in open subsets of R

d. In [19],
the large time behaviors of heat kernels for symmetric α-stable processes and censored stable
processes in unbounded open sets were studied. Very recently, in [2, 3], the heat kernel of the
fractional Laplacian in a non-smooth open set was discussed. We refer the readers to [8] for a
survey of recent progress in the heat kernel estimates of jump Markov processes.

However, until now, two-sided heat kernel estimates of Markov processes with both diffusion
and jump components in proper open subsets of R

d have not been studied. The fact that such
a process X has both diffusion and jump components is the source of many difficulties. The
main difficulty stems from the fact that such a process X runs on two different scales: on the
small scale the diffusion part dominates, while on the large scale the jumps take over. Another
difficulty is encountered at the exit of X from an open set: for diffusions, the exit is through
the boundary, while, for pure jump processes, typically the exit happens by jumping across
the boundary. For a process X that has both diffusion and jump components, both cases will
occur, which makes the process X much more difficult to study.

In this paper, we consider Lévy processes that are independent sums of Brownian motions
and (rotationally) symmetric stable processes in R

d with d � 1. We establish two-sided heat
kernel estimates for such Lévy processes killed upon exiting a C1,1 open set. The processes
studied in this paper serve as a test case for more general processes with both diffusion and
jump components, just like Brownian motions do for more general diffusions. We hope that
our study will help to shed new light on the understanding of the heat kernel behavior of more
general Markov processes. Although two-sided heat kernel estimates for Markov processes with
both diffusion and jump components in R

d have been studied recently in [17, 28], as far as
we know, this is the first time that sharp two-sided estimates on the Dirichlet heat kernels for
Markov processes with both diffusion and jump components in proper open subsets have been
established.

Let us now describe the main result of this paper and at the same time fix the notation.
Throughout this paper, we assume that d � 1 is an integer and α ∈ (0, 2). Let X0 = (X0

t , t � 0)
be a Brownian motion in R

d with generator Δ =
∑d

i=1(∂
2/∂x2

i ). Let Y = (Yt, t � 0) be a
(rotationally) symmetric α-stable process in R

d, that is, a Lévy process such that

Ex[eiξ·(Yt−Y0)] = e−t|ξ|α for every x ∈ R
d and ξ ∈ R

d.

The infinitesimal generator of a symmetric α-stable process Y in R
d is the fractional Laplacian

Δα/2, which is a prototype of non-local operators. The fractional Laplacian can be written in



60 ZHEN-QING CHEN, PANKI KIM AND RENMING SONG

the form

Δα/2u(x) = lim
ε↓0

∫
{y∈Rd: |y−x|>ε}

(u(y) − u(x))
A(d, α)

|x − y|d+α
dy, (1.1)

where A(d, α) := α2α−1π−d/2Γ((d + α)/2)Γ(1 − α/2)−1. Here Γ is the Gamma function defined
by Γ(λ) :=

∫∞
0

tλ−1 e−t dt for every λ > 0. Assume that X0 and Y are independent. For any
a > 0, we define Xa by Xa

t := X0
t + aYt. We will call the process Xa the independent sum

of the Brownian motion X0 and the symmetric α-stable process Y with weight a > 0. The
infinitesimal generator of Xa is Δ + aαΔα/2 and

Ex[eiξ·(Xa
t −Xa

0 )] = e−t(|ξ|2+aα|ξ|α) for every x ∈ R
d and ξ ∈ R

d.

Since

aα|ξ|α =
∫

Rd

(1 − cos(ξ · y))
aαA(d, α)
|y|d+α

dy,

the density of the Lévy measure of Xa with respect to the Lebesgue measure on R
d is

Ja(x, y) = ja(|x − y|) := aαA(d, α)|x − y|−(d+α).

The function Ja(x, y) determines a Lévy system for Xa, which describes the jumps of the
process Xa: for any non-negative measurable function f on R+ × R

d × R
d with f(s, y, y) = 0

for all y ∈ R
d, any stopping time T (with respect to the filtration of Xa) and any x ∈ R

d,

Ex

⎡
⎣∑

s�T

f(s,Xa
s−,Xa

s )

⎤
⎦ = Ex

[∫T

0

(∫
Rd

f(s,Xa
s , y)Ja(Xa

s , y) dy

)
ds

]
(1.2)

(see, for example [15, Proof of Lemma 4.7] and [16, Appendix A]). Let pa(t, x, y) be the
transition density of the process Xa with respect to the Lebesgue measure on R

d, which is
known to exist and is jointly continuous on (0,∞) × R

d × R
d. For any λ > 0, the process

(λXa
λ−2t, t � 0) has the same distribution as (Xaλ(α−2)/α

t , t � 0) (see the second paragraph of
Section 2), so we have

paλ(α−2)/α

(t, x, y) = λ−dpa(λ−2t, λ−1x, λ−1y) for t > 0 and x, y ∈ R
d. (1.3)

The following sharp two-sided estimates on pa(t, x, y) follow from (1.3) and the main results
in [17, 28] that give the sharp estimates on p1(t, x, y).

Theorem 1.1. There are constants Ci � 1, i = 1, 2, such that, for all a ∈ [0,∞) and
(t, x, y) ∈ (0,∞) × R

d × R
d,

C−1
1 (t−d/2 ∧ (aαt)−d/α) ∧

(
t−d/2 e−C2|x−y|2/t + (aαt)−d/α ∧ aαt

|x − y|d+α

)

� pa(t, x, y) � C1(t−d/2 ∧ (aαt)−d/α) ∧
(

t−d/2 e−|x−y|2/C2t + (aαt)−d/α ∧ aαt

|x − y|d+α

)
.

Here, for a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. In particular, we have the
following.
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Corollary 1.2. For any M > 0 and T > 0, there is a constant C3 � 1 depending only on
d, α, M and T such that, for all a ∈ (0,M ] and (t, x, y) ∈ (0, T ] × R

d × R
d,

C−1
3

(
t−d/2 e−C2|x−y|2/t + t−d/2 ∧ aαt

|x − y|d+α

)

� pa(t, x, y) � C3

(
t−d/2 e−|x−y|2/C2t + t−d/2 ∧ aαt

|x − y|d+α

)
,

where C2 � 1 is the constant in Theorem 1.1.

Recall that an open set D in R
d (when d � 2) is said to be C1,1 if there exist a localization

radius R > 0 and a constant Λ > 0 such that, for every z ∈ ∂D, there exist a C1,1-function φ =
φz : R

d−1 → R satisfying φ(0) = 0, ∇φ(0) = (0, . . . , 0), ‖∇φ‖∞ � Λ, |∇φ(x) −∇φ(z)| � Λ|x −
z|, and an orthonormal coordinate system CSz: y = (y1, . . . , yd−1, yd) := (ỹ, yd) with origin at
z such that B(z,R) ∩ D = {y = (ỹ, yd) ∈ B(0, R) in CSz : yd > φ(ỹ)}. The pair (R,Λ) will be
called the C1,1 characteristics of the open set D. By a C1,1 open set in R we mean an open
set which can be written as the union of disjoint intervals so that the minimum of the lengths
of all these intervals is positive and the minimum of the distances between these intervals is
positive. Note that a C1,1 open set can be unbounded and disconnected, and that a bounded
C1,1 open set has only finitely many connected components.

For a domain D ⊂ R
d and λ0 � 1, we say the path distance in D is comparable to the

Euclidean distance with characteristic λ0 if for every x, y ∈ D, there is a rectifiable curve l in
D connecting x to y so that the length of l is no larger than λ0|x − y|. Clearly, such a property
holds for all bounded C1,1 domains, C1,1 domains with compact complements and domains
above the graphs of bounded C1,1 functions.

For any open subset D ⊂ R
d, we use τa

D to denote the first time the process Xa exits D.
We define the process Xa,D by Xa,D

t = Xa
t for t < τa

D and Xa,D
t = ∂ for t � τa

D, where ∂ is a
cemetery point. Xa,D is called the subprocess of Xa killed upon exiting D. The infinitesimal
generator of Xa,D is (Δ + aαΔα/2)|D. It follows from [17] that Xa,D has a continuous transition
density pa

D(t, x, y) with respect to the Lebesgue measure.
The goal of this paper is to get the following sharp two-sided estimates on pa

D(t, x, y) for any
C1,1 open set D in which the path distance in each connected component of D is comparable
to the Euclidean distance.

For an open set D ⊂ R
d and x ∈ D, we will use δD(x) to denote the Euclidean distance

between x and Dc. Let

ha
C(t, x, y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2 e−C|x−y|2/t +

aαt

|x − y|d+α
∧ t−d/2)

)
when x and y are in the same component of D,(

1 ∧ δD(x)√
t

)(
1 ∧ δD(y)√

t

)(
aαt

|x − y|d+α
∧ t−d/2

)
when x and y are in different components of D.

(1.4)
One can easily show that, when D is bounded, the operator −(Δ + aαΔα/2)|D has discrete

spectrum (see, for instance, the first paragraph of the proof of Theorem 1.3(ii) and (iii) in
Section 4). In this case, we use λa,D

1 > 0 to denote the smallest eigenvalue of −(Δ + aαΔα/2)|D.
Denote by D(x) the connected component of D that contains x and let λ

a,D(x)
1 > 0 be the

smallest eigenvalue of −(Δ + aαΔα/2)|D(x).

Theorem 1.3. Let d � 1. Suppose that D is a C1,1 open set in R
d with characteristic

(R,Λ) such that the path distance in each connected component of D is comparable to the
Euclidean distance with characteristic λ0.
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(i) For every M > 0 and T > 0, there are positive constants Ci = Ci(R,Λ, λ0,M, α, T ) � 1,
i = 4, 5, such that, for all a ∈ (0,M ] and (t, x, y) ∈ (0, T ] × D × D,

C−1
4 ha

C5
(t, x, y) � pa

D(t, x, y) � C4h
a
1/C5

(t, x, y).

(ii) Suppose in addition that D is bounded and connected. For every M > 0 and T > 0, there
is a constant C6 = C6(D,M,α, T ) � 1 so that, for all a ∈ (0,M ] and (t, x, y) ∈ [T,∞) × D × D,

C−1
6 e−tλa,D

1 δD(x)δD(y) � pa
D(t, x, y) � C6 e−tλa,D

1 δD(x)δD(y).

(iii) Suppose that D is bounded but disconnected. Then, for every M > 0 and T > 0, there
are constants Ci = Ci(D,M,α, T ) � 1, i = 7, 8, such that, for all a ∈ (0,M ], t ∈ [T,∞), the
following hold.

(a) If x and y are in the same component D(x) of D,

C−1
7 e−tλ

a,D(x)
1 δD(x)δD(y) � pa

D(t, x, y)

� C7(e−tλ
a,D(x)
1 + (1 ∧ (aαt)) e−tλa,D

1 )δD(x)δD(y).

(b) If x and y are in different components of D,

C−1
8 aαt e−t(λ

a,D(x)
1 ∨λ

a,D(y)
1 )δD(x)δD(y) � pa

D(t, x, y)

� C8(1 ∧ (aαt)) e−tλa,D
1 δD(x)δD(y).

Remark 1.4. (i) Unlike the Brownian motion case, even though D may be disconnected,
the process Xa,D is always irreducible when a > 0 because Xa,D can jump from one component
of D to another. When a > 0 is smaller, the connection between different components of D
by Xa becomes weaker. The estimates given in Theorem 1.3 present a precise quantitative
description of such a phenomenon. Letting a → 0, Theorem 1.3 recovers the Dirichlet heat
kernel estimates for Brownian motion in D (even when D is disconnected); see [20, 30] and
the reference therein for the latter. In particular, for x and y in different components of D, we
have lima→0+ pa

D(t, x, y) = 0 for all x, y > 0, which is the case for Brownian motion.
(ii) In fact, the estimates in Theorem 1.3(i) will be established under a weaker assumption

on D: the lower bounded estimate is proved under the uniform interior ball condition and
the condition that the path distance in each connected component of D is comparable to
the Euclidean distance (see Theorem 2.4), while the upper bound estimate is proved under a
weaker version of the uniform exterior ball condition only (see Theorem 3.9). Here an open
set D ⊂ R

d is said to satisfy the uniform interior ball condition with radius R1 > 0 if, for
every x ∈ D with δD(x) < R1, there is zx ∈ ∂D so that |x − zx| = δD(x) and B(x0, R1) ⊂ D
for x0 := zx + R1(x − zx)/|x − zx|. We say D satisfies a weaker version of the uniform exterior
ball condition with radius R1 > 0 if, for every z ∈ ∂D, there is a ball Bz of radius R1 such that
Bz ⊂ (D)c and ∂Bz ∩ ∂D = {z}.

Integrating the heat kernel estimates in Theorem 1.3 over time t yields the following two-
sided sharp estimates of the Green function of Xa in bounded C1,1 open sets, which were first
obtained in [14] by a different method. We will not give the details in this paper on how these
estimates can be obtained by integrating the estimates in Theorem 1.3. Interested readers are
referred to the proof of [9, Corollary 1.2], where the sharp estimates for the Green functions of
symmetric stable processes in bounded C1,1 open sets are obtained from the sharp heat kernel
estimates for the heat kernels by integration over time t.
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Define for d � 3 and a > 0,

ga
D(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

when x and y are in the same component of D,

aα

|x − y|d−2

(
1 ∧ δD(x)δD(y)

|x − y|2
)

when x and y are in different components of D;

for d = 2 and a > 0,

ga
D(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
(

1 +
δD(x)δD(y)
|x − y|2

)
when x and y are in the same component of D,

aα log
(

1 +
δD(x)δD(y)
|x − y|2

)
when x and y are in different components of D;

and for d = 1 and a > 0,

ga
D(x, y)

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(δD(x)δD(y))1/2 ∧ δD(x)δD(y)
|x− y| when x and y are in the same component of D,

aα

(
(δD(x)δD(y))1/2 ∧ δD(x)δD(y)

|x− y|
)

when x and y are in different components of D.

Corollary 1.5. Let M > 0. Suppose that D is a bounded C1,1 open set in R
d. There

exists C9 = C9(D,M,α) > 1 such that, for all x, y ∈ D and all a ∈ (0,M ],

C−1
9 ga

D(x, y) � Ga
D(x, y) � C9g

a
D(x, y).

This paper is a natural continuation of [9], where sharp two-sided heat kernel estimates for
symmetric α-stable processes in C1,1 open sets are first derived, as well as [13], where the
boundary Harnack principle for Xa is established. Some ideas of the approach in this paper
can be traced back to [9] but a number of new ideas are needed to handle the combined effects
of Brownian motion and discontinuous stable processes. A comparison with subordination of
killed Brownian motion is used for the lower bound short time heat kernel estimates for Xa,D.
We would like to point out that, unlike [9], the boundary Harnack principle for Xa is not used
directly in this paper. Instead we use one of the key lemmas established in [13] to obtain the
upper bound of the heat kernel (see Lemma 3.1). Theorem 1.3(i) will be established through
Theorems 2.4 and 3.9, which give the lower bound and upper bound estimates, respectively. In
contrast to that in [9, 10], the proof of large time heat kernel estimates in Theorem 1.3(ii) and
(iii) does not use intrinsic ultracontractivity of Xa,D. The proof presented here is more direct,
and uses only the continuity of λa,D

1 and its corresponding first eigenfunction in a ∈ (0,M ],
which is established in [18]. Lastly, we point out that the approach of [3] relies critically on
the fact that symmetric stable processes do not have a diffusion component and so it is not
directly applicable to the processes considered in this paper.

We will use capital letters C1, C2, . . . to denote constants in the statements of results, and
their labeling will be fixed. The lower case constants c1, c2, . . . will denote generic constants
used in proofs, the exact values of which are not important and can change from one appearance
to another. The labeling of the lower case constants starts anew in each proof. The dependence
of the constant c on the dimension d will not be mentioned explicitly. We will use “:=” to
denote a definition, which is read as “is defined to be”. We will use ∂ to denote a cemetery
point and, for every function f , we extend its definition to ∂ by setting f(∂) = 0. We will use
dx to denote the Lebesgue measure in R

d. The Lebesgue measure of a Borel set A ⊂ R
d will

be denoted by |A|.
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2. Lower bound estimate

In this section, we assume that D is an open set in R
d satisfying the uniform interior ball

condition with radius R1 > 0 and that the path distance in each connected component of D is
comparable to the Euclidean distance with characteristic λ0. Observe that, under the uniform
interior ball condition, the condition that the path distance in each connected component of
D is comparable to the Euclidean distance is equivalent to the following: there exist r2, λ > 0
such that for all r ∈ (0, r2] and all x and y in the same connected component of D with δD(x) ∧
δD(y) � r, there is a rectifiable curve l in D connecting x to y so that the length of l is no
larger than λ|x − y| and δD(z) � r for every z ∈ l. The latter is also equivalent to the following,
which is called the connected ball condition in [20]. For all r ∈ (0, r2] and x and y in the same
connected component of D with δD(x) ∧ δD(y) > r, there exist m and xk, k = 1, 2, . . . ,m, such
that x0 = x, xm = y, xk−1 ∈ B(xk, r/2) ⊂ B(xk, r) ⊂ D and r · m � λ0|x − y|.

Observe that, for all λ, a > 0 and ξ, x ∈ R
d,

Ex[eiξ·(λ(Xa
t/λ2−Xa

0 ))] = e−t|ξ|2
Ex[ei(aλξ)·(Yt/λ2−Y0)] = e−t(|ξ|2+(aλ(α−2)/α)α|ξ|α).

It follows that if {Xa,D
t , t � 0} is the subprocess in D of the independent sum of a Brownian

motion and a symmetric α-stable process on R
d with weight a, then {λXa,D

λ−2t, t � 0} is the
subprocess in λD of the independent sum of a Brownian motion and a symmetric α-stable
process on R

d with weight aλ(α−2)/α. So, for any λ > 0, we have

paλ(α−2)/α

λD (t, x, y) = λ−dpa
D(λ−2t, λ−1x, λ−1y) for t > 0 and x, y ∈ λD. (2.1)

The above scaling property of Xa will be used throughout this paper. For t > 0, we define

at := at(2−α)/(2α). (2.2)

This notation will be used in this paper when we scale an open D by s−1/2 to s−1/2D.
We first recall the definition of subordinate killed Brownian motion: Assume that U is an

open subset in R
d and Tt is an α/2-stable subordinator independent of the killed Brownian

motion X0,U . For each a � 0, let T a be the subordinator defined by T a
t := t + a2Tt. Then the

process {Za,U
t : t � 0} defined by Za,U

t = X0,U
T a

t
is called a subordinate killed Brownian motion

in U . Let qa
U (t, x, y) be the transition density of Za,U . Then it follows from [29, Proposition

3.1] that
pa

U (t, z, w) � qa
U (t, z, w), (t, z, w) ∈ (0,∞) × U × U. (2.3)

We will use this fact in the next result.

Lemma 2.1. Suppose that M and T are positive constants. Then there exist positive
constants Ci = Ci(R1, λ0, α, T,M), i = 10, 11, such that, for all a ∈ (0,M ], t ∈ (0, T ] and x
and y in the same connected component of D,

pa
D(t, x, y) � C10t

−d/2

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
e−C11|x−y|2/t.

Proof. Suppose that x and y are in the same component, say U , of D. Let pU (t, x, y)
be the transition density of the killed Brownian motion in U . It follows from [20, Theorem
3.3] (see also [30, Theorem 1.2]) that there exist positive constants c1 = c1(R1, λ0, α, T ) and
c2 = c2(R1, λ0, α) such that, for any (s, x, y) ∈ (0, 2T ] × U × U ,

pU (s, x, y) � c1

(
1 ∧ δU (x)√

s

)(
1 ∧ δU (y)√

s

)
s−d/2 e−c2|x−y|2/s.

(Although not explicitly mentioned in [20], a careful examination of the proofs in [20] reveals
that the constants c1 and c2 in the above lower bound estimate can be chosen to depend only on
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(R1, λ0, α, T ) and (R1, λ0, α), respectively.) Since pt−1/2U (s, t−1/2x, t−1/2y) = td/2pU (st, x, y),
we have, for t � T and (s, x, y) ∈ (0, 2] × U × U ,

pt−1/2U (s, t−1/2x, t−1/2y) � c1

(
1 ∧ δU (x)√

st

)(
1 ∧ δU (y)√

st

)
s−d/2 e−c2|x−y|2/(st). (2.4)

Let μat(b, s) be the density of at
2Tb, where at is defined as in (2.2). Then it follows from the

definition of the subordinate killed Brownian motion (for example, see [1, p. 149]) that, for
every 1/3 � b � 1 and 0 < t � T ,

qat

t−1/2U
(b, t−1/2x, t−1/2y) =

∫∞

b

pt−1/2U (s, t−1/2x, t−1/2y)P(b + a2
t Tb ∈ ds)

=
∫∞

b

pt−1/2U (s, t−1/2x, t−1/2y)μat(b, s − b) ds

=
∫∞

0

pt−1/2U (s + b, t−1/2x, t−1/2y)μat(b, s) ds.

Consequently, by (2.3) and (2.4), for every 1/3 � b � 1 and 0 < t � T ,

pat

t−1/2D
(b, t−1/2x, t−1/2y)

� pat

t−1/2U
(b, t−1/2x, t−1/2y)

� qat

t−1/2U
(b, t−1/2x, t−1/2y)

�
∫1

0

pt−1/2U (s + b, t−1/2x, t−1/2y)μat(b, s) ds

� 2−1−d/2c1

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
e−3c2|x−y|2/t

∫1

0

μat(b, s) ds

= 2−1−d/2c1

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
e−3c2|x−y|2/t

P(at
2Tb � 1)

� 2−1−d/2c1

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
e−3c2|x−y|2/t

P(T1/3 � M−2T−(2−α)/α)

� c3

(
1 ∧ δU (x)√

t

)(
1 ∧ δU (y)√

t

)
e−3c2|x−y|2/t

= c3

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
e−3c2|x−y|2/t. (2.5)

We now conclude from (2.1), (2.2) and (2.5) with b = 1 that

pa
D(t, x, y) = t−d/2pat

t−1/2D
(1, t−1/2x, t−1/2y)

� c3t
−d/2

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
e−3c2|x−y|2/t.

The inequality (2.5) above with b = 1/3 will be used later.

Lemma 2.2. For all M, r, b > 0, there exists C12 = C12(M,α, r, b) > 0 such that

P0(τa
B(0,r) > b) � C12 > 0 for all a ∈ (0,M ].
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Proof. It follows from Lemma 2.1 that

inf
a∈(0,M ]

P0(τa
B(0,r) > b) = inf

a∈(0,M ]

∫
B(0,r)

pa
B(0,r)(b, 0, y) dy

� cb−d/2

(
r√
b
∧ 1
) ∫

B(0,r)

( |y|√
b
∧ 1
)

e−c1|y|2/b dy.

Lemma 2.3. Suppose that M and r are positive constants. Then there is a constant C13 =
C13(M,α, d, r) ∈ (0, 1/3] such that for all a ∈ (0,M ] and u, v ∈ R

d,

pa
B(u,r)∪B(v,r)(1/3, u, v) � C13(Ja(u, v) ∧ 1).

Proof. If |u − v| � r/2, then by Lemma 2.1,

pa
B(u,r)∪B(v,r)(1/3, u, v) � inf

|z|<r/2
pa

B(0,r)(1/3, 0, z) � c1(r ∧ 1)2e−c2r2 � c3 � c3(Ja(u, v) ∧ 1).

Let E = B(u, r) ∪ B(v, r). If |u − v| � r/2, with E1 = B(u, r/8) and E2 = B(v, r/8), then we
have by the strong Markov property and the Lévy system (1.2) of Xa that

pa
E(1/3, u, v) � Eu[pa

E(1/3 − τa
E1

,Xa
τa

E1
, v) : τa

E1
< 1/3,Xa

τa
E1

∈ E2]

=
∫1/3

0

(∫
E1

pa
E1

(s, u, w)
(∫

E2

Ja(w, z)pa
E(1/3 − s, z, v) dz

)
dw

)
ds

�
(

inf
w∈E1,z∈E2

Ja(w, z)
) ∫1/3

0

Pu(τa
E1

> s)
(∫

E2

pa
E(1/3 − s, z, v) dz

)
ds

� Pu(τa
E1

> 1/3)
(

inf
w∈E1,z∈E2

Ja(w, z)
) ∫1/3

0

∫
E2

pa
E2

(1/3 − s, z, v) dz ds

= Pu(τa
E1

> 1/3)
(

inf
w∈E1, z∈E2

ja(|w − z|)
) ∫1/3

0

Pv(τa
E2

> 1/3 − s) ds

� 1
3

Pu(τa
E1

> 1/3)
(

inf
w∈E1,z∈E2

ja(|w − z|)
)

Pv(τa
E2

> 1/3).

Thus by Lemma 2.2,

pa
B(u,r)∪B(v,r)(1/3, u, v) � 1

3
(P0(τa

B(0,r/8) > 1/3))2
(

inf
w∈E1,z∈E2

ja(|w − z|)
)

� c4j
a(|u − v|) � c4(Ja(u, v) ∧ 1).

Recall that the function ha
C(t, x, y) is defined in (1.4).

Theorem 2.4. Suppose that M and T are positive constants. There are positive constants
Ci = Ci(M,R1, λ0, λ, T, α), i = 14, 15, such that, for all a ∈ (0,M ] and (t, x, y) ∈ (0, T ] ×
D × D,

pa
D(t, x, y) � C14h

a
C15

(t, x, y). (2.6)

Proof. Since t−1/2D satisfies the uniform interior ball condition with radius R1(T )−1/2 for
every 0 < t � T , there exist δ = δ(R1, T ) ∈ (0, R1(T )−1/2) and L = L(R1, T ) > 1 such that, for
all t ∈ (0, T ] and x, y ∈ D, we can choose ξx ∈ (t−1/2D) ∩ B(t−1/2x,Lδ) and ξy ∈ (t−1/2D) ∩
B(t−1/2y, Lδ) with B(ξx, 2δ) ∩ B(ξy, 2δ) = ∅ and B(ξx, 2δ) ∪ B(ξy, 2δ) ⊂ t−1/2D.
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Let xt := t−1/2x and yt := t−1/2y. Note that by (2.5) with b = 1/3,
∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u) du � c1

(
δD(x)√

t
∧ 1
) ∫

B(ξx,δ)

(δt−1/2D(u) ∧ 1) e−c2|xt−u|2 du

� c1

(
δD(x)√

t
∧ 1
)

e−c2(L+1)2δ2 |B(ξx, δ)|

� c3

(
δD(x)√

t
∧ 1
)

. (2.7)

Similarly ∫
B(ξy,δ)

pat

t−1/2D
(1/3, yt, u) du � c3

(
δD(y)√

t
∧ 1
)

. (2.8)

Now we deal with the cases |xt − yt| � δ/8 and |xt − yt| < δ/8 separately. Recall the
definition of at from (2.2).

Case 1: Suppose |xt − yt| � δ/8. Note that by the semigroup property and Lemma 2.3,

pat

t−1/2D
(1, xt, yt)

�
∫
B(ξy,δ)

∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u)pat

t−1/2D
(1/3, u, v)pat

t−1/2D
(1/3, v, yt) du dv

�
∫
B(ξy,δ)

∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u)pat

B(u,δ/2)∪B(v,δ/2)(1/3, u, v)pat

t−1/2D
(1/3, v, yt) du dv

� c4

∫
B(ξy,δ)

∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u)(Jat(u, v) ∧ 1)pat

t−1/2D
(1/3, v, yt) du dv

� c5

(
inf

(u,v)∈B(ξx,δ)×B(ξy,δ)
(Jat(u, v) ∧ 1)

)

×
∫
B(ξy,δ)

∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u)pat

t−1/2D
(1/3, v, yt) du dv.

It then follows from (2.7) and (2.8) that

pat

t−1/2D
(1, xt, yt) � c6

(
inf

(u,v)∈B(ξx,δ)×B(ξy,δ)
(Jat(u, v) ∧ 1)

)(
δD(x)√

t
∧ 1
)(

δD(y)√
t

∧ 1
)

. (2.9)

Using the fact that

Jat(xt, yt) = aαt1+d/2A(d, α)|x − y|−(d+α) = t1+d/2Ja(x, y) (2.10)

and the assumption |xt − yt| � δ/8 which implies that |u − v| � 2(1 + L)δ + |xt − yt| � (17 +
16L)|xt − yt|, we have

inf
(u,v)∈B(ξx,δ)×B(ξy,δ)

(Jat(u, v) ∧ 1) � c7 (Jat(xt, yt) ∧ 1) = c7(t1+d/2Ja(x, y) ∧ 1). (2.11)

Thus, combining (2.9) and (2.11) with (2.1), we conclude that for |xt − yt| � δ/8

pa
D(t, x, y) = t−d/2pat

t−1/2D
(1, t−1/2x, t−1/2y)

� c8t
−d/2

(
δD(x)√

t
∧ 1
)(

δD(y)√
t

∧ 1
)

(t1+d/2Ja(x, y) ∧ 1)

= c8

(
δD(x)√

t
∧ 1
)(

δD(y)√
t

∧ 1
)

(tJa(x, y) ∧ t−d/2). (2.12)
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Case 2: Suppose |xt − yt| < δ/8. By the semigroup property,

pat

t−1/2D
(1, xt, yt) �

∫
B(ξy,δ)

∫
B(ξx,δ)

pat

t−1/2D
(1/3, xt, u)

× pat

t−1/2D
(1/3, u, v)pat

t−1/2D
(1/3, v, yt) du dv. (2.13)

By (2.5) with b = 1/3, we have, for every (u, v) ∈ B(ξy, δ) × B(ξx, δ),

pat

t−1/2D
(1/3, u, v) � c9(δt−1/2D(u) ∧ 1)(δt−1/2D(v) ∧ 1) e−c10|u−v|2 � c11(δ ∧ 1)2.

Thus, by (2.7), (2.8) and (2.13),

pat

t−1/2D
(1, xt, yt) � c12

(
δD(x)√

t
∧ 1
)(

δD(y)√
t

∧ 1
)

� c12

(
δD(x)√

t
∧ 1
)(

δD(y)√
t

∧ 1
)

(t1+d/2Ja(x, y) ∧ 1). (2.14)

Combining (2.1), (2.12) and (2.14) with Lemma 2.1, we have proved the theorem.

3. Upper bound estimate

In this section, we will establish the upper bound estimate for Xa in any open set D (not
necessarily connected) satisfying a weaker version of the uniform exterior ball condition.

Suppose that U is a C1,1 open set with C1,1 characteristics (R,Λ). Without loss of generality,
we can always assume that R � 1 and Λ � 1. By definition, for every Q ∈ ∂U , there exist a C1,1-
function φQ : R

d−1 → R satisfying φQ(0) = 0, ∇φQ(0) = (0, . . . , 0), ‖∇φQ‖∞ � Λ, |∇φQ(x) −
∇φQ(z)| � Λ|x − z|, and an orthonormal coordinate system CSQ: y = (ỹ, yd) with origin at Q
such that B(Q,R) ∩ U = {y = (ỹ, yd) ∈ B(0, R) in CSQ : yd > φ(ỹ)}. Define

ρQ(x) := xd − φQ(x̃),

where (x̃, xd) are the coordinates of x in CSQ. Note that, for every Q ∈ ∂U and x ∈ B(Q,R) ∩
U , we have (1 + Λ2)−1/2ρQ(x) � δU (x) � ρQ(x). We define for r1, r2 > 0

UQ(r1, r2) := {y ∈ U : r1 > ρQ(y) > 0, |ỹ| < r2}.
We recall the following key estimates from [13, Lemma 3.5].

Lemma 3.1. Suppose R ∈ (0, 1], M ∈ (0,∞) and Λ ∈ [1,∞) are constants, and let r0 :=
R/(4

√
1 + Λ2). There are constants δ0 = δ0(R,M,Λ, α) ∈ (0, r0) and C16 = C16(R,M,Λ, α) >

0 such that, for all a ∈ (0,M ], λ � 1, C1,1 open set U with characteristics (R,Λ), Q ∈ ∂U and
x ∈ UQ(λ−1δ0, λ

−1r0) with x̃ = 0,

Px(Xa
τa

UQ(λ−1δ0,λ−1r0)
∈ U) � C16λδU (x) (3.1)

and

Ex[τa
UQ(λ−1δ0,λ−1r0)

] � C16λ
−1δU (x). (3.2)

We note that

Px(τa
U > 1/4) � Px(τa

UQ(δ0,r0)
> 1/4) + Px(Xa

τa
UQ(δ0,r0)

∈ U and τa
UQ(δ0,r0)

� 1/4)

� 4Ex[τa
UQ(δ0,r0)

] + Px(Xa
τa

UQ(δ0,r0)
∈ U).

Thus, by (3.1) and (3.2) with λ = 1 and a simple geometric consideration, we obtain the
following lemma.
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Lemma 3.2. Suppose that M > 0 and U is a C1,1 open set with the characteristics (R,Λ).
There exists C17 = C17(Λ, R,M,α) > 0 such that, for all a ∈ (0,M ] and x ∈ U,

Px(τa
U > 1/4) � C17δU (x).

In particular, we have the following.

Corollary 3.3. Suppose that M and r1 are positive constants and E := {x ∈ R
d : |x −

x0| > r1}. There exists C18 = C18(r1,M, α) > 0 independent of x0 such that, for all a ∈ (0,M ]
and x ∈ E,

Px(τa
E > 1/4) � C18δE(x).

The proof of the next lemma is similar to that of [3, Lemma 2], which is a variation of the
proof of [9, Lemma 2.2]. We give the proof here for the sake of completeness.

Lemma 3.4. Suppose that E1, E3 and E are open subsets of R
d with E1, E3 ⊂ E and

dist(E1, E3) > 0. For any n � 1, let E2,i, i = 1, . . . , n, be disjoint Borel subsets with
⋃n

i=1 E2,i =
E \ (E1 ∪ E3). If x ∈ E1 and y ∈ E3, then, for all a > 0 and t > 0,

pa
E(t, x, y) �

n∑
i=1

Px(Xa
τa

E1
∈ E2,i)

(
sup

s<t, z∈E2,i

pa
E(s, z, y)

)

+ (t ∧ Ex[τa
E1

])
(

sup
u∈E1,z∈E3

Ja(u, z)
)

. (3.3)

Proof. Using the strong Markov property, we have

pa
E(t, x, y) = Ex[pa

E(t − τa
E1

,Xa
τa

E1
, y) : τa

E1
< t]

=
n∑

i=1

Ex[pa
E(t − τa

E1
,Xa

τa
E1

, y) : τa
E1

< t,Xa
τa

E1
∈ E2,i]

+ Ex[pa
E(t − τa

E1
,Xa

τa
E1

, y) : τa
E1

< t,Xa
τa

E1
∈ E3] =: I + II.

Clearly,

I �
n∑

i=1

Px(τa
E1

< t,Xa
τa

E1
∈ E2,i)

(
sup

s<t, z∈E2,i

pa
E(s, z, y)

)

�
n∑

i=1

Px(Xa
τa

E1
∈ E2,i)

(
sup

s<t,z∈E2,i

pa
E(s, z, y)

)
.

On the other hand, by (1.2),

II =
∫ t

0

(∫
E1

pa
E1

(s, x, u)
(∫

E3

Ja(u, z)pa
E(t − s, z, y) dz

)
du

)
ds

�
(

sup
u∈E1, z∈E3

Ja(u, z)
) ∫ t

0

Px(τa
E1

> s)
(∫

E3

pa
E(t − s, z, y) dz

)
ds

�
∫ t

0

Px(τa
E1

> s) ds sup
u∈E1,z∈E3

Ja(u, z) � (t ∧ Ex[τa
E1

]) sup
u∈E1,z∈E3

Ja(u, z).

This completes the proof of the lemma.
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Theorem 3.5. Suppose that M > 0 is a constant and that D is an open set satisfying a
weaker version of the uniform exterior ball condition with radius R1 > 0. There exists a positive
constant C19 = C19(M,α,R1) such that, for all a ∈ (0,M ] and x, y ∈ D,

pa
D(1/2, x, y) � C19(δD(x) ∧ 1)(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1)). (3.4)

Proof. First note that, for every x0 ∈ R
d, {z ∈ R

d : |x − x0| > R1} is a C1,1 open set with
characteristics (R,Λ) depending only on R1 and d. Let r0 and δ0 be the positive constants in
Lemma 3.1 for U = {z ∈ R

d : |x − x0| > R1}.
It follows from Corollary 1.2 that

pa
D(1/2, x, y) � pa(1/2, x, y) � c1(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1)),

so it suffices to prove the theorem for x ∈ D with δD(x) < δ0/(32).
Now fix x ∈ D with δD(x) < δ0/(32) and let Q ∈ ∂D be such that |x − Q| = δD(x). Let

BQ ⊂ Dc be the ball with radius R1 so that ∂BQ ∩ ∂D = {Q} and E := (BQ)c. Observe that
δE(x) = δD(x) = |x − Q|.

When |x − y| �
√

dC2 ∨ ((δ0 + r0)/2), we have from Corollary 1.2 that

pa(1/2, x, y) � c2 e−c3|x−y|2 � c4 > 0 and sup
z∈Rd

pa(1/4, z, y) � c5.

Thus, by the semigroup property and Corollary 3.3,

pa
D(1/2, x, y) =

∫
D

pa
D(1/4, x, z)pa

D(1/4, z, y) dz

� sup
z∈D

pa
D(1/4, z, y)Px(τa

D > 1/4)

� sup
z∈Rd

pa(1/4, z, y)Px(τa
E > 1/4)

� c6δE(x) = c6δD(x) � c7δD(x)pa(1/2, x, y). (3.5)

Finally, we consider the case that |x − y| >
√

dC2 ∨ ((δ0 + r0)/2) (and δD(x) < δ0/(32)).
There exists a C1,1-function φ : R

d−1 →R satisfying φ(0)= 0, ∇φ(0)= (0, . . . , 0),
‖∇φ‖∞ �Λ, |∇φ(w) −∇φ(z)| � Λ|w − z|, and an orthonormal coordinate system CS with its
origin at Q such that

B(Q,R) ∩ E = {z = (z̃, zd) ∈ B(0, R) in CS : zd > φ(z̃)}
and x has coordinates (0̃, δD(x)) in this CS. Let

E1 := {z = (z̃, zd) in CS : 0 < zd − φ(z̃) < δ0/8, |z̃| < r0/8},
E3 := {z ∈ E : |z − x| > |x − y|/2} and E2 := E \ (E1 ∪ E3). Note that |z − x| > (δ0 + r0)/4
for z ∈ E3. So, if u ∈ E1 and z ∈ E3, then

|u − z| � |z − x| − |x − u| � |z − x| − (δ0 + r0)/8 � 1
2
|z − x| � 1

4
|x − y|. (3.6)

Thus

sup
u∈E1, z∈E3

Ja(u, z) � sup
(u,z):|u−z|� 1

4 |x−y|
Ja(u, z)

� ja(|x − y|/4) = (ja(|x − y|/4) ∧ jM ((δ0 + r0)/8)). (3.7)
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If z ∈ E2, then |z − y| � |x − y| − |x − z| � |x − y|/2. We also observe that, for every β � d/4,
sups<1/2 s−d/2 e−β/s = 2d/2 e−2β . By Corollary 1.2 and these observations,

sup
s<1/2, z∈E2

pa(s, z, y) � C3 sup
s<1/2,z∈E2

(s−d/2 e−|z−y|2/(C2s) + (s−d/2 ∧ sJa(z, y)))

� C32d/2 e−|x−y|2/C2 +
C3

2
ja(|x − y|/2)

= C32d/2 e−|x−y|2/C2 +
C3

2
(ja(|x − y|/2) ∧ jM ((δ0 + r0)/4))

� c8(e−|x−y|2/C2 + (ja(|x − y|) ∧ 1)) (3.8)

for some c8 > 0. Applying Lemmas 3.1 and 3.4, we obtain

pa
E(1/2, x, y) � c9(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1))(Px(Xa

τa
E1

∈ E) + Ex[τa
E1

])

� c10δE(x)(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1))

= c10δD(x)(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1)).

Therefore

pa
D(1/2, x, y) � pa

E(1/2, x, y) � c10δD(x)(e−|x−y|2/(2C2) + (ja(|x − y|) ∧ 1)).

Theorem 3.6. Assume that M > 0 is a constant and that D is an open set satisfying a
weaker version of the uniform exterior ball condition with radius R1 > 0. For every T > 0, there
exists a positive constant C20 = C20(T,R1, α,M) such that, for all a ∈ (0,M ] and (t, x, y) ∈
(0, T ] × D × D,

pa
D(t, x, y) � C20

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
(t−d/2 e−|x−y|2/(4C3

2 t) + (t−d/2 ∧ tJa(x, y))).

(3.9)

Proof. Fix T,M > 0 and recall that at := at(2−α)/(2α) � MT (2−α)/(2α). Note that t−1/2D
is an open set satisfying a weaker version of the uniform exterior ball condition with radius
T−1/2R1 > 0 for every t ∈ (0, T ]. Thus, by Theorem 3.5, there exists a positive constant c1 =
c1(T,R1, α,M) such that, for all t ∈ (0, T ] and a ∈ (0,M ],

pat

t−1/2D
(1/2, x, y) � c1(e−|x−y|2/(2C2) + (jat(|x − y|) ∧ 1))δt−1/2D(x). (3.10)

Thus by (2.1), (2.10) and (3.10), for every t � T ,

pa
D(t/2, x, y) = t−d/2pat

t−1/2D
(1/2, t−1/2x, t−1/2y)

� c1t
−d/2(e−|x−y|2/(2C2t) + (jat(|x − y|/t1/2) ∧ 1))δt−1/2D(t−1/2x)

= c1(t−d/2 e−|x−y|2/(2C2t) + (t−d/2 ∧ tJa(x, y)))
δD(x)√

t
.
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By symmetry, the above inequality holds with the roles of x and y interchanged. Using the
semigroup property and Corollary 1.2 (twice), for t � T ,

pa
D(t, x, y) =

∫
D

pa
D(t/2, x, z)pa

D(t/2, z, y) dz

� c3
δD(x)δD(y)

t

∫
D

pa(2C2
2 t, x, z)pa(2C2

2 t, z, y) dz

� c3
δD(x)δD(y)

t
pa(4C2

2 t, x, y)

� c4
δD(x)δD(y)

t
(t−d/2 e−|x−y|2/(4C3

2 t) + (t−d/2 ∧ tJa(x, y))).

This along with Corollary 1.2 proves the upper bound (3.9) by noting that

(1 ∧ u)(1 ∧ v) = min{1, u, v, uv} for u, v > 0.

We point out that, in view of Theorem 2.4, the above upper bound estimate (3.9) is sharp
when x and y are in the same component of D. However, it is not sharp when x and y are in
different components of D, since in this case when a → 0 it does not go to zero and thus does
not give the sharp upper bound for the Dirichlet heat kernel p0

D(t, x, y) of Brownian motion in
D. Next, we improve the above estimate to get the sharp estimate stated in Theorem 3.9.

For the remainder of this section, we continue to assume D is an open set satisfying a weaker
version of the uniform exterior ball condition with radius R1 > 0. It is easy to see that the
distance between any two distinct connected components of D is at least R∗ for some R∗ > 0
that depends only on R1. Without loss of generality, we assume that R∗ = R1. Observe that,
for c0 > 0, r � r0 and t > 0,

t−d/2 e−c0r2/t � c1t
−d/2(t/r2)d/2+1 = c1

t

rd+2
� c1r

α−2
0

t

rd+α
, (3.11)

where c1 > 0 depends only on c0, r0 and d. This implies that, for x and y in different
components of D, the jumping kernel component tJ1(x, y) dominates the Gaussian component
t−d/2 e−|x−y|2/C2t. This fact will be used several times in the rest of this section.

By Theorem 3.6, we only need to consider the case when x and y are in different components
of D. Recall that, for any x ∈ D, D(x) denotes the connected component of D that contains x.

First we give an interior upper bound of pa
D(t, x, y) when x and y are in different components

of D.

Lemma 3.7. Assume that M > 0 is a constant and that D is an open set satisfying a weaker
version of the uniform exterior ball condition with radius R1 > 0. For every T > 0, there exists
a positive constant C21 = C21(T,R1, α,M) such that, for all a ∈ (0,M ], t ∈ (0, T ] and x and y
in different components of D,

pa
D(t, x, y) � C21a

αt|x − y|−d−α.

Proof. Using the strong Markov property and (1.2), we have, for t � T ,

pa
D(t, x, y)

= Ex[pa
D(t − τa

D(x),X
a
τa

D(x)
, y) : τa

D(x) < t,Xa
τa

D(x)
∈ D \ D(x)]

=
∫ t

0

(∫
D(x)

pa
D(x)(s, x, u)

(∫
D\D(x)

Ja(u, z)pa
D(t − s, z, y) dz

)
du

)
ds
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� c1
aα

tMα

∫ t

0

(∫
D(x)

pa(s, x, u)

(∫
D\D(x)

(t−d/2 ∧ (tJM (u, z)))pa(t − s, z, y) dz

)
du

)
ds

� c1
aα

tMα

∫ t

0

(∫
Rd

pa(s, x, u)
(∫

Rd

(t−d/2 ∧ (tJM (u, z)))pa(t − s, z, y) dz

)
du

)
ds. (3.12)

In the second to the last inequality above, we have used the facts that JM (u, z) � jM (R1) and
t � T . By Corollary 1.2, pa(s, x, u) � c2p

M (C2
2s, x, u), pa(t − s, z, y) � c2p

M (C2
2 (t − s), z, y)

and t−d/2 ∧ (tJM (u, z)) � c2p
M (t, u, z). Thus, using the semigroup property and Corollary 1.2,

from (3.12) we obtain that

pa
D(t, x, y) � c3

aα

tMα

∫ t

0

(∫
Rd

pM (C2
2s, x, u)

(∫
Rd

pM (t, u, z)pM (C2
2 (t − s), z, y) dz

)
du

)
ds

= c3
aα

tMα

∫ t

0

pM ((C2
2 + 1)t, x, y) ds

� c4a
α

(
t−d/2 e−|x−y|2/(C2(C

2
2+1)t) + t−d/2 ∧ t

|x − y|d+α

)
� c5a

αt|x − y|−d−α.

In the last inequality above, we have used the fact that |x − y| � R1.

Theorem 3.8. Assume that M > 0 is a constant and that D is an open set satisfying a
weaker version of the uniform exterior ball condition with radius R1 > 0. There exists a positive
constant C22 = C22(M,α,R1) such that, for all a ∈ (0,M ] and x and y in different components
of D,

pa
D(1, x, y) � C22(δD(x) ∧ 1)(δD(y) ∧ 1)(ja(|x − y|) ∧ 1).

Proof. We first claim that

pa
D(1/2, x, y) � c1a

α(δD(x) ∧ 1)(|x − y|−d−α ∧ 1). (3.13)

Recall that, for every x0 ∈ R
d, {z ∈ R

d : |x − x0| > R1/4} is a C1,1 open set with characteristics
(R,Λ) depending only on R1 and d. Let r0 and δ0 be the positive constants in Lemma 3.1 for
U = {z ∈ R

d : |x − x0| > R1/4}. It follows from Lemma 3.7 that

pa
D(1/2, x, y) � c1(ja(|x − y|) ∧ 1).

So it suffices to prove (3.13) for x ∈ D with δD(x) < δ0/(32).
Now fix x ∈ D with δD(x) < δ0/(32) and let Q ∈ ∂D be such that |x − Q| = δD(x). Let BQ

be the ball with radius R1/4 so that BQ ⊂ Dc and ∂BQ ∩ ∂D = {Q}.
There exist a C1,1-function φ : R

d−1 → R satisfying φ(0) = 0, ∇φ(0) = (0, . . . , 0), ‖∇φ‖∞ �
Λ, |∇φ(w) −∇φ(z)| � Λ|w − z| and an orthonormal coordinate system CS with its origin at
Q such that

B(Q,R) ∩ (BQ)c = {z = (z̃, zd) ∈ B(0, R) in CS : zd > φ(z̃)}
and x has coordinates (0̃, δD(x)) in this CS. Let

E := D ∪ (B(Q,R1/2) \ BQ),
E1 := {z = (z̃, zd) in CS : 0 < zd − φ(z̃) < δ0/8, |z̃| < r0/8},

E3 := {z ∈ E : |z −x|> |x− y|/2}, E2,1 := (E \ (E1 ∪ E3)) ∩ D(y) and E2,2 := E \ (E1 ∪ E3 ∪
D(y)). Observe that δ(BQ)c(x)= δE(x)= δD(x)= |x−Q| and |x− y|� R1 > R > ((δ0 + r0)/2).
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So, by (3.6) and (3.7), dist(E1, E3) � R1/4 and

sup
u∈E1,z∈E3

Ja(u, z) � c2(ja(|x − y|) ∧ 1). (3.14)

If z ∈ E2,i, i = 1, 2, then |z − y| � |x − y| − |x − z| � |x − y|/2. Thus, by the same argument
as the one in (3.8), if |x − y| >

√
dC2, we have by (3.11)

sup
s<1/2,z∈E2,1

pa(s, z, y) � c3(e−|x−y|2/C2 + (ja(|x − y|) ∧ 1)) � c4(jM (|x − y|) ∧ 1). (3.15)

If |x − y| �
√

dC2, since R1 � |x − y|, we also have

sup
s<1/2,z∈E2,1

pa(s, z, y) � C3 sup
s<1/2,z∈E2,1

(s−d/2 e−|z−y|2/(C2s) + (s−d/2 ∧ sJa(z, y)))

� c5 sup
s<1/2

(s−d/2 e−R2
1/(4C2s) + (s−d/2 ∧ sja(R1)))

� c6 � c7j
M (|x − y|). (3.16)

On the other hand, since D(y) ⊂ Ec
2,2, by Lemma 3.7,

sup
s<1/2,z∈E2,2

pa
E(s, z, y) � C21 sup

s<1/2,z∈E2,2

sja(|z − y|) � c8(ja(|x − y|) ∧ 1). (3.17)

Furthermore, since dist(E1,D(y)) � R1/2, by the Lévy system (1.2),

Px(Xa
τa

E1
∈ E2,1) � Px(Xa

τa
E1

∈ D(y))

=
∫∞

0

(∫
E1

pa
E1

(s, x, u)

(∫
D(y)

Ja(u, z) dz

)
du

)
ds

= aα

∫∞

0

(∫
E1

pa
E1

(s, x, u)

(∫
D(y)

J1(u, z) dz

)
du

)
ds

� aα

(∫
{|z|>R1/2}

j1(|z|) dz

) ∫∞

0

(∫
E1

pa
E1

(s, x, u) du

)
ds

� c9a
α
Ex[τa

E1
]. (3.18)

Applying Lemmas 3.1 and 3.4, and combining (3.14)–(3.18), we obtain

pa
E(1/2, x, y) � Px(Xa

τa
E1

∈ E2,1)

(
sup

s<1/2, z∈E2,1

pa
E(s, z, y)

)

+ Px(Xa
τa

E1
∈ E2,2)

(
sup

s<1/2,z∈E2,2

pa
E(s, z, y)

)

+ Ex[τa
E1

]
(

sup
u∈E1, z∈E3

Ja(u, z)
)

� c9a
α
Ex[τa

E1
]

(
sup

s<1/2,z∈E2,1

pa(s, z, y)

)

+ Px(Xa
τa

E1
∈ (BQ)c)

(
sup

s<1/2,z∈E2,2

pa
E(s, z, y)

)

+ Ex[τa
E1

]
(

sup
u∈E1,z∈E3

Ja(u, z)
)

� c10 aα(δD(x) ∧ 1)(|x − y|−d−α ∧ 1).
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Therefore, we have proved the claim (3.13). In particular, we have

pa
D(1/2, x, y) � c10a

α(δD(x) ∧ 1)(e−|x−y|2/(2C2) + (|x − y|−d−α ∧ 1)). (3.19)

By symmetry, the above inequality holds with the roles of x and y interchanged. It follows
from the semigroup property that

pa
D(1, x, y) =

∫
D

pa
D(1/2, x, z)pa

D(1/2, z, y) dz

=
∫
D(x)

pa
D(1/2, x, z)pa

D(1/2, z, y) dz +
∫
D\D(x)

pa
D(1/2, x, z)pa

D(1/2, z, y) dz.

By applying Theorem 3.5 and (3.19), and then applying Corollary 1.2 (twice), we have

pa
D(1, x, y) � c11a

α(δD(x) ∧ 1)(δD(y) ∧ 1)
∫
D

p1(2C2
2 , x, z)p1(2C2

2 , z, y) dz

� c11a
α(δD(x) ∧ 1)(δD(y) ∧ 1)p1(4C2

2 , x, y)

� c12a
α(δD(x) ∧ 1)(δD(y) ∧ 1)(e−|x−y|2/(4C3

2 ) + (|x − y|−d−α ∧ 1))

� c13a
α(δD(x) ∧ 1)(δD(y) ∧ 1)|x − y|−d−α

� c14(δD(x) ∧ 1)(δD(y) ∧ 1)(Ja(x, y) ∧ 1).

Recall that ha
C(t, x, y) is defined in (1.4).

Theorem 3.9. Assume that M > 0 is a constant and that D is an open set satisfying a
weaker version of the uniform exterior ball condition with radius R1 > 0. For every T > 0, there
exists a positive constant C23 = C23(T,R1, α,M) such that, for all a ∈ (0,M ] and (t, x, y) ∈
(0, T ] × D × D,

pa
D(t, x, y) � C23h

a
(4C3

2 )−1(t, x, y).

Proof. Fix T,M > 0 and recall that at = at(2−α)/(2α) � MT (2−α)/(2α). Note that t−1/2D
is an open set satisfying a weaker version of the uniform exterior ball condition with
radius T−1/2R1 > 0 for every t ∈ (0, T ]. Thus, by Theorem 3.8, there exists a positive
constant c1 = c1(T,R1, α,M) such that, for all t ∈ (0, T ], a ∈ (0,M ] and x and y in different
components of D,

pat

t−1/2D
(1, x, y) � c1(jat(|x − y|) ∧ 1)(δt−1/2D(x) ∧ 1)(δt−1/2D(y) ∧ 1). (3.20)

Thus by (2.1), (2.10) and (3.20), for every t � T , a ∈ (0,M ] and x and y in different components
of D,

pa
D(t, x, y) = t−d/2pat

t−1/2D
(1, t−1/2x, t−1/2y)

� c1t
−d/2(jat(|x − y|/t1/2) ∧ 1)(δt−1/2D(t−1/2x) ∧ 1)(δt−1/2D(t−1/2y) ∧ 1)

= c1(t−d/2 ∧ tJa(x, y))
(

δD(x)√
t

∧ 1
)(

δD(y)√
t

∧ 1
)

.

Combining this result with Theorem 3.6, we have proved the theorem.

4. Large time estimates

In this section, we assume that D is a bounded C1,1 open set in R
d which may be disconnected,

and we give the proof of Theorem 1.3(ii) and (iii).
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Proof of Theorem 1.3(ii) and (iii). Let D be a bounded C1,1 open set in R
d with d � 1. For

each a � 0, the semigroup of Xa,D is Hilbert–Schmidt as, by Theorem 1.1,
∫
D×D

pa
D(t, x, y)2 dx dy =

∫
D

pa
D(2t, x, x) dx � C1((2t)−d/2 ∧ (aα2t)−d/α)|D| < ∞,

and hence is compact. For a � 0, let {λa,D
k : k = 1, 2, . . .} be the eigenvalues of −(Δ +

aαΔα/2)|D, arranged in increasing order and repeated according to multiplicity, and {φa,D
k :

k = 1, 2, . . .} be the corresponding eigenfunctions normalized to have unit L2-norm on D. Note
that {φa,D

k : k = 1, 2, . . .} forms an orthonormal basis of L2(D; dx). It is well known that,
when a > 0, λa,D

1 is strictly positive and simple, and that φa,D
1 can be chosen to be strictly

positive on D. It follows from [18, Theorem 1.1(ii)] that the function a �→ λa,D
1 is continuous

on (0,M ], and lima→0+ λa,D
1 = λ0,D

1 := min1�j�k λ
0,Dj

1 , where D1, . . . , Dk are the connected
components of D and λ

0,Dj

1 is the first Dirichlet eigenvalue of −Δ|Dj
. Hence there is a constant

c1 = c1(D,α,M) � 1 so that

1/c1 � λa,D
1 � c1 for every a ∈ (0,M ]. (4.1)

Using Sobolev embedding (see [18, Example 5.1]), it can be shown that {φa,D
1 , a ∈ (0,M ]} is

relatively compact in L2(D; dx). Hence by [18, Theorem 1.1(ii)] and the fact that each λa,D
1 is

simple for a > 0, a → φa,D
1 is continuous in L2(D; dx) in a ∈ (0,M ]. Furthermore, as a → 0+,

any weak limit φ of φa,D
1 is a unit non-negative eigenfunction of −Δ|D with eigenvalue λ0,D

1 .
Note that such φ may not be strictly positive everywhere on D when D is disconnected; it is
strictly positive on least one component Dj of D where λ

0,Dj

1 = λ0,D
1 . It follows that there is

a constant c2 = c2(D,α,M) > 0 so that

sup
a∈(0,M ]

∫
D

δD(x)φa,D
1 (x) dx � c2. (4.2)

Recall that pa
D(t, x, y) admits the following eigenfunction expansion:

pa
D(t, x, y) =

∞∑
k=1

e−tλa,D
k φa,D

k (x)φa,D
k (y) for t > 0 and x, y ∈ D.

This implies that
∫
D×D

δD(x)pa
D(t, x, y)δD(y) dx dy =

∞∑
k=1

e−tλa,D
k

(∫
D

δD(x)φa,D
k (x) dx

)2

. (4.3)

Consequently, we have
∫
D×D

δD(x)pa
D(t, x, y)δD(y) dx dy � e−tλa,D

1

∫
D

δD(x)2 dx (4.4)

for all a > 0 and t > 0. On the other hand, since

φa,D
1 (x) = eλa,D

1

∫
D

pa
D(1, x, y)φa,D

1 (y) dy,

by the upper bound estimate in Theorem 1.3(i) and (4.1) and (4.2) there is a constant c3 =
c3(D,α,M) > 0 such that, for every a ∈ (0,M ] and x ∈ D,

φa,D
1 (x) � c3δD(x)

∫
D

δD(y)φa,D
1 (y) dy � c2c3δD(x).



HEAT KERNEL ESTIMATES 77

It now follows from (4.3) that, for every a ∈ (0,M ] and t > 0,

∫
D×D

δD(x)pa
D(t, x, y)δD(y) dx dy � e−tλa,D

1

(∫
D

δD(x)φa,D
1 (x) dx

)2

� e−tλa,D
1

(∫
D

(c2c3)−1φa,D
1 (x)2 dx

)2

= (c2c3)−2 e−tλa,D
1 .

(4.5)

It suffices to prove (ii) and (iii) of Theorem 1.3 for T � 3. For t � T and x, y ∈ D, observe
that

pa
D(t, x, y) =

∫
D×D

pa
D(1, x, z)pa

D(t − 2, z, w)pa
D(1, w, y) dz dw. (4.6)

Since D is bounded, we have by the upper bound estimate in Theorem 1.3(i) and (4.4) that
there are constants ci = ci(D,α,M) > 0, i = 4, 5, such that, for every a ∈ (0,M ], t � T and
x, y ∈ D,

pa
D(t, x, y) � c4δD(x)δD(y)

∫
D×D

δD(z)pa
D(t − 2, z, w)δD(w) dz dw � c5δD(x)δD(y) e−tλa,D

1 .

(4.7)
(ii) Assume first that D is connected. Since D is bounded and connected, we have by the

lower bound estimate in Theorem 1.3(i) and (4.5) that there are constants ci = ci(D,α,M) > 0,
i = 6, 7, such that, for every a ∈ (0,M ], t � T and x, y ∈ D,

pa
D(t, x, y) � c6δD(x)δD(y)

∫
D×D

δD(z)pa
D(t − 2, z, w)δD(w) dz dw � c7δD(x)δD(y) e−tλa,D

1 .

(4.8)
This combined with (4.7) proves Theorem 1.3(ii).

(iii) Now let us consider the case that D is disconnected. Note that it follows from (ii) that,
for every t � 1, x ∈ D and y ∈ D(x),

pa
D(t, x, y) � pa

D(x)(t, x, y) � c8 e−tλ
a,D(x)
1 δD(x)δD(y). (4.9)

Moreover, the above inequality (4.9), (4.7) and the two-sided estimate in Theorem 1.3(i) yield
that there is a constant c9 := c9(D,α,M) � 1 such that, for every a ∈ (0,M ], t > 0 and x ∈ D,

c−1
9 e−tλ

a,D(x)
1 δD(x) � Px(τa

D(x) > t) � c9 e−tλ
a,D(x)
1 δD(x) (4.10)

and

Px(τa
D > t) � c9 e−tλa,D

1 δD(x). (4.11)
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For t � T , x ∈ D and y ∈ D \ D(x), we have by the boundedness of D, (4.10) and the lower
bound estimate in Theorem 1.3(i) that

pa
D(t, x, y) = Ex[pa

D(t − τa
D(x),X

a
τa

D(x)
, y); τa

D(x) < t]

=
∫ t

0

(∫
D(x)

pa
D(x)(s, x, z)

(∫
D\D(x)

Ja(z, w)pa
D(t − s, w, y) dw

)
dz

)
ds (4.12)

� c10a
α

∫ t

0

(∫
D(x)

pa
D(x)(s, x, z) dz

)(∫
D(y)

pa
D(y)(t − s, w, y) dw

)
ds

= c10a
α

∫ t

0

Px(τa
D(x) > s)Py(τa

D(y) > t − s) ds

� c10c
−2
9 aα

∫ t

0

e−sλ
a,D(x)
1 δD(x) e−(t−s)λ

a,D(y)
1 δD(y) ds (4.13)

� c10c
−2
9 aαt e−t(λ

a,D(x)
1 ∨λ

a,D(y)
1 )δD(x)δD(y). (4.14)

On the other hand, using (4.10) and (4.11), we have from (4.12) that, for t � T , x ∈ D and
y ∈ D \ D(x),

pa
D(t, x, y) � c11a

α

∫ t

0

(∫
D(x)

pa
D(x)(s, x, z) dz

)(∫
D\D(x)

pa
D(t − s, w, y) dw

)
ds

� c11a
α

∫ t

0

Px(τa
D(x) > s)Py(τa

D > t − s) ds

� c11c
2
9a

α

∫ t

0

e−sλ
a,D(x)
1 δD(x) e−(t−s)λa,D

1 δD(y) ds

= c11c
2
9a

αδD(x)δD(y) e−tλa,D
1

∫ t

0

e−s(λ
a,D(x)
1 −λa,D

1 ) ds (4.15)

� c11c
2
9a

αt e−tλa,D
1 δD(x)δD(y). (4.16)

Finally, by (4.7) and the same argument that leads to (4.15), we have that, for t � T ,
x, y ∈ D(x),

pa
D(t, x, y) = pa

D(x)(t, x, y) + Ex[pa
D(t − τa

D(x),X
a
τa

D(x)
, y); τa

D(x) < t]

� c12δD(x)δD(y) e−tλ
a,D(x)
1 + c12a

αδD(x)δD(y) e−tλa,D
1

∫ t

0

e−s(λ
a,D(x)
1 −λa,D

1 ) ds

(4.17)

� c12δD(x)δD(y) e−tλ
a,D(x)
1 + c12a

αtδD(x)δD(y) e−tλa,D
1 . (4.18)

Combining this with (4.7)–(4.9), (4.14) and (4.16) completes the proof of Theorem 1.3(iii).

Remark 4.1. In general, when passing from (4.13) to (4.14), from (4.15) to (4.16) and
from (4.17) to (4.18), a factor t is needed for the lower bound estimate and the upper
bound estimate to be uniform in a ∈ (0,M ]. Note that, for D having at least two connected
components, λ

a,D(x)
1 > λa,D

1 for every a > 0. Since D is a bounded C1,1 open set, it has only
finite many connected components D1, . . . , Dk. According to [18, Theorem 1.1], as a → 0, λa,D

1

converges to min1�j�k λ
0,Dj

1 , where λ
0,Dj

1 is the first Dirichlet eigenvalue of −Δ|Dj
on domain

Dj . Let j0 be such that λ
0,Dj0
1 = min1�j�k λ

0,Dj

1 . Then for every x ∈ Dj0 , we have infa∈(0,M ]
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(λa,D(x)
1 − λa,D

1 ) = lima→0+ λ
a,D(x)
1 − λa,D

1 = 0. Moreover, if D has two connected components
D1 and D2 that are isometric to each other, then by [18, Theorem 1.1], for x ∈ D1 and y ∈ D2,

lim
a→0+

λ
a,D(x)
1 = λ0,D1

1 = λ0,D2
1 = lim

a→0+
λ

a,D(y)
1 .
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