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Abstract

In this paper, the long-time behavior of the Cesaro mean of the fun-
damental solution for fractional Heat equation corresponding to random
time changes in the Brownian motion is studied. We consider both stable
subordinators leading to equations with the Caputo-Djrbashian fractional
derivative and more general cases corresponding to differential-convolution
operators, in particular, distributed order derivatives.
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1. Introduction

Let {Xt, t ≥ 0;Px, x ∈ E} be a strong Markov process in the phase
space Rd. Denote by Tt its transition semigroup (in an appropriate Banach
space) and by L the generator of this semigroup. Let St, t ≥ 0 be a subor-
dinator (i.e., a non-decreasing real-valued Lévy process) with S0 = 0 and
the Laplace exponent Φ:

E[e−λSt ] = e−tΦ(λ) t, λ > 0.

We assume that St is independent of Xt.
Denote by Et, t > 0 the inverse subordinator, and introduce the time-

changed process Yt = XEt . Our goal is to analyze the properties of Yt

depending on the given Markov process Xt and the particular choice of
subordinator St, see Theorem 3.1 and Theorem 4.1 below. There is a lot

c© 2021 Diogenes Co., Sofia
pp. 73–87 , DOI: 10.1515/fca-2021-0004



74 A. N. Kochubei, Yu. Kondratiev, J. L. da Silva

of interest on this kind of problem in diverse disciplines. In addition to
purely stochastic motivations, the transform of the Markov process Xt in
the non-Markov one Yt implies the presence of effects in the corresponding
dynamics. This feature is important in a number of physical models. In
particular, progress in the understanding of this process may lead to the
realization of useful models of biological time in the evolution of species
and ecological systems. Currently, there exist rather complete studies of
such problems in the case of so-called θ-stable subordinators (0 < θ < 1)
[6, 15] and in special examples of initial processes Xt (see, e.g., [17], [12],
[13]).

As a basic characteristic of the new process Yt, we may study the time
evolution

u(t, x) = Ex[f(Yt)]

for a given initial data f .
As it was pointed out in several works, see e.g. [20], [7] and references

therein, u(t, x) is the unique strong solution (in some appropriate sense) to
the following Cauchy problem

D
(k)
t u(t, x) = Lu(t, x) u(0, x) = f(x). (1.1)

Here we have a generalized fractional derivative (GFD for short)

D
(k)
t φ(t) =

d

dt

∫ t

0
k(t− s)(φ(s)− φ(0))ds

with a kernel k uniquely defined by Φ.
Let u0(t, x) be the solution to a similar Cauchy problem but with ordi-

nary time derivative
∂

∂t
u(t, x) = Lu(t, x) u(0, x) = f(x). (1.2)

In stochastic terminology, it is the solution to the forward Kolmogorov
equation corresponding to the process Xt. Under quite general assump-
tions there is a convenient and essentially obvious relation between these
evolutions that is known as the subordination principle:

u(t, x) =

∫ ∞

0
u0(τ, x)Gt(τ)dτ,

where Gt(τ) is the density of Et.
A similar relation holds for fundamental solutions (or heat kernels in

another terminology) v(x, t) and vE(x, t) of equations (1.2) and (1.1), re-
spectively. For certain classes of a priori bounds for fundamental solutions
v(x, t), the properties of the subordinated kernels were studied in [8]. The
main technical tool used in this work involves a scaling property assumed
for Φ [8] that is a global condition on the Lévy characteristic Φ(λ). It is
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nevertheless difficult to give an interpretation of this scaling assumption in
terms of the subordinator.

The aim of the present work is to extend the class of random times for
which one may obtain information about the time asymptotic of vE(x, t).
We consider the following three classes of admissible kernels k ∈ L1

loc(R+),
characterized in terms of the Laplace transforms K(λ) as λ → 0 (i.e., as
local conditions):

K(λ) ∼ λθ−1, 0 < θ < 1. (C1)

K(λ) ∼ λ−1L

(
1

λ

)
, L(y) := μ(0) log(y)−1. (C2)

K(λ) ∼ λ−1L

(
1

λ

)
, L(y) := C log(y)−1−s, s > 0, C > 0. (C3)

We would like to emphasize that these classes of kernels leads to differential-
convolution operators, in particular, the Caputo-Djrbashian fractional de-
rivative (C1) and distributed order derivatives (C2),(C3). For each kernel
of this type, we establish the asymptotic properties of the subordinated
heat kernels from different classes of a priory bounds. It is important to
stress that in working with much more general random times (i.e., without
the scaling property), a price must be paid for such an extension, namely
the replacement of vE(x, t) by its Cesaro mean. This is the key technical
observation that underlies the analysis of several different model situations.

2. Preliminaries

Let S = {S(t), t ≥ 0} be a subordinator, that is a process with station-
ary and independent non-negative increments starting from 0. They form
a special class of Lévy processes taking values in [0,∞) and their sample
paths are non-decreasing. In addition we assume that S has no drift (see
[3] for more details). The infinite divisibility of the law of S implies that
its Laplace transform can be expressed in the form

E(e−λS(t)) = e−tΦ(λ), λ ≥ 0,

where Φ : [0,∞) −→ [0,∞), called the Laplace exponent (or cumulant), is
a Bernstein function. The associated Lévy measure σ has support in [0,∞)
and fulfills ∫

(0,∞)
(1 ∧ τ) dσ(τ) < ∞ (2.1)

such that the Laplace exponent Φ can be expressed as

Φ(λ) =

∫
(0,∞)

(1− e−λτ ) dσ(τ), (2.2)
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which is known as the Lévy-Khintchine formula for the subordinator S. In
addition we assume that the Lévy measure σ satisfy

σ(0,∞) = ∞. (2.3)

For the given Lévy measure σ, we define the function k by

k : (0,∞) −→ (0,∞), t 	→ k(t) := σ
(
(t,∞)

)
(2.4)

and denote its Laplace transform by K; i.e., for any λ ≥ 0 one has

K(λ) :=

∫ ∞

0
e−λtk(t) dt. (2.5)

We note that by the Fubini theorem, the function K is given in terms of
the Laplace exponent. Specifically,

K(λ) =

∫ ∞

0
e−λt

∫
(t,∞)

dσ(s) dt =

∫
(0,∞)

∫ s

0
e−λt dt dσ(s) =

1

λ
Φ(λ),

i.e.,

Φ(λ) = λK(λ), ∀λ ≥ 0. (2.6)

Given the inverse process E of the subordinator S, namely

E(t) := inf{s ≥ 0 : S(s) ≥ t} = sup{s ≥ 0 : S(s) ≤ t}, (2.7)

the marginal density of E(t) will be denoted by Gt(τ), t, τ ≥ 0, more
explicitly

Gt(τ) dτ = ∂τP (E(t) ≤ τ) = ∂τP (S(τ) ≥ t) = −∂τP (S(τ) < t).

Example 1. θ-stable subordinator and Gamma processes.

(1) Let S be a θ-stable subordinator θ ∈ (0, 1) with Laplace exponent

Φθ(λ) = λθ =
θ

Γ(1− θ)

∫ ∞

0
(1− e−λτ )τ−1−θ dτ,

from which it follows that the Lévy measure σ is given by

dσ(τ) =
θ

Γ(1− θ)
τ−1−θ dτ.

The restriction θ ∈ (0, 1) and not θ ∈ (0, 2) is due to the requirement
(2.1). The boundary θ = 1 corresponds to a degenerate case since
S(t) = t.

We have K(λ) = λθ−1 and k(t) = t−θ/Γ(1 − θ). The correspond-

ing GFD D
(k)
t is the Caputo-Djrbashian fractional derivative D

(θ)
t of

order θ ∈ (0, 1).
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(2) The Gamma process Y (a,b) with parameters a, b > 0 is given by its
Laplace exponent Φ(a,b) as

Φ(a,b)(λ) = a log

(
1 +

λ

b

)
=

∫ ∞

0
(1− e−λτ )aτ−1e−bτ dτ,

where the second equality is known as the Frullani integral [1]. The
corresponding Lévy measure is given by

dσ(τ) = aτ−1e−bτ dτ.

We have K(λ) = λ−1a log
(
1 + λ

b

)
and k(t) = aΓ(0, bt). The corre-

sponding GFD is given by

(D
(a,b)
t f)(t) =

d

dt

∫ t

0
Γ(0, b(t− s))(f(s)− f(0)) ds.

An important characteristic of the density Gt(τ) is given by its Laplace
transform. More precisely, does the τ -Laplace (or t-Laplace) transform of
Gt(τ) are known for an arbitrary subordinator? Thus, we would like to
compute the following integrals∫ ∞

0
e−λτGt(τ) dτ or

∫ ∞

0
e−λtGt(τ) dt.

The answer for the t-Laplace transform is affirmative and the result is given
in (2.14) below. On the other hand, for the τ -Laplace transform a partial
answer has been given for the class of θ-stable processes; namely

Example 2. (cf. Prop. 1(a) in [5]).
If S is a θ-stable process, then the inverse process E(t) has the Mittag-

Leffler distribution, as follows,

E(e−λE(t)) =

∞∑
n=0

(−λtθ)n

Γ(nθ + 1)
= Eθ(−λtθ). (2.8)

It follows from the asymptotic behavior of the Mittag-Leffler function Eθ

that

E(e−λE(t)) ∼ C

tθ
, as t → ∞.

In addition, using the fact that

Eθ(−x) =

∫ ∞

0
e−xτMθ(τ) dτ, ∀x ≥ 0, (2.9)

where Mθ is the so-called M -Wright (cf. [14] for more details and proper-
ties), it follows that

E(e−λE(t)) =

∫ ∞

0
e−λtθτMθ(τ) dτ =

∫ ∞

0
e−λτ t−θMθ(τt

−θ) dτ
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from which we obtain the density of E(t) explicitly as

Gt(τ) = t−θMθ(τt
−θ). (2.10)

For a general subordinator, the following lemma determines the t-Laplace
transform of Gt(τ), with k and K given in (2.4) and (2.5), respectively.

Lemma 2.1. The t-Laplace transform of the density Gt(τ) is given by∫ ∞

0
e−λtGt(τ) dt = K(λ)e−τλK(λ). (2.11)

In addition, the double (τ, t)-Laplace transform of Gt(τ) is given by∫ ∞

0

∫ ∞

0
e−pτe−λtGt(τ) dt dτ =

K(λ)

λK(λ) + p
.

P r o o f. For any τ ≥ 0 let ητ be the distribution of S(τ), that is

E(e−λS(τ)) = e−τΦ(λ) =

∫ ∞

0
e−λs dητ (s). (2.12)

Defining

g(λ, τ) := K(λ)e−τΦ(λ), τ, λ > 0 (2.13)

under assumption (2.3), for all t > 0 it follows from Theorem 3.1 in [16]
that the density Gt(τ) of the random variable E(t) if given by

Gt(τ) =

∫ t

0
k(t− s) dητ (s).

It follows then that∫ ∞

0
e−λtGt(τ) dt = g(λ, τ) = K(λ)e−τΦ(λ). (2.14)

In fact, by the Fubini’s theorem we obtain∫ ∞

0
e−λtGt(τ) dt =

∫ ∞

0
e−λt

∫ t

0
k(t− s) dητ (s) dt

=

∫ ∞

0

∫ ∞

s
e−λtk(t− s) dt dητ (s)

= K(λ)

∫ ∞

0
e−λs dητ (s)

= g(λ, τ).

In addition, it follows easily from (2.13) that∫ ∞

0
g(λ, τ) dτ =

1

λ
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so that (2.14) may be written as∫ ∞

0
e−λt dt

∫ ∞

0
Gt(τ) dτ =

1

λ

which implies that Gt(τ) is a τ -density on R+:∫ ∞

0
Gt(τ) dτ = 1.

Finally, the double (τ, t)-Laplace transform follows from∫ ∞

0

∫ ∞

0
e−pτe−λtGt(τ) dt dτ =

∫ ∞

0
e−pτg(λ, τ) dτ

= K(λ)

∫ ∞

0
e−pτe−τλK(λ) dτ

=
K(λ)

λK(λ) + p
. (2.15)

�

3. Subordinated heat kernel

In this section, we investigate the long-time behavior of the fundamental
solutions for fractional evolution equations corresponding to random time
changes in the Brownian motion by the inverse process Et, t ≥ 0. We
consider three classes of time change, namely those corresponding to the
θ-stable subordinator, 0 < θ < 1, the distributed order derivative, and
the class of Stieltjes functions. Henceforth L will always denotes a slowly
varying function at infinity (SVF), that is,

lim
x→∞

L(λx)

L(x)
= 1,

see for instance [4] and [19]) for more details, while C, C ′ are constants
whose values are unimportant, and which may change from line to line.

Let v(x, t) be the fundamental solution of the heat equation⎧⎨
⎩

∂u(x, t)

∂t
= 1

2Δu(x, t)

u(x, 0) = δ(x),
(3.1)

where Δ denotes the Laplacian in R
d. It is well known that the solution

v(x, t) of (3.1), called heat kernel (also known as Green function), is given
by

v(x, t) =
1

(2πt)d/2
e−

|x|2
2t (3.2)
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and the associated stochastic process is the classical Brownian motion in
R
d. Notice that the heat kernel v(x, t) has the following long-time behavior

v(x, t) ∼ Ct−d/2, as t → ∞.

We are interested in studying the long-time behavior of the subordina-
tion of the solution v(x, t) by the density Gt(τ), that is,

vE(x, t) :=

∫ ∞

0
v(x, τ)Gt(τ) dτ =

1

(2π)d/2

∫ ∞

0
τ−d/2e−

|x|2
2τ Gt(τ) dτ. (3.3)

Then vE(x, t) is the fundamental solution of the general fractional time
differential equation, that is,{

D
(k)
t u(x, t) = 1

2Δu(x, t)

u(x, 0) = δ(x).
(3.4)

Here D
(k)
t are differential-convolution operators defined, for any nonnegative

kernel k ∈ L1
loc(R+), by(
D
(k)
t u

)
(t) :=

d

dt

∫ t

0
k(t− τ)u(τ) dτ − k(t)u(0), t > 0. (3.5)

(See [11] for more details and examples.)
In order to study the time evolution of vE(x, t), one possibility is to

define its Cesaro mean

Mt

(
vE(x, t)

)
:=

1

t

∫ t

0
vE(x, s) ds,

which may be written as

Mt

(
vE(x, t)

)
=

∫ ∞

0
v(x, τ)Mt

(
Gt(τ)

)
dτ. (3.6)

The long-time behavior of the Cesaro meanMt

(
vE(x, t)

)
was investigated in

[10, Sec. 3] for the three classes of admissible kernels and d ≥ 3. The method
was based on the ratio Tauberian theorem from [12]. More precisely, the
following theorem was shown.

Theorem 3.1. Let vE(x, t) be the subordination of v(x, t) by the
kernel Gt(τ). Then the long-time behavior of the Cesaro mean of vE(x, t)
as t → ∞ is given by

Mt(v
E(x, t)) ∼

⎧⎪⎨
⎪⎩
Ct−θ, k ∈ (C1),

C log(t)−1, k ∈ (C2),

C log(t)−1−s, k ∈ (C3).

In the next section we use an alternative method to find the long-time
behavior of the Cesaro mean Mt

(
vE(x, t)

)
.
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4. Alternative method for subordinated heat kernel

The Laplace transform method is based on the result of Lemma 2.1
wherein the t-Laplace transform of the subordination vE(x, t) is explicitly
given by

(L vE(x, ·))(λ) = C

∫ ∞

0
τ−d/2e−

|x|2
2τ (LG·(τ))(λ) dτ

= CK(λ)

∫ ∞

0
τ−d/2e−

|x|2
2τ

−τλK(λ) dτ. (4.1)

The integral in (4.1) is computed according to the formula,

∫ ∞

0
τ−d/2e−

a
τ
−bτ dτ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
πe−2

√
ab√

b
, d = 1,

2K0

(
2
√
ab
)
, d = 2,

2
(
a
b

)(2−d)/4
Kd/2−1

(
2
√
ab
)
, d ≥ 3,

(see for instance [9, page 146, eqs. (27), (29)]), where a = |x|2
2 , b = λK(λ),

and Kν(z) is the modified Bessel function of the second kind [2, Sec. 9.6].
The asymptotic of the Bessel function Kν(z) as z → 0 is well known (e.g.,
see [2, Eqs. (9.6.8) and (9.6.9)]) and is given by

K0(z) ∼ − ln(z), (4.2)

Kν(z) ∼ 1

2
Γ(ν)

(z
2

)−ν ∼ Cz−ν , 
(ν) > 0. (4.3)

With these explicit formulas, we study each class (C1), (C2), and (C3)
separately which constitutes the main contribution of this paper.

Theorem 4.1. Let v(x, t) be the fundamental solution of the heat
equation (3.1) and vE(x, t) its subordination by the densityGt(τ). Then the
long-time asymptotic of vE(x, t) is given according the admissible classes
of kernels k by

Class (C1):

Mt(v
E(x, t)) ∼

⎧⎪⎨
⎪⎩
Ct−θ/2, d = 1,

Ct−θ log(
√
2|x|t−θ/2), d = 2,

C|x|(θ+1)(2−d)/2t−θ, d ≥ 3.

Class (C2):

Mt(v
E(x, t)) ∼

⎧⎪⎨
⎪⎩
C log(t)−1/2e−

√
2μ(0)|x| log(t)−1/2

, d = 1,

C log(t)−1 ln
(√

2μ(0)|x| log(t)−1/2
)
, d = 2,

C|x|2−d log(t)−1, d ≥ 3.
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Class (C3):

Mt(v
E(x, t)) ∼

⎧⎪⎨
⎪⎩
C log(t)−(1+s)/2e−C′√2|x| log(t)−(1+s)/2

, d = 1,

C log(t)−1−s ln
(
C ′|x| log(t)−(1+s)/2

)
, d = 2,

C|x|2−d log(t)−1−s, d ≥ 3.

P r o o f. (C1): For this class, K(λ) = λθ−1, 0 < θ < 1.
(1) For d = 1 , we obtain

(L vE(x, ·))(λ) = Cλ−1+θ/2e−
√
2|x|λθ/2

= λ−(1−θ/2)L

(
1

λ

)
,

where L(y) = Ce−
√
2|x|y−θ/2

is a SVF. An application of the
Karamata Tauberian theorem (see for example [18, Sec. 2.2]
or [4, Sec. 1.7]) gives

Mt

(
vE(x, t)

) ∼ Ct−θ/2e−
√
2|x|t−θ/2 ∼ Ct−θ/2, t → ∞.

(2) For d = 2, we have

(L vE(x, ·))(λ) = Cλ−(1−θ)K0(
√
2|x|λθ/2) = λ−(1−θ)L

(
1

λ

)
,

where L(y) = CK0(
√
2|x|y−θ/2) is a SVF. Invoking the Kara-

mata Tauberian theorem and (4.2) yields, for t → ∞,

Mt

(
vE(x, t)

) ∼ Ct−θK0

(√
2|x|t−θ/2

) ∼ Ct−θ ln
(√

2|x|t−θ/2
)
.

(3) For d ≥ 3, the Laplace transform of vE(x, t) has the form

(L vE(x, ·))(λ) = C|x|(2−d)/2λ−(1−θ)

(
1

λ

)θ(2−d)/4

K d
2
−1(

√
2|x|λθ/2)

= λ−(1−θ)L

(
1

λ

)
,

where L(y) = C|x|(2−d)/2yθ(2−d)/4K d
2
−1(

√
2|x|y−θ/2) is a SVF.

It follows from the Karamata Tauberian theorem and (4.3)
that

Mt

(
vE(x, t)

) ∼ Ct−θL(t) ∼ C|x|(θ+1)(2−d)/2t−θ, t → ∞.

(C2): Here we have K(λ) ∼ λ−1L(λ−1) as λ → 0, where L(y) =
μ(0) log(y)−1, μ(0) �= 0. Again we study the three different cases
d = 1, d = 2 and d ≥ 3.
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(1) For d = 1, the t-Laplace transform of vE(x, t) can be written,
for λ → 0, as

(L vE(x, ·))(λ) = Cλ−1 log(λ−1)−1/2e−
√

2μ(0)|x| log(λ−1)−1/2

= λ−1L

(
1

λ

)
,

where L(y) = C log(y)−1/2e−
√

2μ(0)|x| log(y)−1/2
is a SVF. An

application of the Karamata Tauberian theorem gives

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C log(t)−1/2e−
√

2μ(0)|x| log(t)−1/2
, t → ∞.

(2) If d = 2, we have

(L vE(x, ·))(λ) = Cλ−1 log(λ−1)−1K0

(√
2μ(0)|x| log(λ−1)−1/2

)
= λ−1L

(
1

λ

)
,

where L(y) = C log(y)−1K0

(√
2μ(0)|x| log(y)−1/2

)
is a SVF.

As t → ∞ then by the Karamata Tauberian theorem and (4.2)
we obtain

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C log(t)−1 ln
(√

2μ(0)|x| log(t)−1/2
)
.

(3) For d ≥ 3, it follows that, as λ → 0,

(L vE(x, ·))(λ) = C|x|(2−d)/2λ−1 log(λ−1)−1+(2−d)/4

×K d
2
−1

(
C ′|x| log(λ−1)−1/2

)
= λ−1L

(
1

λ

)
,

where

L(y) = C|x|(2−d)/2 log(y)−1+(2−d)/4K d
2
−1

(
C ′|x| log(y)−1/2

)
is a SVF. To verify that L(y) is a SVF, one may note that

log(y)−1+(2−d)/4 as well as isK d
2
−1

(
C ′|x| log(y)−1/2

)
according

to (4.3); the stated result then follows from Prop. 1.3.6 in [4]. It
follows from the Karamata Tauberian theorem and (4.3) that

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C|x|2−d log(t)−1, t → ∞.

(C3): We now have K(λ) ∼ Cλ−1L(λ−1)−1−s, as λ → 0 and s > 0,
C > 0.
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(1) For d = 1, the t-Laplace transform of vE(x, t) can be written,
for λ → 0, as

(L vE(x, ·))(λ) = Cλ−1 log(λ−1)−(1+s)/2e−C′√2|x| log(λ−1)−(1+s)/2

= λ−1L

(
1

λ

)
,

where L(y) = C log(y)−(1+s)/2e−C′√2|x| log(y)−(1+s)/2
is a SVF,

as is easily seen. An application of the Karamata Tauberian
theorem gives, as t → ∞,

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C log(t)−(1+s)/2e−C′√2|x| log(t)−(1+s)/2
.

(2) For d = 2, we have

(L vE(x, ·))(λ) = Cλ−1 log(λ−1)−1−sK0

(
C ′|x| log(λ−1)−(1+s)/2

)
= λ−1L

(
1

λ

)
,

where

L(y) = C log(y)−1−sK0

(
C ′|x| log(y)−(1+s)/2

)
is a SVF. Use the Karamata Tauberian theorem and (4.2) now
yield the behavior as t → ∞

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C log(t)−1−s ln
(
C ′|x| log(t)−(1+s)/2

)
.

(3) For d ≥ 3, it follows that

(L vE(x, ·))(λ) = C|x|(2−d)/2λ−1 log(λ−1)−(1+s)(1−(2−d)/4)

×K d
2
−1

(
C ′√2|x| log(λ−1)−(1+s)/2

)
= λ−1L

(
1

λ

)
,

as t → ∞, where

L(y) = C|x|(2−d)/2 log(y)−(1+s)(2+d)/4K d
2
−1

(
C ′√2|x| log(y)−(1+s)/2

)
is a SVF. We note that L(y) is the product of two SVF’s which
is a SVF (see Prop. 1.3.6 in [4]). It the follows from the Kara-
mata Tauberian theorem and (4.3) that

Mt

(
vE(x, t)

) ∼ CL(t) ∼ C|x|2−d log(t)−1−s, t → ∞.

�
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Remark. (Gaussian convolution kernel).
We consider the nonlocal operator L on functions u : Rd −→ R defined

in integral form by

(Lu)(x) := (a ∗ u)(x)− u(x) =

∫
Rd

a(x− y)[u(y)− u(x)] dy, (4.4)

where the convolution kernel a is non-negative, symmetric, bounded, and
integrable, i.e.,

a(x) ≥ 0, a(x) = a(−x), a(x) ∈ L∞(Rd) ∩ L1(Rd). (4.5)

In addition, the kernel a is a density in R
d with finite second moment;

explicitly

〈a〉 :=
∫
Rd

a(x) dx = 1,

∫
Rd

|x|2a(x) dx < ∞. (4.6)

Since L is a bounded operator in L2(Rd), its heat semigroup etL can be
easily computed by using the exponential series according to

etL = e−teta∗ = e−t
∞∑
k=0

tk
a∗k

k!
= e−tId + e−t

∞∑
k=1

tk
a∗k

k!
.

By removing the singular part e−tId of the heat semigroup, we obtain the
regularized heat kernel

v(x, t) = e−t
∞∑
k=1

tk
a∗k (x)

k!
(4.7)

with the source at the origin. In other words, for any f ∈ L2(Rd), a solution
to the nonlocal Cauchy problem⎧⎨

⎩
∂u(x, t)

∂t
= Lu(x, t),

u(x, 0) = f(x),
(4.8)

has the form u(x, t) = e−tf(x) + (v ∗ f)(x, t) with v given by (4.7). In
particular, the fundamental solution of the problem (4.8) is

u(x, t) = e−tδ(x) + v(x, t).

If we denote by vE(x, t) the subordination of v(x, t) (the regular part of
u(x, t)) by the density Gt(τ), then it turns out that the Cesaro mean of
vE(x, t) long time behavior depends crucially on the ratio between |x| and
t. The details of this investigation we postpone for a forthcoming paper.
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