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HEAT KERNEL ESTIMATES FOR THE FRACTIONAL
LAPLACIAN WITH DIRICHLET CONDITIONS

BY KRZYSZTOF BOGDAN1, TOMASZ GRZYWNY2 AND MICHAŁ RYZNAR2

Wrocław University of Technology

We give sharp estimates for the heat kernel of the fractional Laplacian
with Dirichlet condition for a general class of domains including Lipschitz
domains.

1. Introduction. Explicit sharp estimates for the Green function of the Lapla-
cian in C1,1 domains were completed in 1986 by Zhao [43]. Sharp estimates of the
Green function of Lipschitz domains were given in 2000 by Bogdan [6]. Explicit
qualitatively sharp estimates for the classical heat kernel in C1,1 domains were
established in 2002 by Zhang [42]. Qualitatively sharp heat kernel estimates in
Lipschitz domains were given in 2003 by Varopulous [41]. The development of
the boundary potential theory of the fractional Laplacian follows a parallel path.
Green function estimates were obtained in 1997 and 1998 by Kulczycki [29] and
Chen and Song [21] for C1,1 domains, and in 2002 by Jakubowski for Lipschitz
domains [28]. In 2008 Chen, Kim and Song [19] gave sharp explicit estimates for
the heat kernel pD(t, x, y) of the fractional Laplacian on C1,1 domains D. The
main contribution of the present paper is the following result.

THEOREM 1. If D is κ-fat, then there is C = C(α,D) such that

C−1P x(τD > t)P y(τD > t) ≤ pD(t, x, y)

p(t, x, y)
≤ CP x(τD > t)P y(τD > t)(1)

for 0 < t ≤ 1 and x, y ∈ D.

Here p(t, x, y) is the heat kernel of the fractional Laplacian on R
d , and

P x(τD > t) =
∫

Rd
pD(t, x, y) dy

defines the survival probability of the corresponding isotropic α-stable Lévy
process in D. The result applies also to unbounded domains, in particular, to do-
mains above the graph of a Lipschitz function, where we can take arbitrary t > 0.
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In fact, (1) holds with C = C(α,d, κ) under the mere condition that D is (κ, t1/α)-
fat at x and at y; see Sections 3 and 4 for definitions and results. For exterior
domains we have a result free from local geometric assumptions:

COROLLARY 1. If diam(Dc) < ∞, then (1) holds with C = C(α,d) for all
t > diam(Dc)α and x, y ∈ D.

For exterior domains of class C1,1 a more explicit estimate is given in Theo-
rem 3 below. We also like to note that a useful variant of Theorem 1 is given in
Theorem 2.

Expression (1) is motivated by these applications of the semigroup property
of pD :

pD(2t, x, y) =
∫

Rd
pD(t, x, z)pD(t, z, y) dz ≤ P x(τD > t)c(t),

where c(t) = supz,y∈Rd p(t, z, y) ≥ supz,y∈Rd pD(t, z, y) [see (12)], and

pD(3t, x, y) =
∫ ∫

pD(t, x, z)pD(t, z,w)pD(t,w,y) dw dz

≤ P x(τD > t)c(t)P y(τD > t).

The latter inequality is quite satisfactory for x = y, because c(t) = p(t, x, x). Off-
diagonal (x, y) in (1) require, however, a deeper analysis. Our proof of (1) is based
on the boundary Harnack principle (BHP) [14] (see also earlier [40]), a version of
the Ikeda–Watanabe [27] formula (18), scaling (14) and comparability of p with its
Lévy measure (5); see (28). Counterparts of these are important in view of possible
generalizations.

In what follows (1) and analogous sharp estimates will be written as

pD(t, x, y)
C≈ P x(τD > t)p(t, x, y)P y(τD > t),

meaning that either ratio of the sides is bounded by a number C ∈ (0,∞), and C

does not depend on the variables shown (here: t , x, y). We will skip C from nota-
tion if unimportant for our goals.

Let δD(x) = dist(x,Dc). As mentioned above, domains D of class C1,1 enjoy
the following sharp and explicit estimate of Chen, Kim and Song [19]:

pD(t, x, y)

p(t, x, y)
≈

(
1 ∧ δ

α/2
D (x)

t1/2

)(
1 ∧ δ

α/2
D (y)

t1/2

)
, 0 < t ≤ 1, x, y ∈ R

d .(2)

We note that (2) agrees with (1) because by [10], Corollary 1,

P x(τD > t) ≈ 1 ∧ δ
α/2
D (x)

t1/2 for 0 < t ≤ 1, x, y ∈ R
d .

In fact, starting with (1), we are able to recover and strengthen (2), with a simpler
proof; see Example 5 and Proposition 1 below. We note that (1) was conjectured in
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[10] based on the cases of C1,1 domains [19] and circular cones [10]. We should
also mention that the Gaussian estimates of Varopoulous [41] have a shape similar
to (1), in particular, they involve the survival probability. Thus, the present paper
builds on the evidence accumulated in [19, 41] and [10]. We also note that the up-
per bound in (2) was proved in 2006 by Siudeja for semibounded convex domains
([39], Theorem 1.6), and stated for general convex domains in [39], Remark 1.7.
Some of our present techniques were inspired by [32], Theorem 4.2, of Kulczycki
and Siudeja, [2], Proposition 2.9, of Bañuelos and Kulczycki, and [1], Section 4,
of Bogdan and Bañuelos.

It is a consequence of Lemma 1 below that we can apply BHP [14, 40] to conve-
niently estimate P x(τD > 1) by some kernel functions of D, namely, by the Martin
kernel with the pole at infinity or the expected survival time [we use scaling to es-
timate P x(τD > t) for general t > 0]. The estimate and the resulting bounds for
the heat kernel are collected in Theorem 2, followed by a number of applications.
In particular, we give a simple proof of the main result of [10] for the circular
cones V :

pV (t, x, y)

p(t, x, y)
≈ (1 ∧ δV (x)/t1/α)α/2

(1 ∧ |x|/t1/α)α/2−β

(1 ∧ δV (y)/t1/α)α/2

(1 ∧ |y|/t1/α)α/2−β
.(3)

Here β ∈ [0, α) is a characteristic of the cone, and all t > 0 and x, y ∈ R
d are

allowed. We should add to (1), (2) and (3) that [4, 16]

pt(x)
c≈ t

|x|d+α
∧ t−d/α, t > 0, x ∈ R

d .(4)

Here c = c(α, d), meaning that c ∈ (0,∞) may be so chosen to depend only on d

and α. We like to note that the estimates for general κ-fat domains cannot be as
explicit as those for C1,1 domains. In particular, the decay rate β at the vertex of a
cone delicately depends on the aperture of the cone; see [1, 10, 35] (see also [6]).
Nevertheless, Lipschitz domains offer a natural setting for studying the boundary
behavior of the Green function and the heat kernel for both the Brownian motion
and the isotropic α-stable Lévy processes. This is due to the scaling, the rich range
of asymptotic behaviors depending on the local geometry of the domain’s bound-
ary, connections to the boundary Harnack principle and approximate factorization
of the Green function, and applications in the perturbation theory of generators, in
particular, via the 3G Theorem [1, 6, 7, 26, 43] and 3P Theorem [13]. The κ-fat
sets are a convenient generalization of Lipschitz domains, with similar features. It
is noteworthy that (1) is an approximate factorization of the heat kernel (see also
[6, 14] in this connection).

We should add that the C1,1 condition specifies the geometry of a domain only
in bounded scales (see Definition 3). This renders the range of time in (2) restricted
to 0 < t ≤ 1. In what follows we will also study the probability of survival for large
times (and unbounded domains). This is straightforward for special Lipschitz do-
mains (thus for circular cones), but less so for general κ-fat or C1,1 domains. As
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an interesting case study we consider domains with bounded complement (i.e., ex-
terior domains) of class C1,1. These have distinctive geometries at infinity and at
the boundary, resulting in nontrivial completion of (2). We remark that exterior
C1,1 domains in dimension d > α have been recently studied in [22], too. We also
remark that [25], Theorem 4.4 bounds the survival probability of the relativistic
process in a half-line, and [31] gives an explicit formula for the transition den-
sity of the killed Cauchy process (α = 1) on the half-line. Regarding other recent
estimates [3, 17, 20, 23, 36] for the transition density and potential kernel of jump-
type processes, we need to point out that generally these only concern processes
without killing. Killing corresponds to the Dirichlet “boundary” condition (anal-
ogous to the negative Schrödinger perturbation [8, 12]) and it severely influences
the asymptotics of the transition density and Green function. Needless to say, the
asymptotics are crucial for solving the Dirichlet problem [24, 25].

We like to mention possible applications and further directions of research. The
estimate (1) fits well into the technique of Schrödinger perturbations of [12], which
should produce straightforward consequences. Also, the distribution of τD , given
by (18) below, can be estimated by using (1). Further, we conjecture that for cer-
tain domains D, limpD(t, x, y)/P x(τD > t) exists as x approaches a boundary
point of D. This may lead to representation theorems for nonnegative parabolic
functions of the fractional Laplacian (compare [14], Theorems 2 and 3) and con-
struction of excursion laws. We need to remark here that our estimates are incon-
clusive about the (irregular [14]) boundary points of D, but we conjecture that (1)
indeed extends to ∂D. Finally, it seems important to understand the behavior of
pD(t, x, y) for domains which are rather small at a boundary point or at infinity.
In this connection we refer the interested reader to the recent study of intrinsic
ultracontractivity by Kwaśnicki [33]; see also [10, 19, 30] and the notion of inac-
cessibility in [14].

Our general references to the boundary potential theory of the fractional Lapla-
cian are [7] and [14]. We also refer the reader to [9] for a broad non-technical
overview of the methods and goals of the theory.

The paper is composed as follows. In Section 2 we recall basic facts about the
killed isotropic α-stable Lévy processes. In Section 3 we prove Theorem 1 and
Corollary 1. In Section 4 we state and prove Theorem 2 and give applications to
specific domains. In particular, we strengthen (2) and part of the results of [19] (see
Proposition 1, Theorem 3 and Corollary 2), and we discuss exterior C1,1 domains
in dimension d = 1 < α.

2. Preliminaries. In what follows, R
d denotes the Euclidean space of dimen-

sion d ≥ 1, dy is the Lebesgue measure on R
d , and 0 < α < 2. Our primary ana-

lytic data are as follows: a nonempty open set D ⊂ R
d and the Lévy measure given

by density function

ν(y) = 2α	((d + α)/2)

πd/2|	(−α/2)| |y|−d−α.(5)
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The coefficient in (5) is such that∫
Rd

[1 − cos(ξ · y)]ν(y) dy = |ξ |α, ξ ∈ R
d .(6)

For (smooth compactly supported) φ ∈ C∞
c (Rd), the fractional Laplacian is

α/2φ(x) = lim
ε↓0

∫
|y|>ε

[φ(x + y) − φ(x)]ν(y) dy, x ∈ R
d

(see [7, 9] for a broader setup). If r > 0 and φr(x) = φ(rx), then

α/2φr(x) = rαα/2φ(rx), x ∈ R
d .(7)

We let pt be the smooth real-valued function on R
d with Fourier transform,∫

Rd
pt (x)eix·ξ dx = e−t |ξ |α , t > 0, ξ ∈ R

d .(8)

In particular, the maximum of pt is pt(0) = 21−απ−d/2α−1	(d/α)/	(d/2)t−d/α .
According to (6) and the Lévy–Khinchine formula, {pt } is a probabilistic convo-
lution semigroup with Lévy measure ν(y) dy; see [16, 38] or [9]. We have the
following scaling property,

pt(x) = t−d/αp1(t
−1/αx), t > 0, x ∈ R

d,(9)

which may be considered a consequence of (8). It is noteworthy that by (4) we
have

pt(x) ≈ p2t (x), t > 0, x ∈ R
d .(10)

We denote

p(t, x, y) = pt(y − x),

and we have∫ ∞
s

∫
Rd

p(u − s, x, z)[∂uφ(u, z) + α/2
z φ(u, z)]dzdu = −φ(s, x),(11)

where s ∈ R, x ∈ R
d , and φ ∈ C∞

c (R × R
d); see, for example, [12], (36).

We define the isotropic α-stable Lévy process (Xt ,P
x) by stipulating transition

probability

Pt(x,A) =
∫
A

p(t, x, y) dy, t > 0, x ∈ R
d,A ⊂ R

d,

initial distribution P x(X(0) = x) = 1, and cádlág paths. Thus, P x , Ex denote the
distribution and expectation for the process starting at x. We define the time of the
first exit from D, or survival time,

τD = inf{t > 0 :Xt /∈ D},
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and the time of first hitting D,

TD = inf{t > 0 :Xt ∈ D}.
We define, as usual,

pD(t, x, y) = p(t, x, y) − Ex[τD < t;p(t − τD,XτD
, y)], t > 0, x, y ∈ R

d .

We have that

0 ≤ pD(t, x, y) = pD(t, y, x) ≤ p(t, x, y),(12)

hence, ∫
pD(t, x, y) dy =

∫
pD(t, x, y) dx ≤ 1.(13)

If x ∈ Dc is regular for the Dirichlet problem on D [14], that is, P x(τD = 0) = 1,
then pD(t, x, y) = 0 and (1) is trivially satisfied. By this remark, if all the points
of ∂D are regular for D, then we can write x, y ∈ R

d in Theorem 1, instead
of x, y ∈ D. The remark also applies to Examples 1–8 in Section 4. By the strong
Markov property, pD is the transition density of the isotropic stable process killed
when leaving D, meaning that we have the following Chapman–Kolmogorov
equation,∫

Rd
pD(s, x, z)pD(t, z, y) dz = pD(s + t, x, y), s, t > 0, x, y ∈ R

d,

and for nonnegative or bounded (Borel) functions f : Rd → R,∫
Rd

f (y)pD(t, x, y) dy = Ex[τD < t;f (Xt)], t > 0, x ∈ R
d .

For s ∈ R, x ∈ R
d , and φ ∈ C∞

c (R × D), we have∫ ∞
s

∫
D

pD(u − s, x, z)[∂uφ(u, z) + α/2
z φ(u, z)]dzdu = −φ(s, x),

which extends (11) and justifies calling pD the heat kernel of the (Dirichlet) frac-
tional Laplacian on D. It is well known that pD is jointly continuous and positive
for (t, x, y) ∈ (0,∞) × D × D. We have a scaling property, prD(rαt, rx, ry) =
rdpD(t, x, y), r > 0, or

pD(t, x, y) = t−d/αpt−1/αD(1, t−1/αx, t−1/αy), t > 0, x, y ∈ R
d,(14)

in agreement with (9) and (7). Thus, P rx(τrD > rαt) = P x(τD > t), or

P x(τD > t) =
∫

Rd
pD(t, x, y) dy = P t−1/αx(τt−1/αD > 1).(15)

REMARK 1. For c > 0 consider ν̃ = cν, the corresponding heat kernels p̃, p̃D ,
probability and expectation P̃ x , Ẽx . Clearly, p̃D(t, x, y) = pD(ct, x, y).
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The Green function of D is defined as

GD(x, y) =
∫ ∞

0
pD(t, x, y) dt,(16)

and scaling of pD yields the following scaling of GD ,

GrD(rx, ry) = rα−dGD(x, y).(17)

A result of Ikeda and Watanabe [27] asserts that for x ∈ D the P x -distribution
of (τD,XτD−,XτD

) restricted to XτD− �= XτD
is given by the density function

(s, u, z) �→ pD(s, x,u)ν(z − u).(18)

For geometrically nice domains, for example, for the ball, P x(XτD− �= XτD
) = 1

for x ∈ D [14], and then by (16) and (18) the P x -distribution of XτD
has the

density function given by the Poisson kernel,

PD(x, z) =
∫
D

GD(x,u)ν(z − u)du.(19)

For x0 ∈ R
d and r > 0 we consider the ball B(x0, r) = {x ∈ R

d : |x − x0| < r} and
Bc(x0, r) = {x ∈ R

d : |x − x0| > r} (open complement of a ball).
There is a constant C depending only on d , α and p, such that

PU(x1, y1)PU(x2, y2)
C≈ PU(x1, y2)PU(x2, y1),(20)

whenever U ⊂ B(x0, r) ⊂ R
d is open, 0 < p < 1, r > 0, x0 ∈ R

d , x1, x2 ∈
U ∩ B(x0, rp), and y1, y2 ∈ B(x0, r)

c. This boundary Harnack principle (BHP)
follows from [14], Lemma 7 and the proof of Theorem 1, and it is essentially an
approximate factorization of PU . We encourage the interested reader to directly
verify the estimate in the special case of (22) below.

The Green function and Poisson kernel of B(x0, r) are known explicitly:

GB(x0,r)(x, v) = Bd,α|x − v|α−d
∫ w

0

sα/2−1

(s + 1)d/2 ds,(21)

PB(x0,r)(x, y) = Cd,α

[
r2 − |x − x0|2
|y − x0|2 − r2

]α/2 1

|x − y|d ,(22)

where Bd,α = 	(d/2)/(2απd/2[	(α/2)]2), Cd,α = 	(d/2)π−1−d/2 sin(πα/2),

w = (r2 − |x − x0|2)(r2 − |v − x0|2)/|x − v|2,
|x − x0| < r , |v − x0| < r , and |y − x0| ≥ r ; see [5, 37]. Thus,

P x(∣∣XτB(0,1)

∣∣ > R
) =

∫
|y|≥R

PB(0,1)(x, y) dy ≈ (1 − |x|)α/2

Rα
,(23)
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where x ∈ B(0,1) and R ≥ 2. Also, for |x − x0| ≤ r we have [8]

ExτB(x0,r)(x) = 21−α	(d/2)

α	((d + α)/2)	(α/2)
(r2 − |x − x0|2)α/2.(24)

All the sets and functions considered below are Borelian. Positive means strictly
positive. Domain means a nonempty open set (connectedness need not be assumed
in this theory).

3. Factorization. We consider nonempty open set D ⊂ R
d .

DEFINITION 1. Let x ∈ D, r > 0 and 0 < κ ≤ 1. We say that D is (κ, r)-fat
at x if there is a ball B(A,κr) ⊂ D ∩ B(x, r). If this is true for every x ∈ D, then
we say that D is (κ, r)-fat. We say that D is κ-fat if there is R > 0 such that D is
(κ, r)-fat for all r ∈ (0,R].

REMARK 2. The ball is 1/2-fat.

DEFINITION 2. Given B(A,κ) ⊂ D ∩ B(x,1), we consider U = D ∩
B(x, |x − A| + κ/3), B1 = B(A,κ/3) ⊂ U and B2 = B(A′, κ/6) such that
B(A′, κ/3) ⊂ B(A,κ) \ U ; see the picture:

LEMMA 1. There is C = C(α,d, κ) such that if D is (κ,1)-fat at x, then

P x(τD > 1/3) ≤ CP x(τD > 3).(25)
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PROOF. Consider x ∈ D and B(A,κ) and U as above. For |x − A| < κ/2,

1 ≥ P x(τD > 1/3) ≥ P x(τD > 3)

≥ P x(
τB(x,κ/2) > 3

) = P 0(
τB(0,κ/2) > 3

)
> 0,

and (25) is proved. We will now assume that |x − A| ≥ κ/2. We note that

P x(τD > 1/3) ≤ P x(τU > 1/3) + P x(XτU
∈ D).(26)

We have P x(XτU
∈ D) = ∫

D PU(x, y) dy. Indeed, if B = B(x, |x − A| + κ/3) as
in the definition of U , then P x(XτU

∈ ∂U ∩ D) ≤ P x(XτB
∈ ∂B) = 0; see the

discussion preceding (19) above. Similarly, P x(XτU
∈ B2) is an integral of the

Poisson kernel PU . We consider BHP for x1 = x, x2 = A, p = 1 − κ/3 > (1 −
κ)/(1 − κ + κ/3). Integrating (20) on D and B2, we obtain

P x(XτU
∈ D)

P A(XτU
∈ D)

≤ c
P x(XτU

∈ B2)

P A(XτU
∈ B2)

.

We note that (the denominator) P A(XτU
∈ B2) ≥ P A(XτB1

∈ B2) ≥ c > 0 [see
(22)], therefore, P x(XτU

∈ D) ≤ cP x(XτU
∈ B2). We also observe that u �→∫

B2
ν(y − u)dy is bounded away from zero and infinity on U . By (19),

P x(XτU
∈ B2) =

∫
U

GU(x,u)

∫
B2

ν(y − u)dy du ≈
∫
U

GU(x,u) du = ExτU .

Clearly, P x(τU > 1/3) ≤ 3ExτU . By (26), P x(τD > 1/3) ≤ cExτU . By the strong
Markov property,

ExτU ≤ cP x(XτU
∈ B2) ≤ cEx[

XτU
∈ B2;P XτU

(
τB(XτU

,κ/6) > 3
)]

≤ cP x(τD > 3). �

REMARK 3. If D is (κ,1)-fat at x, then by the above proof we have

P x(τD > 1/3) ≈ P x(τD > 3) ≈ P x(τD > 1) ≈ P x(XτU
∈ D) ≈ ExτU .(27)

In fact, we can replace 3 by any finite E ≥ 1, at the expense of having the
comparability between each pair of expressions in (27) holding with a constant
C = C(α,d, κ, E ).

LEMMA 2. Consider open D1,D3 ⊂ D such that dist(D1,D3) > 0. Let D2 =
D \ (D1 ∪ D3). If x ∈ D1 and y ∈ D3, then

pD(1, x, y) ≤ P x(XτD1
∈ D2) sup

s<1,z∈D2

p(s, z, y) + ExτD1 sup
u∈D1,z∈D3

ν(z − u)

and

pD(1, x, y) ≥ P x(τD1 > 1)P y(τD3 > 1) inf
u∈D1,z∈D3

ν(z − u).
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PROOF. By the strong Markov property,

pD(1, x, y) = Ex[pD(1 − τD1,XτD1
, y), τD1 < 1],

which is

Ex[pD(1 − τD1,XτD1
, y), τD1 < 1,XτD1

∈ D2]
+ Ex[pD(1 − τD1,XτD1

, y), τD1 < 1,XτD1
∈ D3] = I + II.

Clearly,

I ≤ P x(XτD1
∈ D2) sup

s<1,z∈D2

p(s, z, y).

Consider D1 such that P x(XτD1
∈ ∂D1 ∩ D) = 0, for example, D1 being an inter-

section of D with a Lipschitz domain. By (18), the density function of (τD1,XτD1
)

at (s, z) for z ∈ D equals

f x(s, z) =
∫
D1

pD1(s, x, u)ν(z − u)du.

For z ∈ D3,

f x(s, z) =
∫
D1

pD1(s, x, u)ν(z − u)du ≤ P x(τD1 > s) sup
u∈D1,z∈D3

ν(z − u),

hence, by (13),

II =
∫ 1

0

∫
D3

pD(1 − s, z, y)f x(s, z) dz ds

≤ sup
u∈D1,z∈D3

ν(z − u)

∫ 1

0

∫
D3

pD(1 − s, z, y)P x(τD1 > s)dz ds

≤
∫ 1

0
P x(τD1 > s)ds sup

u∈D1,z∈D3

ν(z − u) ≤ ExτD1 sup
u∈D1,z∈D3

ν(z − u).

The upper bound follows. The case of general D1 follows by approximating from
below, and continuity of p and ν. The lower bound obtains analogously

II ≥ inf
u∈D1,z∈D3

ν(z − u)

∫ 1

0

∫
D3

pD(1 − s, z, y)P x(τD1 > s)dz ds

≥ P x(τD1 > 1) inf
u∈D1,z∈D3

ν(z − u)

∫ 1

0

∫
D3

pD3(1 − s, z, y) dz ds. �

REMARK 4. Lemma 2 also holds for ν̃, p̃, P̃ x and Ẽx of Remark 1.

In what follows we will often use the fact that

1 ∧ ν(z − u) ≈ p(1, u, z).(28)
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LEMMA 3. If D is (κ,1)-fat at x and y, then

pD(2, x, y) ≤ C(α,d, κ)P x(τD > 2)P y(τD > 2)p(2, x, y).

PROOF. If |x − y| ≤ 8, then p(1, x, y) ≈ 1, and by the semigroup property,
(10) and Lemma 1,

pD(1, x, y) =
∫

Rd
pD(1/2, x, z)pD(1/2, z, y) dz

≤ sup
z

p(1/2, z, y)P x(τD > 1/2)(29)

≤ cP x(τD > 1)p(1, x, y).

Here c = c(α, d, κ). If |x − y| > 8, then we will apply Lemma 2 with D1 = U =
D ∩ B(A, |x − A| + κ/3), as in Definition 2, and D3 = {z ∈ D : |z − x| > |x −
y|/2}. Since sups<1,z∈D2

p(s, z, y) ≤ cp(1, x, y), and supu∈D1,z∈D3
ν(z − u) ≤

cp(1, x, y) [see (28)], by Remark 3, we obtain

pD(1, x, y) ≤ cp(1, x, y)[P x(XτU
∈ D) + ExτU ]

(30)
≤ cP x(τD > 1)p(1, x, y),

hence, by (29), (30), symmetry, the semigroup property and Lemma 1,

pD(2, x, y) =
∫

pD(1, x, z)pD(1, z, y) dz

≤ cP x(τD > 1)P y(τD > 1)

∫
p(1, x, z)p(1, z, y) dz

≤ cP x(τD > 2)P y(τD > 2)p(2, x, y). �

Under the assumptions of Lemma 3, C̃ = C̃(α, d, κ) exists such that

pD(1, x, y) ≤ C̃P x(τD > 1)P x(τD > 1)p(1, x, y).(31)

Indeed, according to Remark 1, we consider ν̃ = 1
2ν and the corresponding p̃, p̃D ,

P̃ x , obtaining

pD(1, x, y) = p̃D(2, x, y) ≤ C̃P̃ x(τD > 2)P̃ x(τD > 2)p̃(2, x, y)

= C̃P x(τD > 1)P x(τD > 1)p(1, x, y).

LEMMA 4. If r > 0, then there is a constant C = C(α,d, r) such that

pB(u,r)∪B(v,r)(1, u, v) ≥ Cp(1, u, v), u, v ∈ R
d .
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PROOF. For |u − v| ≥ r/2 we use (28) and Lemma 2 with D = B(u, r) ∪
B(v, r), D1 = B(u, r/8) and D3 = B(v, r/8):

pB(u,r)∪B(v,r)(1, u, v) ≥ P u(τD1 > 1)P v(τD3 > 1) inf
u∈D1,z∈D3

ν(z − u)

≥ c
[
P 0(

τB(0,r/8) > 1
)]2

p(1, u, v).

For |u − v| ≤ r/2, by (4), we simply have

pB(u,r)∪B(v,r)(1, u, v) ≥ inf|z|<r/2
pB(0,r)(1,0, z) ≥ c ≥ cp(1, u, v). �

LEMMA 5. If D is (κ,1)-fat at x and y, then

pD(3, x, y) ≥ C(α,d, κ)P x(τD > 3)P y(τD > 3)p(3, x, y).

PROOF. Consider Ux , Bx
2 , and Uy , B

y
2 , selected according to Definition 2

for x and y, correspondingly. By the semigroup property, Lemma 4 with r = κ/6,
and (4),

pD(3, x, y) ≥
∫
B

y
2

∫
Bx

2

pD(1, x, u)pD(1, u, v)pD(1, v, y) dudv

≥ cp(1, x, y)

∫
Bx

2

pD(1, x, u) du

∫
B

y
2

pD(1, v, y) dv.

For u ∈ Bx
2 = B(A′, κ/6), by Lemma 2 with D1 = Ux = U and D3 = B(A′, κ/4),

and by Remark 3, we obtain

pD(1, x, u) ≥ P x(τU > 1)P 0(
τB(0,κ/12) > 1

)
inf

w∈U,z∈D3
ν(z − w)

≥ cP x(τU > 1) ≥ cP x(τD > 1).

Similarly, pD(1, v, y) ≥ cP y(τD > 1), hence, by Lemma 1, we have

pD(3, x, y) ≥ cP y(τD > 1)p(1, x, y)P x(τD > 1)

≥ cP y(τD > 3)p(3, x, y)P x(τD > 3). �

Under the assumptions of Lemma 5 we also have that

pD(1, x, y) ≥ C̃(α, d, κ)P x(τD > 1)P y(τD > 1)p(1, x, y).(32)

This is proved analogously to (31).

PROOF OF THEOREM 1. Assume that R ≥ 1 and D is (κ, r)-fat for 0 < r ≤ R.
If t1/α ∈ (0,R], then t−1/αD is (κ,1)-fat. The estimate (1) follows from (31), (32)
and scaling; see (14) and (15). In fact, we have C = C(α,d, κ) in (1). If R < 1,
then we argue as in the case of (31) C = C(α,d, κ,R) or, alternatively, we use
Remark 6 below. �
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PROOF OF COROLLARY 1. Note that D is (1/4, r)-fat for r ≥ 2 diam(Dc),
and so we obtain (1) for t ≥ 2αdiam(Dc) with the same constant C. If we consider
ν̃ = 2−αν and argue like in the case of (31), then we obtain the wider range of t ,
as in the statement of Corollary 1. �

REMARK 5. Since the κ-fatness condition is more restrictive when κ is bigger,
the above constants C = C(α,d, κ) may be chosen decreasing with respect to κ .
Also, if D has a tangent inner ball of radius 1 at every boundary point, then the
constants in Lemmas 3 and 5 depend only on α and d .

REMARK 6. If D is (κ, r)-fat at x and 1 ≤ K < ∞, then D is (κ/K, rK)-
fat at x. This observation together with scaling allows to easily increase time,
compare (31) or (32), at the expense of enlarging the constants of comparability.
The argument, however, does not allow to decrease time. Remark 1 is more flexible
in this respect.

4. Applications. We let sD(x) = ExτD = ∫
GD(x, y) dv if this expectation is

finite for x ∈ D, otherwise we let sD(x) = MD(x), the Martin kernel with the pole
at infinity for D,

MD(x) = lim
D�y,|y|→∞

GD(x, y)

GD(x0, y)
.

We should note that this (alternative) definition of sD is natural in view of [14],
Theorem 2. The choice of x0 ∈ D is merely a normalization, MD(x0) = 1, and
will not be reflected in the notation. By the scaling of the Green function (17), we
obtain

srD(rx)

srD(ry)
= sD(x)

sD(y)
, x, y ∈ D,r > 0.(33)

We denote by Ar(x) or Ar(x, κ,D) every point A such that B(A,κr) ⊂ D ∩
B(x, r), as in Definition 1. It is noteworthy that Ar(x) approximately dominates x

in terms of the distance to ∂D:

δD(Ar(x)) ≈ r ∨ δD(x).(34)

If D is (κ,1)-fat at x, then rD is (κ, r)-fat at rx, and (every) rA1(x, κ,D) may
serve as Ar(rx, κ, rD).

THEOREM 2. If D is (κ, t1/α)-fat at x and y, then

P x(τD > t)
C≈ sD(x)

sD(At1/α (x))
,(35)

where C = C(d,α, κ) and, furthermore,

pD(t, x, y)
C≈ sD(x)

sD(At1/α (x))
p(t, x, y)

sD(y)

sD(At1/α (y))
.(36)
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PROOF. To verify (35), we first let t = 1 and assume that D is (κ,1)-fat at x.
Let A = A1(x). If ExτD < ∞, then we consider the set U ⊂ D of Definition 2,
and we obtain

ExτD = ExτU + ExsD(XτU
).

By Remark 3, ExτU ≈ P x(τD > 1). Since EAτU ≈ 1, we trivially have

ExτU

EAτU

≈ P x(τD > 1).

Similarly, P A(XτU
∈ D) ≈ 1. By BHP and Remark 3, we obtain

ExsD(XτU
)

EAsD(XτU
)

≈ P x(XτU
∈ D)

P A(XτU
∈ D)

≈ P x(XτU
∈ D) ≈ P x(τD > 1).(37)

This yields (35) in the considered case. If ExτD = ∞, then sD is harmonic and we
have sD(x) = ExsD(XτU

) (see [14], Theorem 2 and (77)) and we proceed directly
via (37). The case of general t in (35) is obtained by the scaling of (33) and (15).
Finally, (36) follows from (35) and Theorem 1. The resulting comparability con-
stants depend only on α, d and κ . �

REMARK 7. Assume that D is κ-fat, so that there is R > 0 such that D is
(κ, r)-fat for every r ≤ R. Then (35) and (36) hold with C = C(d,α, κ) for all
x, y ∈ D and t ≤ Rα .

Below we give a number of applications.

EXAMPLE 1. We let R > 0 and D = B(0,R) ⊂ R
d . By (24), the expected sur-

vival time is sD(x)
C≈ δ

α/2
D (x)Rα/2, where C = C(d,α). By (34), sD(At1/α (x))

C≈
(t1/α ∨ δD(x))α/2Rα/2, therefore, for all t ≤ Rα and x, y ∈ R

d ,

P x(τD > t)
C≈ δ

α/2
D (x)

(t1/α ∨ δD(x))α/2 =
(

1 ∧ δD(x)

t1/α

)α/2

(38)

and

pD(t, x, y)
C≈

(
1 ∧ δ

α/2
D (x)

t1/2

)
p(t, x, y)

(
1 ∧ δ

α/2
D (y)

t1/2

)
.(39)

To be explicit, δB(0,R)(x) = (R − |x|) ∨ 0, and δB(0,R)c (x) = (|x| − R) ∨ 0, and
(38), (39) on Dc follow because all x ∈ Dc are regular for D.

EXAMPLE 2. Let D ⊂ R
d be a half-space. The Martin kernel with the pole

at infinity for D is sD(x) = δ
α/2
D (x) [1]. We see that (38) and (39) hold with C =

C(d,α) for all t ∈ (0,∞) and x, y ∈ R
d .
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EXAMPLE 3. Let D = Bc(0,1) ⊂ R
d and d ≥ α. By the Kelvin transform

([18] or [14]) and (21),

MD(x) = lim
y→∞

|x|α−d |y|α−dGB(x/|x|2, y/|y|2)
|x0|α−d |y|α−dGB(x0/|x0|2, y/|y|2) = |x|α−dGB(x/|x|2,0)

|x0|α−dGB(x0/|x0|2,0)
,

where

GB(z,0) = Bd,α|z|α−d
∫ |z|−2−1

0

sα/2−1

(s + 1)d/2 ds, 0 < |z| < 1.

Thus, there is c = c(x0, d,α) such that

MD(x) = c

∫ |x|2−1

0

sα/2−1

(s + 1)d/2 ds, |x| ≥ 1.(40)

If d > α, then sD(x) ≈ 1 ∧ δ
α/2
D (x), sD(At1/α (x)) ≈ 1 ∧ (t1/α ∨ δD(x))α/2, thus,

P x(τD > t)
C≈ 1 ∧ δ

α/2
D (x)

1 ∧ (t1/α ∨ δD(x))α/2 = 1 ∧ δ
α/2
D (x)

(1 ∧ t1/α)α/2(41)

and

pD(t, x, y)
C≈

(
1 ∧ δ

α/2
D (x)

1 ∧ t1/2

)
p(t, x, y)

(
1 ∧ δ

α/2
D (y)

1 ∧ t1/2

)

for all 0 < t < ∞ and x, y ∈ R
d . Here C = C(d,α).

For α = d = 1, (40) yields sD(x) ≈ log(1 + δ
1/2
D (x)), sD(At1/α (x)) ≈ log(1 +

(t ∨ δD(x))1/2), thus, for all 0 < t < ∞ and x, y ∈ R
d we have

P x(τD > t) ≈ log(1 + δ
1/2
D (x))

log(1 + (t ∨ δD(x))1/2)
= 1 ∧ log(1 + δ

1/2
D (x))

log(1 + t1/2)
(42)

and

pD(t, x, y)

p(t, x, y)
≈

(
1 ∧ log(1 + δ

1/2
D (x))

log(1 + t1/2)

)(
1 ∧ log(1 + δ1/2(y))

log(1 + t1/2)

)
.

Sharp explicit estimates for pBc(0,R) with arbitrary R > 0 follow by scaling.

EXAMPLE 4. Let D = Bc(0,1) ⊂ R
d and 1 = d < α. We have that

G{0}c (x, y) = GD(x, y) + ExG{0}c (XTB
, y).

Let cα = [−2	(α) cos(πα/2)]−1. By [18], Lemma 4, for x, y ∈ R,

G{0}c (x, y) = cα(|y|α−1 + |x|α−1 − |y − x|α−1).

If follows that

GD(x, y) = cα

(|x|α−1 − |x − y|α−1 − Ex(|XτD
|α−1 − |XτD

− y|α−1)
)
.
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Since |XτD
| ≤ 1 a.s., limy→∞(−|x − y|α−1 + Ex |XτD

− y|α−1) = 0, for every
x ∈ R. If |x| ≥ 2, then we can find c = c(α, x0) such that

MD(x) = |x|α−1 − Ex |XτD
|α−1

|x0|α−1 − Ex0 |XτD
|α−1 = c(|x|α−1 − Ex |XτD

|α−1)

≈ |x|α−1 ≈ δD(x)α−1.

On the other hand, by BHP, MD(x) ≈ δ
α/2
D (x) if δ(x) ≤ 1 (compare Example 2).

We thus have sD(x) ≈ δα−1
D (x) ∧ δ

α/2
D (x), sD(At1/α (x)) ≈ (t1/α ∨ δD(x))α−1 ∧

(t1/α ∨ δD(x))α/2, and for all 0 < t < ∞, x, y ∈ R
d , we obtain

P x(τD > t)
C≈ δα−1

D (x) ∧ δ
α/2
D (x)

(t1/α ∨ δD(x))α−1 ∧ (t1/α ∨ δD(x))α/2 ,(43)

hence,

pD(t, x, y)
C≈

(
1 ∧ δα−1

D (x) ∧ δ
α/2
D (x)

t1−1/α ∧ t1/2

)
p(t, x, y)

(
1 ∧ δα−1

D (y) ∧ δ
α/2
D (y)

t1−1/α ∧ t1/2

)
.

Here C = C(α). To estimate pBc(0,R) with arbitrary R > 0, we use scaling.

DEFINITION 3. We say that (open) D is of class C1,1 at scale r > 0 if for
every Q ∈ ∂D there exist balls B(x′, r) ⊂ D and B(x′′, r) ⊂ Dc tangent at Q.
If D is C1,1 at some (unspecified) positive scale (hence also at smaller scales),
then we simply say D is C1,1.

C1,1 domains may be equivalently defined using local coordinates [34].

REMARK 8. If D is C1,1 at scale r , then it is (1/2,p)-fat for all p ∈ (0, r].
REMARK 9. Let D be C1,1 at scale r . Let x ∈ D, and let Q ∈ ∂D be such that

δD(x) = |x − Q|. Consider the above balls B(x′, r) and B(x′′, r). If δD(x) < r ,
then let Bx = B(x′, r), otherwise Bx = B(x, δD(x)). Thus, δBx (x) = δD(x), and
the radius of Bx is r ∨ δD(x).

EXAMPLE 5. We will verify (2) for C1,1 domains D. For the proof we initially
assume that D �= R

d is C1,1 at scale r = 1. Let x ∈ D. We adopt the notation of
Remark 9 and consider (the ball) Bx and (the open complement of a ball) Bc(x′′,1)

tangent at Q ∈ ∂D. Since Bx ⊂ D ⊂ Bc(x′′,1), we have

P x(τBx > 1) ≤ P x(τD > 1) ≤ P x(
τBc(x′′,1) > 1

)
.

Clearly, δBx (x) = δD(x) = |Q − x| = δBc(x′′,1)(x). By (38) and (41)–(43),

P x(τD > t) ≈
(

1 ∧ δD(x)

t1/α

)α/2

, t ≤ 1.
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By Remark 8 and Theorem 1, there is C = C(d,α) such that, for all x, y ∈ R
d ,

pD(t, x, y)
C≈

(
1 ∧ δD(x)α/2

t1/2

)(
t

|x|d+α
∧ t−d/α

)(
1 ∧ δD(y)α/2

t1/2

)
, t ≤ 1.

If D is C1,1 at a scale r < 1, then r−1D is C1,1 at scale 1. This yields (2) in time
range 0 < t ≤ rα . Remark 3 allows for an extension to all t ∈ (0,1], with a constant
depending on d , α and r . The case of D = R

d is trivial.

Further estimates for C1,1 domains will be given in Proposition 1, Theorem 3
and Corollary 2.

EXAMPLE 6. Let d ≥ 2. For x = (x1, . . . , xd−1, xd) ∈ R
d we denote x̃ =

(x1, . . . , xd−1), so that x = (x̃, xd). Let λ < ∞. We consider a Lipschitz function
γ : Rd−1 → R, that is, |γ (x̃) − γ (ỹ)| ≤ λ|x̃ − ỹ|. We define a special Lipschitz
domain D = {x = (x̃, xd) ∈ R

d :xd > γ (x̃)}. For such D the geometric notions
of Theorem 2 become more explicit as we will see below. We note that D is
((2

√
1 + λ2)−1, r)-fat for all r > 0 ([16], Remark 1). For x = (x̃, xd) ∈ D and

r > 0 we define x(r) = (x̃, γ (x̃) + r). If x is close to ∂D, then x(1) dominates x

in the direction of the last coordinate. We note that P x(1)
(τD > 1) ≥ c > 0. Here

c = c(d,α,λ). By Remark 3 and BHP,

P x(τD > 1)
C≈ 1 ∧ MD(x)

MD(x(1))
, x ∈ D,(44)

where C = C(α,d,λ). By scaling, the Martin kernel with the pole at infinity for
rD is a constant multiple of MD(x/r). By (44), we obtain

P x(τD > t) = P t−1/αx(τt−1/αD > 1)
C≈ 1 ∧ MD(x)

MD(x(t1/α))
, x ∈ D.(45)

We note in passing that (45) agrees with (35) because r �→ MD(x(r)) is increas-
ing [15]. Or, in our previous notation we can take Ar(x, κ,D) = x(r∨(xd−γ (x̃)). We
substitute (45) into (1) so that for all 0 < t < ∞ and x, y ∈ D (in fact, by regularity,
for x, y ∈ R

d ) we have

pD(t, x, y)
C≈

(
1 ∧ MD(x)

MD(x(t1/α))

)
p(t, x, y)

(
1 ∧ MD(y)

MD(y(t1/α))

)
.

EXAMPLE 7. For circular cones V [10] we have

MV (x) = |x|βMV (x/|x|), x �= 0,(46)

where 0 ≤ β < α is a characteristic of the cone; see [1]. By [35], Lemma 3.3,

MV (x) ≈ δV (x)α/2|x|β−α/2, x ∈ R
d;
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see also [10] and [35]. Considering (44), by simple manipulations, we obtain

1 ∧ δV (x)α/2|x|β−α/2

(1 ∨ |x̃|)β−α/2

C≈ (
1 ∧ δV (x)α/2)

(1 ∧ |x|)β−α/2,(47)

where C = C(λ). By (1) and scaling, we get (3).

The interested reader may find more references on stable processes and Brown-
ian motion in cones in [10]. Note that (46) holds for generalized open cones, that
is, open sets ∅ �= V ⊂ R

d such that kV = V for all k > 0 [1].

EXAMPLE 8. Let d = 1,2, . . . and V = R
d \ {xd = 0}. This generalized cone

is non-Lipschitz but it is (1/2, r)-fat for every r > 0. Let 1 < α < 2. From [1],
Example 3.3, we have MV (x) = |xd |α−1 (the decay near a hyperplane is slower
than near a half-space). We consider t = 1 in (36). We let A1(x) = (x̃, xd + 1/2)

if xd > 0 and A1(x) = (x̃, xd − 1/2) otherwise. Thus,

MV (x)

MV (A1(x))
= |xd |α−1

(|xd | + 1/2)α−1 ≈ (1 ∧ |xd |)α−1.

By (1) and scaling, we obtain the following analogue of (3):

pV (t, x, y)

p(t, x, y)
≈

(
1 ∧ δV (x)

t1/α

)α−1(
1 ∧ δV (y)

t1/α

)α−1

, t > 0, x, y ∈ R
d .(48)

We note that V is the complement of a point if d = 1.

If D is bounded and κ > 0 is fixed, then D is not (κ, r) at large scales r , and the
asymptotics of the probability of survival are exponential. Indeed, for the fractional
Laplacian with Dirichlet condition on Dc we let λ1 > 0 be its first eigenvalue
and φ1 > 0 the corresponding eigenfunction [normalized in L2(D,dx)]; see [30].
The following approximation results from the intrinsic ultracontractivity of every
bounded domain [30]:

pD(t, x, y) ≈ φ1(x)φ1(y)e−λ1t , t ≥ 1, x, y ∈ R
d .

Here comparability constants depend on D and α (see also Proposition 1 below).
Given that infinity is inaccessible [14] from bounded D, it is of considerable inter-
est to understand the behavior of the heat kernel related to accessible and inacces-
sible points of D (see also [33] in this connection).

In the remainder of the paper we will study C1,1 domains in more detail. We
focus on unbounded domains, large times and dependence of the comparability
constants on global geometry of the domains.

Example 1 and intrinsic ultracontractivity yield the following result.
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LEMMA 6. There exist λ1 = λ1(α, d) > 0 and C = C(α,d) such that for all
r > 0, t > 0 and x ∈ R

d we have

P x(
τB(0,r) > t

) C≈
[
1 ∧

(
δB(0,r)(x)

r ∧ t1/α

)α/2]
e−λ1t/rα

.

LEMMA 7. Let d > α, 0 < r < R, W = B(0, r) ∪ Bc(0,R). There is c =
c(α, d) such that for all t > 0 and x ∈ R

d we have

P x(τW > t) ≥ c

(
r

R

)α[
1 ∧

(
δB(0,r)(x)

r ∧ t1/α

)α/2]
.

PROOF. By scaling, we only need to consider r = 1 < R. By [5], we obtain

P x(
TB(0,1) = ∞) = 	(d/2)

	((d − α)/2)	(α/2)

∫ |x|2−1

0

uα/2−1

(u + 1)d/2 du

≈ 1 ∧ δ
α/2
Bc(0,1)(x)

[compare (40)]. Thus, there is c = c(d,α) such that

P y(
TB(0,R) = ∞) ≥ c > 0, |y| > 2R.

Let x ∈ B(0,1). For t ≥ 1 we use (23) to obtain

P x(τW > t) ≥ P x(τW = ∞)

≥ Ex{∣∣XτB(0,1)

∣∣ ≥ 2R;P XτB(0,1)
(
TB(0,R) = ∞)}

≥ cP x(∣∣XτB(0,1)

∣∣ ≥ 2R
) ≥ c

1

Rα
δ
α/2
B(0,1)(x).

By (38), for t ≤ 1 we even have

P x(τW > t) ≥ P x(
τB(0,1) > t

) ≈ 1 ∧
(

δB(0,1)(x)

1 ∧ t1/α

)α/2

. �

The C1,1 condition at a given scale fails to determine the fatness of D at larger
scales and, consequently, the exact asymptotics of the survival probability. The
following is a substitute.

PROPOSITION 1. If D is C1,1 at some scale r > 0, then

C−1e−λ1t/(r∨δD(x))α
[
1 ∧

(
δD(x)

r ∧ t1/α

)α/2]

(49)

≤ P x(τD > t) ≤ C

[
1 ∧

(
δD(x)

r ∧ t1/α

)α/2]

for all t > 0 and x ∈ R
d . Here C = C(α,d) and λ1 = λ1(α, d).
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If also d > α and diam(Dc) < ∞, then for all t > 0 and x ∈ R
d ,

P x(τD > t) ≥ C−1
(

r

diam(Dc)

)α[
1 ∧

(
δD(x)

r ∧ t1/α

)α/2]
.(50)

PROOF. Consider x ∈ D, Bx ⊂ D and B(x′′, r) ⊂ Dc of Remark 9. Clearly,
τBx ≤ τD ≤ TB(x′′,r), thus,

P x(τBx > t) ≤ P x(τD > t) ≤ P x(
TB(x′′,r) > t

)
.

Lemma 6 yields the estimate

C−1e−λ1t/(r∨δD(x))α
[
1 ∧

(
δD(x)

(r ∨ δD(x)) ∧ t1/α

)α/2]
≤ P x(τD > t)

and

P x(τD > t) ≤ C

[
1 ∧

(
δD(x)

r ∧ t1/α

)α/2]
,

which simplifies to (49) as δD(x) > r yields δD(x)/[(r ∨ δD(x)) ∧ t1/α] ≥ 1. To
prove (50), we consider ρ = diam(Dc) ≥ 2r , the center, say, x0, of Bx , and W :=
Bx ∪ Bc(x0, ρ + r ∨ δD(x)) ⊂ D. By Lemma 7 and Remark 9,

P x(τD > t) ≥ P x(τW > t)

≥ c

(
r ∨ δD(x)

ρ + r ∨ δD(x)

)α[
1 ∧

(
δD(x)

(r ∨ δD(x)) ∧ t1/α

)α/2]

≥ c

(
r

ρ

)α[
1 ∧

(
δD(x)

r ∧ t1/α

)α/2]
. �

In view of Theorem 1, (49) mildly strengthens [19], Theorem 1.1(i) [i.e., (2)
above]. We also get the following result.

THEOREM 3. Let d > α. If D is C1,1 at scale r and diam(Dc) < ∞, then

C−1
(

r

diam(Dc)

)2α

≤ pD(t, x, y)

[1 ∧ (δD(x)/(r ∧ t1/α))α/2]p(t, x, y)[1 ∧ (δD(y)/(r ∧ t1/α))α/2]
≤ C

for all t > 0 and x, y ∈ R
d . Here C = C(α,d).

PROOF. The result follows from (50) and Corollary 1. �

A similar result (with less control of the constants) is given in [22].1

1Paper [22] appeared on arXiv after the first draft [11] of the present paper.
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REMARK 10. We consider the recurrent case α ≥ d = 1. If D ⊂ R is the
complement of a finite union of bounded closed intervals, then

P x(τD > t)
C≈ 1 ∧ δD(x)α−1 ∧ δD(x)α/2

t1−1/α ∧ t1/2 , t > 0, x ∈ R
d, if α > 1,

P x(τD > t)
C≈ 1 ∧ log(1 + δD(x)1/2)

log(1 + t1/2)
, t > 0, x ∈ R

d, if α = 1,

where C = C(D,α). The estimates follow easily from Examples 2 and 3.

COROLLARY 2. If D ⊂ R is the complement to a finite union of bounded
closed intervals, then C = C(D,α) exists such that for all t > 0 and x, y ∈ R,

pD(t, x, y)

p(t, x, y)

C≈
[
1 ∧ δD(x)α−1 ∧ δD(x)α/2

t1−1/α ∧ t1/2

][
1 ∧ δD(y)α−1 ∧ δD(y)α/2

t1−1/α ∧ t1/2

]

for α > 1, while for α = 1 we have

pD(t, x, y)

p(t, x, y)

C≈
[
1 ∧ log(1 + δD(x)1/2)

log(1 + t1/2)

][
1 ∧ log(1 + δD(y)1/2)

log(1 + t1/2)

]
.
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