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Abstract. We consider the fractional Laplacian −(−1)α/2 on an open subset in Rd with zero
exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet
fractional Laplacian inC1,1 open sets. This heat kernel is also the transition density of a rotationally
symmetric α-stable process killed upon leaving a C1,1 open set. Our results are the first sharp two-
sided estimates for the Dirichlet heat kernel of a non-local operator on open sets.
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1. Introduction

Second order elliptic differential operators and diffusion processes take up, respectively,
central places in the theory of partial differential equations (PDE) and in probability the-
ory (see [18] and [19] for example). There are close relationships between these two
subjects. For a large class of second order elliptic differential operators L on Rd , there is
a diffusion processX in Rd associated with it so that L is the infinitesimal generator ofX,
and vice versa. The connection between L and X can also be seen as follows. The funda-
mental solution p(t, x, y) of ∂tu = Lu (also called the heat kernel of L) is the transition
density of X. Thus obtaining sharp two-sided estimates for p(t, x, y) is a fundamental
problem in both analysis and probability theory. In fact, two-sided heat kernel estimates
for diffusions in Rd have a long history and many beautiful results have been established.
See [12, 14] and the references therein. But, due to the complication near the boundary,
two-sided estimates on the transition density of killed diffusions in a domain D (equiva-
lently, the Dirichlet heat kernel) have been established only recently. See [13, 14, 15] for
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upper bound estimates and [27] for a lower bound estimate of the Dirichlet heat kernels
in bounded C1,1 domains.

Markov processes with discontinuous sample paths constitute an important family of
stochastic processes in probability theory. Recently there has been intense interest in non-
Gaussian stable processes, due to their importance both in theory and in applications. It is
well-known that (cf., e.g., Janicki and Weron [20], Samorodnitsky and Taqqu [24]) many
physical and economic systems should be and in fact have been successfully modeled by
non-Gaussian stable processes.

In this paper we always assume that α ∈ (0, 2). A (rotationally) symmetric α-stable
process X = {Xt , t ≥ 0,Px, x ∈ Rd} in Rd is a Lévy process such that

Ex[eiξ ·(Xt−X0)] = e−t |ξ |
α

for every x ∈ Rd and ξ ∈ Rd .

The infinitesimal generator of a symmetric α-stable process X in Rd is the fractional
Laplacian −(−1)α/2, which is a prototype of nonlocal operators. The fractional Lapla-
cian can be written in the form

−(−1)α/2u(x) = c lim
ε↓0

∫
{y∈Rd : |y−x|>ε}

(u(y)− u(x))
dy

|x − y|d+α

for some constant c = c(d, α). Recently there has also been interest from the theory
of PDE (such as singular obstacle problems) to study such fractional Laplacians (see, for
example, [3, 25] and the references therein). We will use p(t, x, y) to denote the transition
density of X (or equivalently the heat kernel of the fractional Laplacian −(−1)α/2). It is
well-known (see, e.g., [1, 8]) that

p(t, x, y) � t−d/α ∧
t

|x − y|d+α
on (0,∞)× Rd × Rd . (1.1)

Here and in what follows, for two nonnegative functions f and g, the notation f � g

means that there are positive constants c1 and c2 such that c1g(x) ≤ f (x) ≤ c2g(x) in
the common domain of definition of f and g. For a, b ∈ R, a ∧ b := min{a, b} and
a ∨ b := max{a, b}. The Euclidean distance between x and y is denoted by |x − y|. We
will use B(x, r) to denote the open ball centered at x ∈ Rd with radius r > 0.

For every open subset D ⊂ Rd , we denote by XD the subprocess of X killed
upon leaving D. The infinitesimal generator of XD is the Dirichlet fractional Laplacian
−(−1)α/2|D (the fractional Laplacian with zero exterior condition). It is known (see [8])
that XD has a transition density pD(t, x, y) with respect to the Lebesgue measure that is
jointly Hölder continuous. The connection between second order elliptic differential oper-
ators and diffusion processes can be extended to a large class of Markov processes. In par-
ticular, the transition density of XD is the fundamental solution of ∂tu = −(−1)α/2|Du
(also called the heat kernel of the Dirichlet fractional Laplacian −(−1)α/2|D).

The purpose of this paper is to establish, in Theorem 1.1, two-sided sharp estimates on
pD(t, x, y) for every t > 0. To state this theorem, we first recall that an open set D in Rd
(when d ≥ 2) is said to be a C1,1 open set if there exist a localization radius R0 > 0 and a
constant30 > 0 such that for every z ∈ ∂D, there is aC1,1-function φ = φz : Rd−1

→ R
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satisfying φ(0) = 0, ∇φ(0) = (0, . . . , 0), ‖∇φ‖∞ ≤ 30, |∇φ(x)−∇φ(z)| ≤ 30|x−z|,
and an orthonormal coordinate system CSz: y = (y1, . . . , yd−1, yd) := (ỹ, yd) with
origin at z such that

B(z, R0) ∩D = B(0, R0) ∩ {y : yd > φ(ỹ)},

where the ball B(0, R0) on the right hand side is in the coordinate system CSz. The pair
(R0,30) is called the characteristics of the C1,1 open set D. We remark that in some
papers, C1,1 open sets defined above are called uniform C1,1 open sets as (R0,30) is
universal for all z ∈ ∂D. For x ∈ Rd , let δ∂D(x) denote the Euclidean distance between x
and ∂D. It is well-known that any C1,1 open setD satisfies both the uniform interior ball
condition and the uniform exterior ball condition: there exists r0 < R0 such that for every
x ∈ D with δ∂D(x) < r0 and y ∈ Rd \D with δ∂D(y) < r0, there are zx, zy ∈ ∂D such
that |x − zx | = δ∂D(x), |y − zy | = δ∂D(y) and B(x0, r0) ⊂ D and B(y0, r0) ⊂ Rd \D
for x0 = zx + r0(x− zx)/|x− zx | and y0 = zy + r0(y− zy)/|y− zy |. By a C1,1 open set
in R we mean an open set which can be written as the union of disjoint intervals so that
the minimum of their lengths is positive and the minimum of the distances between them
is also positive. Note that a C1,1 open set can be unbounded and disconnected.

Theorem 1.1. Let D be a C1,1 open subset of Rd with d ≥ 1 and δD(x) the Euclidean
distance between x and Dc.

(i) For every T > 0, on (0, T ]×D ×D,

pD(t, x, y) �

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
t−d/α ∧

t

|x − y|d+α

)
.

(ii) Suppose in addition thatD is bounded. For every T > 0, there are positive constants
c1 < c2 such that on [T ,∞)×D ×D,

c1e
−λ1tδD(x)

α/2δD(y)
α/2
≤ pD(t, x, y) ≤ c2e

−λ1tδD(x)
α/2δD(y)

α/2,

where λ1 > 0 is the smallest eigenvalue of the Dirichlet fractional Laplacian
(−1)α/2|D .

By integrating the two-sided heat kernel estimates in Theorem 1.1 with respect to t ,
one can easily recover the following estimate on the Green function GD(x, y) =∫
∞

0 pD(t, x, y) dt , initially obtained independently in [11] and [21] when d ≥ 2.

Corollary 1.2. Let D be a bounded C1,1 open set in Rd with d ≥ 1. Then on D ×D,

GD(x, y) �



1
|x − y|d−α

(
1 ∧

δD(x)
α/2δD(y)

α/2

|x − y|α

)
when d > α,

log
(

1+
δD(x)

α/2δD(y)
α/2

|x − y|α

)
when d = 1 = α,

(δD(x)δD(y))
(α−1)/2

∧
δD(x)

α/2δD(y)
α/2

|x − y|
when d = 1 < α.
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Theorem 1.1(i) will be established through Theorems 2.4 and 3.1, which give the upper
bound and lower bound estimates, respectively. Theorem 1.1(ii) is an easy consequence of
the intrinsic ultracontractivity of a symmetric α-stable process in a boundedC1,1 open set.
The latter will be reviewed and discussed in Section 3. In fact, the upper bound estimates
in both Theorem 1.1 and Corollary 1.2 hold for any domain D with (a weak version of)
the uniform exterior ball condition in place of the C1,1 condition, while the lower bound
estimates in both Theorem 1.1 and Corollary 1.2 hold for any domainD with the uniform
interior ball condition in place of the C1,1 condition (see Theorems 2.4 and 3.1, and the
proofs for Theorem 1.1(ii) and Corollary 1.2).

Although two-sided heat kernel estimates for jump processes in Rd have been studied
recently by several authors (see [8, 9, 5] and the references therein), as far as we know,
this is the first time that sharp two-sided estimates on the Dirichlet heat kernels for jump
processes in open sets are established. We point out that, in addition to the use of the two-
sided estimate (1.1) of p(t, x, y), the stable-scaling of X and the Lévy system of X and
the boundary Harnack principle of X in the annulus U := {x ∈ Rd : a < |x| < b}, only
the following exit time estimate is used to get the upper bound estimate for pD(t, x, y)
for t ≤ T :

Ex[τU ] ≤ cα,a,bδU (x)α/2 for x ∈ U. (1.2)

Here and in what follows, for any open set D ⊂ Rd , τD := inf{t > 0 : Xt /∈ D} denotes
the first exit time from D by X.

There are fundamental differences between obtaining two-sided Dirichlet heat kernel
estimates for the Laplacian and the fractional Laplacian.

(i) Unlike the Dirichlet heat kernel for the Laplacian, the Dirichlet heat kernel for the
fractional Laplacian does not have exponential decay in |x− y|. Thus we cannot use
the chaining method, which is used to prove off-diagonal lower bound estimates of
the Dirichlet heat kernel for the Laplacian.

(ii) Davies developed in [12] (see also [4, Section 3]) a very useful method to obtain
off-diagonal upper bound estimates for the heat kernel of diffusions in the whole
space. This method can also be used to prove off-diagonal upper bound estimates for
the heat kernel of the Dirichlet Laplacian. Unfortunately we are unable to apply this
powerful method to obtain upper bound estimates for the heat kernel of the Dirichlet
fractional Laplacian.

(iii) In [27], a scale invariant parabolic boundary Harnack inequality obtained in [16]
is used to obtain a sharp lower bound heat kernel estimate for the Dirichlet Lapla-
cian. Such a parabolic boundary Harnack inequality is not available for the fractional
Laplacian.

Due to the above differences and difficulties, obtaining two-sided sharp estimates on
pD(t, x, y) for the fractional Laplacian with zero exterior condition requires new ideas
and approaches. Our approach is mainly probabilistic. It uses only the following five in-
gredients:

(i) the upper bound heat kernel estimate in (1.1) for the rotationally symmetric α-stable
process X in Rd and the stable-scaling property of X (see (3.1) below);
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(ii) the Lévy system of X that describes how the process jumps (see (2.1));
(iii) the mean exit time estimates (1.2) established in Lemma 2.1 and the two-sided esti-

mates in the ball B = B(0, 1): Ex[τB ] � δB(x)α/2;
(iv) the boundary Harnack inequality ofX in annuli (when d ≥ 2) and in intervals (when

d = 1), and the parabolic Harnack inequality of X;
(v) the intrinsic ultracontractivity of X in bounded open sets.

The upper bound heat kernel estimate in (1.1) gives an upper bound for pD(t, x, y),
while the Lévy system is the basic tool used throughout our argument as the symmetric
stable process moves by “pure jumping”. To get the boundary decay rate of pD(t, x, y),
we use the boundary Harnack inequality and the domain monotonicity of the killed stable
process XD in D by comparing it with certain truncated exterior balls (i.e. annuli) as
well as interior balls. The mean exit time estimate (1.2) established in Lemma 2.1 for an
annulus with the help of the boundary Harnack inequality is applied to get the boundary
decay rate in the upper bound heat kernel estimates in Lemma 2.2 and Theorem 2.3. The
two-sided estimate in the ball B = B(0, 1), Ex[τB ] � δB(x)α/2, is used to get the two-
sided estimate (3.10) on the first eigenfunction in balls. The latter is then used in the proof
of Lemma 3.6 to get the boundary decay rate for the lower bound estimate in pD(t, x, y).
The parabolic Harnack inequality allows us to get a pointwise lower bound on pD(t, x, y)
from the integral of w 7→ pD(t/2, x,w) over a suitable region, which is used in the proof
of Proposition 3.3. When XD is intrinsic ultracontractive, pD(t, x, y) is comparable to
ctφD(x)φD(y) for some ct > 0 and a good control is known for ct when t is above a
certain large t0, where φD is the positive first eigenfunction of (−1)α/2|D . This property
is used in the proof of Lemma 3.6 for balls and in the proof of Theorem 1.1(ii).

The ideas developed in this paper can be used to study heat kernel estimates for other
types of jump processes in open subsets and their perturbations. In fact, in [6] and [7]
the ideas of this paper have been adapted and further developed to obtain two-sided sharp
estimates for the transition density of censored stable processes and relativistic stable
processes in C1,1 open sets, respectively.

Throughout this paper, d ≥ 1. We use c1, c2, . . . to denote generic constants, whose
exact values are not important and can change from one appearance to another. The label-
ing of the constants c1, c2, . . . starts anew in the statement of each result. The dependence
of the constant c on the dimension d will not be mentioned explicitly. We will use “:=” to
denote a definition, which is read as “is defined to be”. We will use ∂ to denote a cemetery
point and for every function f , we extend its definition to ∂ by setting f (∂) = 0. We let
dx denote the Lebesgue measure in Rd . For a Borel setA ⊂ Rd , we also use |A| to denote
its Lebesgue measure.

2. Upper bound estimate

Throughout this section we assume that D is an open set satisfying the uniform exterior
ball condition with radius r0 > 0 in the following sense: for every z ∈ ∂D and r ∈ (0, r0),
there is a ball Bz of radius r such that Bz ⊂ Rd \D and ∂Bz∩∂D = {z}. The goal of this
section is to establish an upper bound for the transition density (heat kernel) pD(t, x, y).
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It is well-known that the symmetric stable process X has Lévy intensity function

J (x, y) = A(d,−α)|x − y|−(d+α),

where
A(d,−α) =

α0((d + α)/2)
21−απd/20(1− α/2)

.

Here 0 is the Gamma function defined by 0(λ) :=
∫
∞

0 tλ−1e−tdt for every λ > 0.
The Lévy intensity function gives the Lévy system for X, which describes the jumps
of the process X: for any nonnegative measurable function f on R+ × Rd × Rd with
f (s, y, y) = 0 for all s > 0 and y ∈ Rd , for any x ∈ Rd and any stopping time T (with
respect to the filtration of X),

Ex
[∑
s≤T

f (s,Xs−, Xs)
]
= Ex

[∫ T

0

(∫
Rd
f (s,Xs, y)J (Xs, y) dy

)
ds

]
. (2.1)

(See, for example, [8, proof of Lemma 4.7] and [9, Appendix A].)
In several places in this paper including the next lemma, we will use the following

well-known fact (see [17]): for every d ≥ 1 and α ∈ (0, 2), there exists c = c(α) > 0
such that for every x0 ∈ Rd and r > 0,

Ex[τB(x0,r)] = c(r
2
− |x − x0|

2)α/2 for x ∈ B(x0, r). (2.2)

Lemma 2.1. Let U := {z ∈ Rd : r0 < |z|< 3r0/2}. There is a constantc = c(r0, α) > 0
such that

Ex[τU ] ≤ cδU (x)α/2 for r0 < |x| < 5r0/4.

Proof. For d ≥ 2, we use the upper bound of the Green function GU (x, y) from (1.4) in
[11, Theorem 1.1] (cf. also [21]) to deduce that Ex[τU ] ≤ cδU (x)α/2.

Now let d = 1 and, without loss of generality, assume x > 0. Let B be the open
interval (r0, 3r0/2). Note that δB(x) = δU (x). Taking x0 = 9r0/8, by the Lévy system
(2.1) with f (s, x, y) = 1U (x)1{5r0<|y|<10r0}(y) and T = τU , we have, on U ,

Px(10r0 > |XτU | > 5r0) = Ex
[∫ τU

0

∫
{5r0<|y|<10r0}

A(d,−α)
|Xs − y|d+α

dy ds

]
� Ex[τU ].

(2.3)
Hence by the boundary Harnack principle for X in B (see [2, Remark 6]),

Ex[τU ] ≤ c1Px(10r0 > |XτB | > 5r0)
Px0(10r0 > |XτU | > 5r0)
Px0(10r0 > |XτB | > 5r0)

≤ c2Px(10r0 > |XτB | > 5r0)

for some positive constants ci = ci(r0, α), i = 1, 2. By (2.2) and (2.3) but with B in place
of U , we conclude that

Ex[τU ] ≤ c3Ex[τB ] ≤ c4δB(x)
α/2
= c4δU (x)

α/2

for some positive constants ci = ci(r0, α), i = 3, 4. ut
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Lemma 2.2. Let D = {x ∈ Rd : |x| > r0}. For every T > 0, there is a constant
c = c(r0, α) > 0 such that

pD(t, x, y) ≤ c(T ∨ 1)
δD(x)

α/2

|x − y|d+α
for r0 < |x| < 5r0/4, |y| ≥ 2r0 and t ≤ T .

Proof. Define U := {z ∈ Rd : r0 < |z| < 3r0/2}. It is well-known (see, e.g., [2]) that
XτU /∈ ∂U . For r0 < |x| < 5r0/4, |y| ≥ 2r0 and t ∈ (0, T ], it follows from the strong
Markov property and (2.1) that

pD(t, x, y) = Ex[pD(t − τU , XτU , y) : τU < t]

=

∫ t

0

(∫
U

pU (s, x, z)

(∫
{w : |w|>3r0/2}

J (z,w) pD(t − s, w, y) dw

)
dz

)
ds

=

∫ t

0

(∫
U

pU (s, x, z)

(∫
{w : 3r0/4+|y|/2≥|w|>3r0/2}

J (z,w)pD(t − s, w, y) dw

)
dz

)
ds

+

∫ t

0

(∫
U

pU (s, x, z)

(∫
{w : |w|>3r0/4+|y|/2}

J (z,w)pD(t − s, w, y) dw

)
dz

)
ds

=: I + II.

Note that for |w| ≤ 3r0/4+ |y|/2,

|w − y| ≥
1
2

(
|y| −

3r0
2

)
≥
|y|

8
≥
|x − y|

16
. (2.4)

Since pD(t − s, w, y) ≤ p(t − s, w, y), by (1.1) and (2.4), there exist constants c1 =

c1(α) > 0 and c2 = c2(α) > 0 such that

I ≤

∫ t

0

(∫
U

pU (s, x, z)

(∫
{w : 3r0/4+|y|/2≥|w|>3r0/2}

J (z,w)
c1T

|w − y|d+α
dw

)
dz

)
ds

≤
c2T

|x − y|d+α

∫ t

0

(∫
U

pU (s, x, z)

(∫
{w:3r0/4+|y|/2≥|w|>3r0/2}

J (z,w) dw

)
dz

)
ds

=
c2T

|x − y|d+α
Px(3r0/2 < |XτU | ≤ 3r0/4+ |y|/2; τU ≤ t)

≤
c2T

|x − y|d+α
Px(|XτU | > 3r0/2).

Without loss of generality, assume that x = (x1, . . . , xd) with x1 > 0. Taking x0 =

(9r0/8, 0, . . . , 0), by the boundary Harnack principle for X in U when d ≥ 2 and in
B = (r0, 3r0/2) when d = 1 (see Theorem 1 and Remark 6 of [2]), we have, for
|x| ∈ (r0, 5r0/4) with x1 > 0,

Px(|XτU | > 3r0/2) ≤ c3Px(10r0 > |XτU | > 5r0)
Px0(|XτU | > 3r0/2)

Px0(10r0 > |XτU | > 5r0)
≤ c4Px(10r0 > |XτU | > 5r0)

= c4Ex
[∫ τU

0

∫
{5r0<|y|<10r0}

A(d,−α)
|Xs − y|d+α

dy ds

]
≤ c5Ex[τU ]



1314 Zhen-Qing Chen et al.

for some positive constants ci = ci(r0, α), i = 3, 4, 5. Thus by Lemma 2.1, we have

I ≤ c6(T ∨ 1)
δD(x)

α/2

|x − y|d+α
(2.5)

for some positive constant c6 = c6(r0, α). On the other hand, for z ∈ U and w ∈ Rd with
|w| > 3r0/4+ |y|/2,

|z− w| ≥
1
2

(
|y| −

3r0
2

)
≥
|y|

8
≥
|x − y|

16
.

Thus by the symmetry of pD(t − s, w, y) in (w, y), we have

II ≤
∫ t

0

(∫
U

pU (s, x, z)

(∫
{w : |w|>3r0/4+|y|/2}

c7

|x − y|d+α
pD(t − s, y,w) dw

)
dz

)
ds

≤
c7

|x − y|d+α

∫
∞

0

(∫
U

pU (s, x, z) dz

)
ds

=
c7

|x − y|d+α
Ex[τU ] ≤

c8δD(x)
α/2

|x − y|d+α

for some positive constants ck = ck(r0, α) for k = 7, 8. In the last inequality, we used
Lemma 2.1 to deduce that Ex[τU ] ≤ cδU (x)α/2 = cδD(x)α/2 for some positive constant
c = c(r0, α). This together with (2.5) proves the lemma. ut

A result similar to Lemma 2.2 has been established in [23, Theorem 4.2] for relativistic
α-stable processes. Our proof seems to be simpler. Moreover, unlike [23], we also cover
the case d = 1.

Theorem 2.3. LetD be an open set that satisfies the uniform exterior ball condition with
radius r0 > 0. Then for every T > 0, there is a constant c = c(r0/T , α) > 0 independent
of λ ∈ (0, T ] such that for x, y ∈ λ−1D,

pλ−1D(1, x, y) ≤ cmin{1, |x − y|−d−α}δλ−1D(x)
α/2.

Proof. Since for any open subset U ⊂ Rd , by (1.1),

pU (t, x, y) ≤ p(t, x, y) � t
−d/α
∧

t

|x − y|d+α
on (0,∞)× U × U, (2.6)

it suffices to prove the conclusion for x ∈ λ−1D with δλ−1D(x) < r0/(4T ). Note that for
every λ ∈ (0, T ], λ−1D satisfies the uniform exterior ball condition with radius r0/T .
Let z ∈ ∂(λ−1D) with |x − z| = δλ−1D(x). Let Bz := B(z0, r0/T ) ⊂ (λ

−1D)c be such
that ∂Bz ∩ ∂(λ−1D) = {z}. When δλ−1D(x) < r0/(4T ) and |x − y| ≥ 5r0/T , we have
δBcz (y) > 2r0/T and so by Lemma 2.2, there is a constant c1 > 0 that depends only on
(r0/T , d, α) such that

pλ−1D(t, x, y) ≤ p(Bz)c (t, x, y) ≤ c1
δ(Bz)c (x)

α/2

|x − y|d+α
= c1

δλ−1D(x)
α/2

|x − y|d+α
for t ≤ 1. (2.7)
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So it remains to show that when δλ−1D(x) < r0/(4T ) and |x − y| < 5r0/T , there exists
a positive constant c2 = c2(r0/T , d, α) such that

pλ−1D(1, x, y) ≤ c2δλ−1D(x)
α/2. (2.8)

The proof of (2.8) is similar to that of [26, Lemma 3.2], but for the readers’ convenience
we spell out the details. Define U := {w ∈ Rd : |w − z0| ∈ (r0/T , 8r0/T )}. Note that

x, y ∈ U ∩ λ−1D and δU (x) = δλ−1D(x).

By the strong Markov property and the symmetry of pλ−1D(1, x, y) in x and y, we have

pλ−1D(1, x, y) = pU∩λ−1D(1, x, y)
+ Ey[pλ−1D(1− τU∩λ−1D, XτU∩λ−1D

, x); τU∩λ−1D < min{1, τλ−1D}].

By the semigroup property,

pU∩λ−1D(1, x, y) =
∫
U∩λ−1D

pU∩λ−1D(1/2, x, z)pU∩λ−1D(1/2, z, y) dz

≤ ‖p(1/2, ·, ·)‖∞Px(τU∩λ−1D > 1/2)

≤ c3Ex[τU∩λ−1D] ≤ c3Ex[τU ] ≤ c4δU (x)
α/2
= c4δλ−1D(x)

α/2.

In the last inequality, we used Lemma 2.1.
On the other hand, we have Xτ

U∩λ−1D
∈ U c ∩ λ−1D on {τU∩λ−1D < min{1, τλ−1D}},

and so

|Xτ
U∩λ−1D

− x| ≥ 7r0/T on {τU∩λ−1D < min{1, τλ−1D}}.

Consequently, by (2.7) for pλ−1D(1− τU∩λ−1D, XτU∩λ−1D
, x),

Ey[pλ−1D(1− τU∩λ−1D, XτU∩λ−1D
, x); τU∩λ−1D < min{1, τλ−1D}]

≤ Ey
[
c1

δλ−1D(x)
α/2

|Xτ
U∩λ−1D

− x|d+α
; τU∩λ−1D < min{1, τλ−1D}

]
≤ c5δλ−1D(x)

α/2Py(τU∩λ−1D < min{1, τλ−1D}) ≤ c5δλ−1D(x)
α/2.

This completes the proof of (2.8) and hence of the theorem. ut

Theorem 2.4. LetD be an open set that satisfies the uniform exterior ball condition with
radius r0 > 0. For every T > 0, there exists a positive constant c = c(T , r0, α) such that
for t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) ≤ c

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
t−d/α ∧

t

|x − y|d+α

)
. (2.9)



1316 Zhen-Qing Chen et al.

Proof. Fix T > 0. By Theorem 2.3, there exists a positive constant c1 = c1(T , r0, α)

such that for every λ ∈ (0, T 1/α],

pλ−1D(1, x, y) ≤ c1 min{1, |x − y|−d−α}δλ−1D(x)
α/2. (2.10)

Thus for every t ≤ T ,

pD(t, x, y) = t
−d/αpt−1/αD(1, t

−1/αx, t−1/αy)

≤ c1t
−d/α min{1, |t−1/α(x − y)|−d−α}δt−1/αD(t

−1/αx)α/2

≤ c1

(
t−d/α ∧

t

|x − y|d+α

)
δD(x)

α/2
√
t
≤ c2p(t, x, y)

δD(x)
α/2

√
t

.

By symmetry, the above inequality holds with the roles of x and y interchanged. The
semigroup property for t ≤ T yields

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, z, y) dz

≤ c3
δD(x)

α/2δD(y)
α/2

t

∫
D

p(t/2, x, z)p(t/2, z, y) dz

≤ c3
δD(x)

α/2δD(y)
α/2

t
p(t, x, y).

This proves the upper bound (2.9) by noting that (1 ∧ a)(1 ∧ b) = min{1, a, b, ab} for
a, b > 0. ut

When D is a semibounded convex domain, estimate (2.9) is given in [26, Theorem 1.6].

3. Lower bound estimate

Throughout this section except for Proposition 3.3, Lemma 3.4 and Proposition 3.5, the
open set D is assumed to satisfy the uniform interior ball condition with radius r0 > 0
in the following sense: for every x ∈ D with δD(x) < r0, there is zx ∈ ∂D such that
|x − zx | = δD(x) and B(x0, r0) ⊂ D for x0 := zx + r0(x − zx)/|x − zx |. Clearly, a
(uniform) C1,1 open set satisfies the uniform interior ball condition.

The goal of this section is to prove the following lower bound for the heat kernel
pD(t, x, y).

Theorem 3.1. For every T > 0 there exists a positive constant c = c(r0, α, T ) such that
for all (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
t−d/α ∧

t

|x − y|d+α

)
.

We start with the following simple result which will be used later.
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Lemma 3.2. For any positive constants c and a, there exists c1 = c1(c, a, α) > 0 such
that for every z ∈ Rd and λ > 0,

inf
y∈Rd

|y−z|≤cλ1/α

Py(τB(z,2cλ1/α) > aλ) ≥ c1 > 0.

Proof. Without loss of generality, we may and do assume that z = 0. By the stable-
scaling for symmetric α-stable proceses:

{λ−1/α(Xλt −X0), t ≥ 0} has the same distribution as {Xt −X0, t ≥ 0} (3.1)

for every λ > 0, we have

inf
y∈Rd
|y|≤cλ1/α

Py(τB(0,2cλ1/α) > aλ) = inf
y∈Rd
|y|≤c

Py(τB(0,2c) > a)

≥ inf
y∈Rd
|y|≤c

∫
B(y,c)

pB(y,c)(a, y, u) du

=

∫
B(0,c)

pB(0,c)(a, 0, u) du.

This proves the lemma. ut

We will first establish the conclusion of Theorem 3.1 for small T , that is, we will first
assume that

t ≤ T0 := (r0/16)α. (3.2)

For this, we need some preparation. Note that Proposition 3.3, Lemma 3.4 and Proposi-
tion 3.5 below hold for any open set D and for every t > 0.

Proposition 3.3. Suppose that (t, x, y) ∈ (0,∞)×D×D with δD(x) ≥ t1/α ≥ 2|x−y|.
Then there exists a positive constant c = c(α) such that

pD(t, x, y) ≥ ct
−d/α. (3.3)

Proof. Let t ∈ (0,∞) and x, y ∈ D with δD(x) ≥ t1/α ≥ 2|x − y|. By the parabolic
Harnack principle in [8, Proposition 4.3],

pD(t/2, x,w) ≤ c1pD(t, x, y) for w ∈ B(x, 2t1/α/3),

where the constant c1 > 0 is independent of x, y and t . This together with Lemma 3.2
yields

pD(t, x, y) ≥
1

c1|B(x, t1/α/2)|

∫
B(x,t1/α/2)

pD(t/2, x,w)dw

≥ c2t
−d/α

∫
B(x,t1/α/2)

pB(x,t1/α/2)(t/2, x,w)dw

= c2t
−d/αPx(τB(x,t1/α/2) > t/2) ≥ c3t

−d/α,

where ci = ci(α) > 0 for i = 2, 3. ut
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Lemma 3.4. Suppose that (t, x, y) ∈ (0,∞) × D × D with min{δD(x), δD(y)} ≥ t1/α

and |x − y| ≥ 2−1t1/α . Then there exists a constant c = c(α) > 0 such that

Px(XDt ∈ B(y, 2−1t1/α)) ≥ c
td/α+1

|x − y|d+α
.

Proof. The proof is a simple modification of that of Proposition 4.11 in [9]. For the read-
ers’ convenience, we spell out the details.

By Lemma 3.2, starting at z ∈ B(y, 4−1t1/α), with probability at least c1 = c1(α) > 0
the process X does not move more than 6−1t1/α by time t . Thus, it is sufficient to show
that there exists a constant c2 = c2(α) > 0 such that

Px(XD hits the ball B(y, 4−1t1/α) by time t) ≥ c2
td/α+1

|x − y|d+α
(3.4)

for all |x−y| ≥ 2−1t1/α and t > 0. Now withBx := B(x, 6−1t1/α),By := B(y, 6−1t1/α)

and τx := τBx , it follows from Lemma 3.2 that there exists c3 = c3(α) > 0 such that

Ex[t ∧ τx] ≥
t

2
Px(τx ≥ t/2) ≥ c3t for t > 0. (3.5)

Thus by using the Lévy system,

Px(XD hits the ball B(y, 4−1t1/α) by time t)

≥ Px(Xt∧τx ∈ B(y, 4−1t1/α) and t ∧ τx is a jumping time )

≥ Ex
[∫ t∧τx

0

∫
By

c4

|Xs − u|d+α
du ds

]
≥ c5Ex[t ∧ τx]

∫
By

1
|x − y|d+α

du ≥ c6t |By | |x − y|
−d−α

≥ c7
td/α+1

|x − y|d+α

for some positive constants ci = ci(α), i = 4, 5, 6, 7. Here in the fourth inequality, (3.5)
is used. This establishes the lemma. ut

Proposition 3.5. Suppose that (t, x, y) ∈ (0,∞) × D × D with min{δD(x), δD(y)} ≥
(t/2)1/α and |x−y| ≥ 2−1(t/2)1/α . Then there exists a constant c = c(α) > 0 such that

pD(t, x, y) ≥ c
t

|x − y|d+α
. (3.6)

Proof. By the semigroup property, Proposition 3.3 and Lemma 3.4, there exist positive
constants c1 = c1(α) and c2 = c2(α) such that

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, z, y) dz

≥

∫
B(y,2−1(t/2)1/α)

pD(t/2, x, z)pD(t/2, z, y) dz

≥ c1t
−d/αPx(XDt/2 ∈ B(y, 2−1(t/2)1/α)) ≥ c2

t

|x − y|d+α
. ut
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The proof of the next lemma uses the intrinsic ultracontractivity of X in the ball B(0, 3).
Recall that when an open set U is bounded, the transition semigroup {PUt , t > 0} of the
symmetric α-stable process XU , which is a strongly continuous contraction semigroup
in L2(U, dx), is compact. Let λU1 > 0 be the smallest eigenvalue of (−1)α/2|U and let

φU (x) be the positive eigenfunction of PU1 corresponding to e−λ
U
1 with ‖φU‖L2(U) = 1.

The semigroup {PUt , t > 0} of XU in the bounded open set U is said to be intrinsic
ultracontractive if for any t > 0 there are positive constants ct > 1 such that

c−1
t φU (x)φU (y) ≤ pU (t, x, y) ≤ ctφU (x)φU (y) for x, y ∈ U. (3.7)

The notion of intrinsic ultracontactivity was introduced by Davies and Simon in [15].
It has many equivalent definitions (see [15, Theorem 3.2]). It follows from Theorem 4.2.5
of [14] that if {PUt , t > 0} is intrinsic ultracontractive, there exists T1 > 0 such that for
all (t, x, y) ∈ [T1,∞)× U × U ,

1
2
e−λ

U
1 tφU (x)φU (y) ≤ pU (t, x, y) ≤

3
2
e−λ

U
1 tφU (x)φU (y). (3.8)

It was shown in [10, Theorem 4.6] using the log-Sobolev inequality that for any
bounded C1,1 domain U , the semigroup {PUt , t > 0} of XU is intrinsic ultracontrac-
tive. It was later proved by Kulczycki [22] that the intrinsic ultracontractivity holds for
the semigroup {PUt , t > 0} of XU in any bounded open set. Though in [22] it is assumed
that d ≥ 2, the proof there in fact works for d = 1 as well. In particular the semi-
group of XB(0,3) is intrinsic ultracontractive, and by [22, Theorem 9], there is a constant
c1 = c1(α) > 0 such that∫

B(0,1)
GB(0,3)(x, y) dy ≥ c1

∫
B(0,3)

GB(0,3)(x, y) dy

= c1Ex[τB(0,3)] for x ∈ B(0, 3). (3.9)

The ground state φB(0,3) ofXB(0,3) is bounded, strictly positive and continuous inB(0, 3).
So by (2.2), for x ∈ B(0, 3),

φB(0,3)(x) = λ
B(0,3)
1 GB(0,3)φB(0,3)(x) ≤ λ

B(0,3)
1 ‖φB(0,3)‖∞Ex[τB(0,3)]

≤ c2δB(0,3)(x)
α/2,

while by (2.2) and (3.9),

φB(0,3)(x) = λ
B(0,3)
1 GB(0,3)φB(0,3)(x) ≥ c3

∫
B(0,1)

GB(0,3)(x, y) dy ≥ c4Ex[τB(0,3)]

≥ c5δB(0,3)(x)
α/2.

Here ‖φB(0,3)‖∞ := supx∈B(0,3) φB(0,3)(x). In other words, we have

φB(0,3)(x) � δB(0,3)(x)
α/2 on B(0, 3). (3.10)
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Lemma 3.6. Suppose that (t, x) ∈ (0, T0]×D with δD(x) < 3t1/α < r0 and κ ∈ (0, 1).
There exists zx ∈ ∂D such that |x − zx | = δD(x) and B(x0, r0) ⊂ D where x0 :=
zx+ r0(x− zx)/|x− zx |. Let z0 = zx+3t1/α(x− zx)/|x− zx |. Suppose B(x0, 2κt1/α) ⊂
B(z0, 3t1/α). Then for any a > 0, there exists a constant c = c(κ, α, a) > 0 such that

Px(XDat ∈ B(x0, κt
1/α)) ≥ ct−1/2δD(x)

α/2.

Proof. The existence of x0 follows from the definition of the uniform interior ball condi-
tion with radius r0. For convenience, we may assume z0 = 0 and let B̂ := B(x0, κt

1/α)

and B := B(0, 3t1/α). Note that x ∈ B ⊂ D and ∂B∩∂D = {zx}, t−1/αB = B(0, 3) and
t−1/αB̂ = B(t−1/αx0, κ) with B(t−1/αx0, 2κ) ⊂ B(0, 3). By the stable-scaling (3.1),

Px(XDat ∈ B̂) = Pt−1/αx(X
t−1/αD
a ∈ t−1/αB̂)

≥ Pt−1/αx(X
t−1/αB
a ∈ t−1/αB̂) = Pt−1/αx(X

B(0,3)
a ∈ t−1/αB̂).

By (3.7) and (3.10), there is a constant c1 = c1(a, α) > 0 such that

pB(0,3)(a, z, y) ≥ c1δB(0,3)(z)
α/2δB(0,3)(y)

α/2 for z, y ∈ B(0, 3).

Hence we have

Px(XDat ∈ B̂) ≥ c1δB(0,3)(t
−1/αx)α/2

∫
t−1/αB̂

δB(0,3)(y)
α/2dy

≥ c2δt−1/αD(t
−1/αx)α/2 = c2t

−1/2δD(x)
α/2

for some c2 = c2(κ, α, a) > 0. ut

Proposition 3.7. Suppose that (t, x, y) ∈ (0, T0] × D × D with |x − y| ≤ t1/α and
δD(x) ≤ 2t1/α . Then there exists a constant c = c(r0, α) > 0 such that

pD(t, x, y) ≥ ct
−d/α−1δD(x)

α/2δD(y)
α/2. (3.11)

Proof. Note that under the assumptions of the proposition, we have

δD(y) ≤ |x − y| + δD(x) ≤ 3t1/α < r0/5.

So there are points zx, zy ∈ ∂D such that |x − zx | = δD(x), |y − zy | = δD(y) and
B(x1, r0) ⊂ D, B(y1, r0) ⊂ D for x1 := zx + r0(x − zx)/|x − zx | and y1 := zy +

r0(y − zy)/|y − zy |. Let

x0 = zx + 4t1/α(x − zx)/|x − zx | and y0 = zy + 4t1/α(y − zy)/|y − zy |.

Observe that

δD(x0) = δD(y0) = 4t1/α and |x − x0|, |y − y0| ∈ [t1/α, 4t1/α).
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By the semigroup property, with B := B(x0, 4−1t1/α) and B̃ := B(y0, 4−1t1/α),

pD(t, x, y) =

∫
D

pD(t/3, x, z)
∫
D

pD(t/3, z, w)pD(t/3, w, y) dw dz

≥

∫
B

pD(t/3, x, z)
∫
B̃

pD(t/3, z, w)pD(t/3, w, y) dw dz

≥ inf
(z,w)∈B×B̃

pD(t/3, z, w)
∫
B

pD(t/3, x, z) dz
∫
B̃

pD(t/3, w, y) dw.

Since for z ∈ B and w ∈ B̃,

δD(z) ≥ δD(x0)− |x0 − z| ≥ t
1/α, δD(w) ≥ δD(y0)− |y0 − w| ≥ t

1/α

and

|z− w| ≤ |z− x0| + |x0 − x| + |x − y| + |y − y0| + |y0 − w| < 10t1/α,

by combining Propositions 3.3 and 3.5, we find that there exists c1 = c1(α, r0) > 0 such
that

inf
(z,w)∈B×B̃

pD(t/3, z, w) ≥ c1t
−d/α.

Since δD(x) ≤ 2t1/α < r0/8 and δD(y) ≤ 3t1/α , by Lemma 3.6 we have

pD(t, x, y) ≥ c2t
−d/α−1δD(x)

α/2δD(y)
α/2

for some positive constant c2 = c2(α, r0). ut

Proposition 3.8. Suppose that (t, x, y) ∈ (0, T0] × D × D with δD(x) ≤ t1/α and
(t/2)1/α ≤ δD(y) and |x − y| ≥ t1/α . Then there exists a constant c = c(α, r0) > 0
such that

pD(t, x, y) ≥ c
t1/2δD(x)

α/2

|x − y|d+α
. (3.12)

Proof. SinceD is an open set satisfying the uniform interior ball condition with radius r0
and δD(x) ≤ t1/α ≤ r0/16, there is zx ∈ ∂D such that |x − zx | = δD(x) and B(x1, r0) ⊂

D for x1 := zx + r0(x − zx)/|x − zx |. Define z0 = zx + 2t1/α(x − zx)/|x − zx | and
choose x0 in B(z0, 2t1/α) and κ = κ(α) ∈ (0, 1) such that

B(x0, 2κt1/α) ⊂ B(z0, (2− 2−2/α)t1/α) ∩ B(x, (1− 2−1−2/α)t1/α).

Such a ball B(x0, 2κt1/α) always exists because

2 < (2− 2−1)+ (1− 2−2) < (2− 2−2/α)+ (1− 2−1−2/α).

Note that

δD(z) ≥ (t/4)1/α and |y − z| ≥ 2−1(t/4)1/α for every z ∈ B(x0, κt
1/α).
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On the other hand, for every z ∈ B(x0, κt
1/α),

|z− y| ≤ |z− x| + |x − y| ≤ (1− 2−1−2/α)t1/α + |x − y| < 2|x − y|.

Thus by the semigroup property and Proposition 3.5, there exist positive constants c1, c2
and c3 depending only on α and r0 such that

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, z, y) dz

≥

∫
B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y) dz

≥ c1

∫
B(x0,κt1/α)

pD(t/2, x, z)
t

|z− y|d+α
dz

≥ c2
t

|x − y|d+α

∫
B(x0,κt1/α)

pD(t/2, x, z) dz

= c3
t

|x − y|d+α
Px(XDt/2 ∈ B(x0, κt

1/α)).

Applying Lemma 3.6, we arrive at the conclusion of the proposition. ut

Proposition 3.9. Suppose that (t, x, y) ∈ (0, T0]×D ×D with

max{δD(x), δD(y)} ≤ (t/2)1/α ≤ |x − y|.

Then there exists a constant c = c(α, r0) > 0 such that

pD(t, x, y) ≥ c
δD(x)

α/2δD(y)
α/2

|x − y|d+α
. (3.13)

Proof. As in the first paragraph of the proof of Proposition 3.7, let zx ∈ ∂D be such
that |x − zx | = δD(x) and B(x1, r0) ⊂ D for x1 := zx + r0(x − zx)/|x − zx |. Let
x0 = zx + 3t1/α(x− zx)/|x− zx |. Then ∂B(x0, 3t1/α)∩ ∂D = {zx}. Let κ := 1− 2−1/α .
Note that

δD(z) ≥ 2(t/2)1/α and |y−z| ≥ δD(z)−δD(y) ≥ (t/2)1/α for every z ∈ B(x0, κt
1/α).

Thus by the semigroup property, the symmetric property of pD(t, y, z), and Propositions
3.5 and 3.8, there exist positive constants c1 and c2 depending only on α and r0 such that

pD(t, x, y) =

∫
D

pD(t/2, x, z)pD(t/2, z, y) dz

≥

∫
B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y) dz

≥ c1

∫
B(x0,κt1/α)

pD(t/2, x, z)
t1/2δD(y)

α/2

|z− y|d+α
dz
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≥ c2
t1/2δD(y)

α/2

|x − y|d+α

∫
B(x0,κt1/α)

pD(t/2, x, z) dz

= c2
t1/2δD(y)

α/2

|x − y|d+α
Px(XDt/2 ∈ B(x0, κt

1/α)).

Applying Lemma 3.6, we arrive at the conclusion of the proposition. ut

Now we are ready to present the proof for Theorem 3.1.

Proof of Theorem 3.1. We first assume that t ≤ T0. By combining Proposition 3.5 (for
min{δD(x), δD(y)} ≥ t1/α and |x − y| ≤ t1/α < 2|x − y|) and Proposition 3.7 (for
max{δD(x), δD(y)} ≥ t1/α,min{δD(x), δD(y)} < t1/α and |x − y| ≤ t1/α < 2|x − y|),
we get the conclusion of Theorem 3.1 for max{δD(x), δD(y)} ≥ t1/α and |x − y| ≤
t1/α < 2|x − y|. Using Proposition 3.3 (for max{δD(x), δD(y)} ≥ t1/α ≥ 2|x − y|) and
the above, we get the conclusion of Theorem 3.1 when

max{δD(x), δD(y)} ≥ t1/α ≥ |x − y|.

By symmetry, Proposition 3.7 covers the case when max{δD(x), δD(y), |x − y|} ≤ t1/α .
Now we consider the case |x − y| ≥ t1/α . Combining Propositions 3.8 and 3.9 and

using symmetry, we obtain the conclusion of Theorem 3.1 for min{δD(x), δD(y)} ≤
(t/2)1/α and |x − y| ≥ t1/α . Proposition 3.5 covers the remaining case that
min{δD(x), δD(y)} ≥ (t/2)1/α and |x − y| ≥ t1/α . We have deduced the conclusion
of Theorem 3.1 for t ≤ T0.

To get it for T > T0, it is enough to handle the case T = 2T0. Recall that T0 =

(r0/16)α . For (t, x, y) ∈ (T0, 2T0] × D × D, let x0, y0 ∈ D be such that max{|x − x0|,

|y − y0|} < r0 and min{δD(x0), δD(y0)} ≥ r0/2. Then

(t/3)−d/α ∧
t/3

|x − z|d+α
≥ c1

(
(t/12)−d/α ∧

t/12
|x0 − z|d+α

)
, z ∈ D,

(t/3)−d/α ∧
t/3

|w − y|d+α
≥ c1

(
(t/12)−d/α ∧

t/12
|w − y0|d+α

)
, w ∈ D.

Similarly, there is a positive constant c2 such that

(t/2)−d/α ∧
t/2

|x0 − y0|d+α
≥ c2

(
t−d/α ∧

t

|x − y|d+α

)
.

Let D1 := {z ∈ D : δD(z) > r0/4}. Clearly, x0, y0 ∈ D1 and

min{δD1(x0), δD1(y0)} ≥ r0/4 = 4(T0)
1/α
≥ 4(t/2)1/α. (3.14)
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Combining this with the three displays above and the lower bound estimate in Theorem
3.1 for pD on (0, T0]×D ×D, we have

pD(t, x, y) =

∫
D×D

pD(t/3, x, z)pD(t/3, z, w)pD(t/3, w, y) dz dw

≥ c3

(
1 ∧

δD(x)
α/2

√
t/3

)(
1 ∧

δD(y)
α/2

√
t/3

)
·

∫
D×D

(
(t/3)−d/α ∧

t/3
|x − z|d+α

)(
1 ∧

δD(z)
α/2

√
t/3

)
pD(t/3, z, w)

·

(
(t/3)−d/α ∧

t/3
|w − y|d+α

)(
1 ∧

δD(w)
α/2

√
t/3

)
dz dw

≥ c4

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)∫
D1×D1

(
(t/12)−d/α ∧

t/12
|x0 − z|d+α

)
·pD1(t/3, z, w)

(
(t/12)−d/α ∧

t/12
|w − y0|d+α

)
dz dw

≥ c5

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)
·

∫
D1×D1

pD1(t/12, x0, z)pD1(t/3, z, w)pD1(t/12, w, y0) dz dw

= c5

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)
pD1(t/2, x0, y0)

≥ c6

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
(t/2)−d/α ∧

t/2
|x0 − y0|d+α

)
≥ c7

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
t−d/α ∧

t

|x − y|d+α

)
for some positive constants ci, i = 3, . . . , 7. Here (2.6) is used in the third inequality, and
the combination of Propositions 3.3 and 3.5, which works for any open set and t > 0,
is used in the fourth inequality in view of (3.14). Iterating the above argument one can
deduce that the conclusion of Theorem 3.1 holds for T = kT0 for any integer k ≥ 2. This
completes the proof of the theorem. ut

4. Large time heat kernel estimates and Green function estimates

In this section, we prove Theorem 1.1(ii) and Corollary 1.2.

Proof of Theorem 1.1(ii). For any boundedC1,1 open setD in Rd , since φD = eλ1PD1 φD ,
we see from Theorem 1.1(i) that on D,

φD(x) � (1 ∧ δD(x)α/2)
∫
D

(1 ∧ δD(y)α/2)
(

1 ∧
1

|x − y|d+α

)
φD(y) dy � δD(x)

α/2.

(4.1)
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This together with (3.7) implies that for any bounded C1,1 open set D, we have

c−1
t δD(x)

α/2δD(y)
α/2
≤ pD(t, x, y)

≤ ctδD(x)
α/2δD(y)

α/2 for (t, x, y) ∈ (0,∞)×D ×D.

Furthermore, by (3.7), (3.8) and (4.1), there exist c1 > 1 and T1 > 0 such that for all
(t, x, y) ∈ [T1,∞)×D ×D,

c−1
1 e−λ1tδD(x)

α/2δD(y)
α/2
≤ pD(t, x, y) ≤ c1e

−λ1tδD(x)
α/2δD(y)

α/2.

If T < T1, by Theorem 1.1(i), there is a constant c2 ≥ 1 such that

c−1
2 δD(x)

α/2δD(y)
α/2
≤ pD(t, x, y)

≤ c2δD(x)
α/2δD(y)

α/2 for t ∈ [T , T1) and x, y ∈ D.

This establishes Theorem 1.1(ii). ut

Proof of Corollary 1.2. Put T := diam(D)α , where diam(D) is the diameter of D. By a
change of variable u = |x − y|α/t , we have∫ T

0

(
1 ∧

δD(x)
α/2

√
t

)(
1 ∧

δD(y)
α/2

√
t

)(
t−d/α ∧

t

|x − y|d+α

)
dt

=
1

|x − y|d−α

∫
∞

|x−y|α/T

(ud/α−2
∧u−3)

(
1∧
√
u δD(x)

α/2

|x − y|α/2

)(
1∧
√
u δD(y)

α/2

|x − y|α/2

)
du.

(4.2)

Note that

1
|x − y|d−α

∫
∞

1
(ud/α−2

∧ u−3)

(
1 ∧
√
u δD(x)

α/2

|x − y|α/2

)(
1 ∧
√
u δD(y)

α/2

|x − y|α/2

)
du

≥
1

|x − y|d−α

∫
∞

1
u−3

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
du

=
1

2|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
, (4.3)

while

1
|x − y|d−α

∫
∞

1
(ud/α−2

∧ u−3)

(
1 ∧
√
u δD(x)

α/2

|x − y|α/2

)(
1 ∧
√
u δD(y)

α/2

|x − y|α/2

)
du

=
1

|x − y|d−α

∫
∞

1
u−2

(
u−1/2

∧
δD(x)

α/2

|x − y|α/2

)(
u−1/2

∧
δD(y)

α/2

|x − y|α/2

)
du

≤
1

|x − y|d−α

∫
∞

1
u−2

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
du

=
1

|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
. (4.4)
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By Theorem 1.1(ii), ∫
∞

T

pD(t, x, y) � δD(x)
α/2δD(y)

α/2. (4.5)

(i) Assume d > α. Observe that

1
|x − y|d−α

∫ 1

|x−y|α/T

(ud/α−2
∧ u−3)

(
1 ∧
√
u δD(x)

α/2

|x − y|α/2

)(
1 ∧
√
u δD(y)

α/2

|x − y|α/2

)
du

≤
1

|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)∫ 1

0
ud/α−2 du

≤
α

d − α

1
|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
. (4.6)

So by Theorem 1.1 and (4.2)–(4.6), we have

GD(x, y) =

∫ T

0
pD(t, x, y) dt +

∫
∞

T

pD(t, x, y) dt

�
1

|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
+ δD(x)

α/2δD(y)
α/2

�
1

|x − y|d−α

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
.

In the last estimate, we used the fact that D is bounded. Since δD(x) ≤ δD(y)+ |x − y|
for every x, y ∈ D, it is easy to see that for every r ∈ (0, 1],

(
1∧

rδD(x)

|x − y|

)(
1∧

rδD(y)

|x − y|

)
≤ 1∧

r2δD(x)δD(y)

|x − y|2
≤ 2

(
1∧

rδD(x)

|x − y|

)(
1∧

rδD(y)

|x − y|

)
.

(4.7)
So on D ×D,

GD(x, y) �
1

|x − y|d−α

(
1 ∧

δD(x)
α/2δD(y)

α/2

|x − y|α

)
.

For the other cases, we let

u0 :=
δD(x)

α/2δD(y)
α/2

|x − y|α
. (4.8)

Clearly 1/u0 ≥ |x − y|
α/diam(D)α = |x − y|α/T .
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(ii) Now assume d = α = 1. We have

1
|x − y|d−α

∫ 1

|x−y|α/T

(ud/α−2
∧ u−3)

(
1 ∧
√
u δD(x)

α/2

|x − y|α/2

)(
1 ∧
√
u δD(y)

α/2

|x − y|α/2

)
du

�

∫ 1

|x−y|α/T

u−1
(

1 ∧
uδD(x)

α/2δD(y)
α/2

|x − y|α

)
du

=

∫ 1

|x−y|α/T

u−11{u≥1/u0} du+

∫ 1

|x−y|α/T

u01{u<1/u0} du

= log(u0 ∨ 1)+ u0((1/u0) ∧ 1− |x − y|α/T ). (4.9)

So by Theorem 1.1, (4.2)–(4.5) and (4.7)–(4.9),

GD(x, y) =

∫ T

0
pD(t, x, y) dt +

∫
∞

T

pD(t, x, y) dt

�

(
1 ∧

δD(x)
α/2

|x − y|α/2

)(
1 ∧

δD(y)
α/2

|x − y|α/2

)
+ log(u0 ∨ 1)

+ u0((1/u0) ∧ 1− |x − y|α/T )+ δD(x)α/2δD(y)α/2

� 1 ∧ u0 + log(u0 ∨ 1)+ u0((1/u0) ∧ 1− |x − y|α/T )+ δD(x)α/2δD(y)α/2

� 1 ∧ u0 + log(u0 ∨ 1)+ δD(x)α/2δD(y)α/2

� log(1+ u0)+ δD(x)
α/2δD(y)

α/2

� log
(

1+
δD(x)

α/2δD(y)
α/2

|x − y|α

)
.

In the last estimate, we used the fact that D is bounded.
(iii) Lastly we consider the case d = 1 < α < 2. By (4.7)–(4.8),

1
|x − y|d−α

∫ 1

|x−y|α/T

(ud/α−2
∧ u−3)

(
1 ∧
√
u δD(x)

α/2

|x − y|α/2

)(
1 ∧
√
u δD(y)

α/2

|x − y|α/2

)
du

�
1

|x − y|1−α

∫ 1

|x−y|α/T

u1/α−2
(

1 ∧
uδD(x)

α/2δD(y)
α/2

|x − y|α

)
du

=
1

|x − y|1−α

(∫ 1

|x−y|α/T

u1/α−21{u≥1/u0} du+

∫ 1

|x−y|α/T

u0u
1/α−11{u<1/u0} du

)

=
1

|x − y|1−α

(
α

α − 1
((u0 ∨ 1)1−1/α

− 1)+ αu0((u0 ∨ 1)−1/α
− (|x − y|α/T )1/α)

)
.
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So by Theorem 1.1, (4.2)–(4.5), (4.7)–(4.8) and the last display, we have

GD(x, y) =

∫
∞

T

pD(t, x, y) dt +

∫ T

0
pD(t, x, y) dt

� δD(x)
α/2δD(y)

α/2
+

1
|x − y|1−α

(1 ∧ u0)

+
1

|x − y|1−α

(
((u0 ∨ 1)1−1/α

− 1)+ u0((u0 ∨ 1)−1/α
− (|x − y|α/T )1/α)

)
� δD(x)

α/2δD(y)
α/2
+

1
|x − y|1−α

(u0 ∧ u
1−1/α
0 )

= δD(x)
α/2δD(y)

α/2
+

1
|x − y|1−α

(
δD(x)

α/2δD(y)
α/2

|x − y|α
∧
δD(x)

(α−1)/2δD(y)
(α−1)/2

|x − y|α−1

)
� (δD(x)δD(y))

(α−1)/2
∧
δD(x)

α/2δD(y)
α/2

|x − y|
.

In the last estimate, we used the fact that D is bounded. This proves the corollary. ut
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