
ar
X

iv
:2

30
1.

08
43

0v
1 

 [
m

at
h.

D
G

] 
 2

0 
Ja

n 
20

23

Heat kernel on Ricci shrinkers (II)

Yu Li and Bing Wang

January 23, 2023

Abstract

This paper is the sequel to our study of heat kernels on Ricci shrinkers in [28]. In this paper,

we improve many estimates in [28] and extend the recent progress of Bamler [2]. In particular,

we drop the compactness and curvature boundedness assumptions and show that the theory of

F-convergence holds naturally on any Ricci flows induced by Ricci shrinkers.
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1 Introduction

A Ricci shrinker (Mn, g, f ) is a complete Riemannian manifold (Mn, g) coupled with a smooth

function f satisfying

Rc + Hess f =
1

2
g, (1.1)
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where the potential function f is normalized so that

R + |∇ f |2 = f . (1.2)

The study of shrinkers is an essential component of analyzing the singularity formation of so-

lutions to the Ricci flow. For a Ricci flow with type-I curvature bound, it is proved by Enders-

Müller-Topping [19] that any proper blow-up sequence converges smoothly to a nontrivial Ricci

shrinker. For general compact Ricci flows, it is proved by Bamler [4] that the finite-time singulari-

ties are modeled on Ricci shrinkers containing a singular set by using the theory of F-convergence

developed in [2, 3, 4].

In dimension 2 or 3, all Ricci shrinkers are completely classified (cf. [21][31][33][8], etc). We

know that R2, S 2,R3, S 3, S 2 × R and their quotients form the complete list. In particular, all low-

dimensional Ricci shrinkers have bounded and nonnegative sectional curvature.

In higher dimensions, the complete classification of Ricci shrinkers seems out of reach. Subject

to an additional curvature positivity assumption, some partial classifications are also known (cf.

[31][29][26][25][32]). In general, it is still unclear if there exists any Ricci shrinker with unbounded

sectional curvature.

On the one hand, Ricci shrinkers can be regarded as critical metrics which generalize the classi-

cal positive Einstein manifolds. On the other hand, for any Ricci shrinker, there exists an associated

self-similar solution to the Ricci flow (cf. Section 2). As a special class of Ricci flows, Ricci

shrinkers have many known important properties of compact Ricci flows. In [28], many funda-

mental analytic tools, including the maximum principle, optimal log-Sobolev constant estimate, the

no-local-collapsing theorems, etc., are established for Ricci flows associated with Ricci shrinkers.

Many heat kernel estimates include the differential Harnack inequality and the pseudolocality theo-

rem are also known in [28].

In this paper, we continue to focus on Ricci flows associated with Ricci shrinkers without any

curvature assumption. Based on the techniques and results in [28] and [2], we further obtain results,

including a Gaussian bound on the heat kernel, no-local-collapsing and non-expanding estimates,

an ǫ-regularity theorem, etc. All those results are stronger than their counterparts in [28]. It is

important to notice that we have no assumption of curvature at all. If we assume bounded curvature

on non-compact manifold, then many results are already known (cf. [5] [10]).

The pointed Nash entropy (cf. Definition 3.18) plays an important role in [2], which first appears

in [34, Section 5] and is systematically studied in [23]. In [28], we use Perelmam’s entropy µ (see

(2.1)) to characterize the optimal log-Sobolev constant and the local non-collapsing. The pointed

Nash entropy, which is always bounded below by µ, has the advantage of being local in the space-

time of Ricci flows. In [23], it is proved that the Nash entropy is Lipschitz. Moreover, the oscillation

of the Nash entropy in the spacetime is established in [2]. We generalize the Nash entropy and its

fundamental estimates to the Ricci flows associated with Ricci shrinkers; see Theorem 3.23 and

Corollary 4.19.

Theorem 1.1. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Then for any

s < t < 1, the Nash entopy N∗s (x, t) := N(x,t)(t − s) is smooth and satisfies the following estimates

on M × (s, 1).

|∇N∗s | ≤
√

n

2(t − s)
and − n

2(t − s)
≤ �N∗s ≤ 0. (1.3)
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The proof of (1.3) is based on an integral estimate of the heat kernel (cf. Theorem 3.16), which

was initially obtained in [2] for compact Ricci flows. A key application of Theorem 1.1 is to estimate

the local oscillation of the Nash entropy (cf. Corollary 3.25). Using the Nash entropy properties

and the heat kernel estimates, we obtain the improved no-local-collapsing and non-expanding result

(cf. Theorem 4.2 and Theorem 4.7).

Theorem 1.2 (No-local-collapsing and non-expanding). Let (Mn, g(t))t<1 be the Ricci flow asso-

ciated with a Ricci shrinker. For any x ∈ M and t < 1,

|Bt(x, r)|t ≤ C(n) exp
(
Nx,t(r

2)
)

rn

and if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ c(n) exp
(
Nx,t(r

2)
)

rn.

Note that Nx,t(r
2) ≤ 0 (cf. Corollary 3.22), it is clear that Theorem 1.2 provides a uniform

volume ratio upper bound, independent of base point and radius. This clearly improves the known

volume upper bounds (cf. [9], [22], [24]). On the other hand, as µ ≤ Nx,t(r
2), the non-collapsing

estimate in Theorem 1.2 also improves the one in [28].

An important concept introduced in [2] is the H-center (cf. Definition 3.11). Roughly speaking,

an H-center is a point around which the conjugate heat kernel is concentrated (cf. Proposition 3.13).

In addition, for any two conjugate heat kernels, the W1-Wasserstein distance between them can be

roughly measured by the distance between two H-centers. We prove the existence of an Hn-center,

where Hn = (n − 1)π2/2 + 4, for any conjugate heat kernel, by generalizing the monotonicity of

the variance obtained in [2] to our setting (cf. Proposition 3.10, Proposition 3.12). By using these

concepts and related techniques, we have the following heat kernel estimates (cf. Theorem 4.9,

Theorem 4.15, Theorem 4.16).

Theorem 1.3 (Heat kernel estimates). Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci

shrinker satisfying µ ≥ −A. Then the following properties hold.

(i) There exists a constant C = C(n, A, δ) > 1 such that

C−1

(t − s)
n
2

exp

(
− d2

s (x, y)

C−1(t − s)

)
≤ H(x, t, y, s) ≤ C

(t − s)
n
2

exp

(
− d2

s (x, y)

C(t − s)

)
(1.4)

for any −δ−1 ≤ s < t ≤ 1 − δ and dt(p, x) ≤ δ−1.

(ii) For any ǫ > 0, there exists a constant C = C(n, ǫ) > 0 such that

H(x, t, y, s) ≤
C exp

(−N(x,t)(t − s)
)

(t − s)
n
2

exp

(
− d2

s (z, y)

(4 + ǫ)(t − s)

)
, (1.5)

for any s < t < 1 and any Hn-center (z, s) of (x, t).

Here, the point p is a minimum point of f , regarded as the Ricci shrinker’s base point. The

Gaussian estimate (1.5) is previously proved in [2] for compact Ricci flows, with 4 + ǫ replaced
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by 8 + ǫ. Our proof uses an iteration argument by showing that if (1.5) fails, one can find a new

spacetime point (x′, t′) with an Hn-center (z′, s) such that H(x′, t′, y, s) has a worse bound than (1.5).

Eventually, we will arrive at a contradiction if t′ is sufficiently close to s. The proof in our case is

more involved since we do not have a global heat kernel bound as (1.5) when t is close to s, which

is always available for compact Ricci flows. Therefore, in the iteration process, we must carefully

choose the sequence of spacetime points, so they all fall into a compact set. Then the contradiction

comes from the local heat kernel estimate (cf. Corollary 4.12) since locally the scalar curvature is

bounded.

Once we have the estimate (1.5), the upper bound in (1.4) follows since the distance between

(x, s) and (z, s) can be well-controlled. Moreover, the lower bound in (1.4) is already contained in

[28] in a different guise. We also obtain the gradient estimate of the heat kernel; see Theorem 4.6.

By the monotonicity of the W1-Wasserstein distance between two conjugate heat kernels (cf.

Proposition 3.7), it is natural to consider new P∗-parabolic neighborhoods in the spacetime of the

Ricci flow, as pointed out in [2] (cf. Definition 5.1, (5.1), (5.2)). Comparing the P∗-parabolic neigh-

borhoods with the conventional ones, we have the following result (cf. Proposition 5.7, Proposition

5.9, Proposition 5.10, Proposition 5.13).

Theorem 1.4. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker satisfying µ ≥ −A.

Then the following properties hold.

(i) Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant C = C(n, A, δ) > 1

such that

P∗(p, t0; S ,−T−, T+) ⊂ Q(p, t0;
√

2S +C,−T−, T+) ⊂ P∗(p, t0;
√

2S + 2C,−T−, T+)

provided that t0 − T− ≥ −δ−1.

(ii) There exists a constant ρ = ρ(n, A) ∈ (0, 1) satisfying the following property. Given (x0, t0) ∈
M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on P(x0, t0; r,−(ρr)2, (ρr)2). Then

P(x0, t0; ρr) ⊂ P∗(x0, t0; r,−(ρr)2, (ρr)2) and P∗(x0, t0; ρr) ⊂ P(x0, t0; r,−(ρr)2, (ρr)2).

The proof of Theorem 1.4 involves the distance distortion estimates globally with respect to

p and locally under the scalar curvature control. Moreover, one needs to locate the Hn-center of

(p, t0) or (x0, t0). Notice that, if t0 + T+ < 1, Theorem 1.4 implies that any P∗(p, t0; S ,−T−, T+)

is precompact, i.e., its closure is compact. By using the estimates of the Nash entropy and P∗-
neighborhoods, one has the following ǫ-regularity theorem (cf. Theorem 5.15), which is proved in

[2] for compact Ricci flows. Here, rRm is the spacetime curvature radius, whose definition can be

found in Definition 5.14.

Theorem 1.5 (ǫ-regularity theorem). There exists a small constant ǫ = ǫ(n) > 0 satisfying the

following property.

Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Given (x, t) ∈ M × (−∞, 1)

and r > 0, suppose that N(x,t)(r
2) ≥ −ǫ, then rRm(x, t) ≥ ǫr.
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Based on the results and techniques generalized (or slightly improved) from [2], we can gen-

eralize the theory about metric flows and F-convergence in [3] and [4] from compact Ricci flows

to the setting of Ricci flows associated with or induced by Ricci shrinkers (cf. Definition 2.2). In

particular, a pointed Ricci flow induced by a Ricci shrinker can be regarded as a metric flow pair in

the sense of [3, Definition 5.1]. Therefore, any sequence of pointed Ricci shrinkers induced by Ricci

shrinkers with µ ≥ −A, by taking a subsequence, will F-converge to a limit metric flow admitting

concrete structure theorems (cf. Theorem 6.10, Theorem 6.12). As an application of the theory of

F-convergence, we have the following two-sided pseudolocality theorem. Notice that the forward

pseudolocality theorem is proved in [28, Theorem 24]. Thus, to obtain a two-sided pseudolocality,

it suffices to obtain a backward pseudolocality, which is proved in Theorem 6.21.

Theorem 1.6 (Two-sided pseudolocality theorem). For any α > 0, there is an ǫ(n, α) > 0 such

that the following holds.

Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker. Given (x0, t0) ∈ M × (−∞, 1)

and r > 0, if

|Bt0(x0, r)| ≥ αrn, |Rm| ≤ (αr)−2 on Bt0(x0, r),

then

|Rm| ≤ (ǫr)−2 on P(x0, t0; (1 − α)r,−(ǫr)2, (ǫr)2).

Another application of the F-converge is the following integral estimate of curvature, which

originates from the estimate of Cheeger-Naber [12]. For more details, see Theorem 6.23 and Corol-

lary 6.24.

Theorem 1.7. Let (Mn, g, f , p) be a Ricci shrinker inM(A). Then

∫

d(p,·)≤r

|Rm|2−ǫ dV ≤
∫

d(p,·)≤r

r−4+2ǫ
Rm dV ≤ Crn+2ǫ−2,

∫

d(p,·)≥1

|Rm|2−ǫ
dn+2ǫ−2(p, ·) dV ≤

∫

d(p,·)≥1

r−4+2ǫ
Rm

dn+2ǫ−2(p, ·) dV ≤ C

for any ǫ > 0 and r ≥ 1, where rRm(·) = rRm(·, 0) and C = C(n, A, ǫ).

This paper is organized as follows. Section 2 discusses some properties of Ricci flows associated

with Ricci shrinkers, including the existence of cutoff functions and maximum principles. In Section

3, we prove some estimates and properties regarding the variance, H-centers and the Nash entropy.

Section 4 focuses on various estimates of the heat kernel. In Section 5, we prove the theorems about

the parabolic neighborhoods and the ǫ-regularity theorem. In the last section, we generalize the

theory of F-convergence in our setting and prove some applications in Ricci shrinkers.
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2 Preliminaries

For any Ricci shrinker (Mn, g, f ), the scalar curvature R ≥ 0 from [14, Corollary 2.5] and R > 0

unless (Mn, g) is isometric to the Gaussian soliton (Rn, gE), by the strong maximum principle.

With the normalization (1.2), the entropy is defined as

µ = µ(g) ≔ log

∫
e− f

(4π)n/2
dV. (2.1)

Notice that eµ is uniformly comparable to the volume of the unit ball B(p, 1) (cf. [24, Lemma

2.5]). It was proved in [28, Theorem 1] that µ is the optimal log-Sobolev constant for all scales.

Following [27], we have the following definition.

Definition 2.1. LetM(A) be the family of Ricci shrinkers (Mn, g, f ) satisfying

µ(g) ≥ −A. (2.2)

Recall that any Ricci shrinker (Mn, g, f ) can be considered a self-similar solution to the Ricci

flow. Let ψt : M → M be a family of diffeomorphisms generated by
1

1 − t
∇ f and ψ0 = id. In other

words, we have

∂

∂t
ψt(x) =

1

1 − t
∇ f

(
ψt(x)

)
. (2.3)

It is well known that the rescaled pull-back metric g(t) ≔ (1 − t)(ψt)∗g satisfies the Ricci flow

equation for any −∞ < t < 1,

∂tg = −2Rcg(t) and g(0) = g. (2.4)

Sometimes we encounter Ricci flow obtained from the above Ricci flow through time-shifting and

rescaling. We emphasize whether there exist extra time-shifting and rescaling by the following

definition.

Definition 2.2. For any Ricci shrinker, the Ricci flow defined in (2.4) is called the associated Ricci

flow. Any Ricci flow obtained from the associated Ricci flow via time-shifting and rescaling is called

the Ricci flow induced by a Ricci shrinker.

Clearly, a Ricci flow associated to a Ricci shrinker must be a Ricci flow induced by a Ricci

shrinker, but the reverse is generally not true. In this article, if not mentioned explicitly, the associ-

ated Ricci flow is the default one.

Next, we recall the function F(x, t) := τ̄ f (x, t), where τ̄ := 1 − t and f (x, t) := (ψt)∗ f , satisfies

the following identities (see [28, Section 2] for proofs):

∂t f = |∇ f |2, (2.5)

∂tF = −τ̄R, (2.6)

τ̄R + ∆F =
n

2
, (2.7)

τ̄2R + |∇F|2 = F, (2.8)

�F = −n

2
. (2.9)
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Here, we define � := ∂t −∆t and have dropped the subscript g(t) or t if there is no confusion. Based

on these identities, we have the following estimates of F.

Lemma 2.3 (Lemma 1 of [28]). There exists a point p ∈ M where F attains its infimum and F

satisfies the quadratic growth estimate

1

4
(dt(x, p) − 5nτ̄ − 4)2

+ ≤ F(x, t) ≤ 1

4

(
dt(x, p) +

√
2nτ̄

)2
(2.10)

for all x ∈ M and t < 1, where a+ := max{0, a}.

Thanks to (2.10), F(x, t) grows like d2
t (x, p)/4 and hence one can obtain a family of cutoff func-

tions by composing F with a cutoff function on R. More precisely, we fix a function η ∈ C∞([0,∞))

such that 0 ≤ η ≤ 1, η = 1 on [0, 1] and η = 0 on [2,∞). Furthermore, −C ≤ η′/η 1
2 ≤ 0 and |η′′| ≤ C

for a universal constant C > 0. For each r ≥ 1, we define

φr
≔ η

(
F

r

)
. (2.11)

Then φr is a smooth function on M × (−∞, 1). The following estimates of φr are proved in [28,

Lemma 3]:

(φr)−1|∇φr |2 ≤ Cr−1, (2.12)

|φr
t | ≤ Cτ̄−1, (2.13)

|∆φr | ≤ C(τ̄−1 + r−1), (2.14)

|�φr| ≤ Cr−1, (2.15)

where the constant C depends only on the dimension n.

For later applications, we recall the following volume estimate proved in [28, Lemma 2].

Lemma 2.4. There exists a constant C = C(n) > 0 such that for any Ricci shrinker (Mn, g, f ) with

p ∈ M a minimum point of f ,

|Bt(p, r)|t ≤ Crn.

Next, we recall the following version of the maximum principle on Ricci shrinkers, which is

proved in [28, Theorem 6] and will be frequently used.

Theorem 2.5 (Maximum principle on Ricci shrinkers I). Let (M, g(t))t<1 be the Ricci flow associated

with a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function u which satisfies

�u ≤ 0 on M × [a, b], suppose that

∫ b

a

∫

M

u2
+(x, t)e−2 f (x,t) dVt(x) dt < ∞. (2.16)

If u(·, a) ≤ c, then u(·, b) ≤ c.

We also need the following version of the maximum principle, which is proved in [18, Theorem

12.14] for Ricci flows with bounded curvature. Notice that if X ≡ 0, Theorem 2.6 follows from

Theorem 2.5.
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Theorem 2.6 (Maximum principle on Ricci shrinkers II). Let (M, g(t))t<1 be the Ricci flow asso-

ciated with a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function u which

satisfies

Lu := �u − 〈∇u, X(t)〉 ≤ 0

on M × [a, b], suppose that X(t) is a bounded vector field on M × [a, b] and

u(x, t) ≤ Kek f (x,t) (2.17)

on M × [a, b] for some constants K > 0 and k < 1. If u(·, a) ≤ c, then u(·, b) ≤ c.

Proof. We first construct a barrier function

φ(x, t) := KeB(t−a)+(1−ǫ) f (x,t) ,

where 1 − ǫ > k and B is a constant determined later.

Claim: There exists a constant B > 0 such that

Lφ ≥ φ. (2.18)

Proof of Claim: By direct computations, we have

Lφ = φ
(
B + (1 − ǫ) ft − (1 − ǫ)2|∇ f |2 − (1 − ǫ)∆ f − (1 − ǫ)〈∇ f , X〉

)

= φ

(
B + ǫ(1 − ǫ)|∇ f |2 − n(1 − ǫ)

2τ̄
+ (1 − ǫ)R − (1 − ǫ)〈∇ f , X〉

)

≥ φ
(
B + ǫ(1 − ǫ)|∇ f |2 −C1|∇ f | − n(1 − ǫ)

2(1 − b)

)
,

where we have used (2.6), (2.7) and the assumption that |X| ≤ C1. Therefore, (2.18) holds if we

choose

B =
C2

1

4ǫ(1 − ǫ) +
n(1 − ǫ)
2(1 − b)

+ 1.

Now, we assume c = 0 by considering u − c instead of u. To complete the proof, we only need

to verify that for any δ > 0, u ≤ δφ on M × [a, b]. Otherwise, then there exists (x′, t′) ∈ M × [a, b]

such that (u − δφ) (x′, t′) > 0. Due to the estimate (2.17) and our definition of φ, we know that

(u − δφ) (x, t) −→ −∞ as dt(x, p) −→ +∞ uniformly in t, i.e., u − δφ < 0 for dt(x, p) large enough

independent of t. Moreover, (u − δφ) (x, a) < 0 for all x ∈ M. Consequently, there exists (x′′, t′′) ∈
M × (a, t′) such that (u − δφ) (x, t) ≤ 0 for all (x, t) ∈ M × [a, t′′] and (u − δφ) (x′′, t′′) = 0. At

(x′′, t′′), we compute

0 ≤ L (u − δφ) ≤ −δφ < 0,

which is a contradiction. In sum, our proof is complete. �
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3 Variance, H-center and Nash entropy

Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. It is proved in [28, Theorem

7] that there exists a positive heat kernel function H(x, t, y, s) for x, y ∈ M and s < t < 1. More

precisely,

�H(·, ·, y, s) = 0, lim
tցs

H(·, t, y, s) = δy

and

�
∗H(x, t, ·, ·) = 0, lim

sրt
H(x, t, ·, s) = δx,

where � := ∂t − ∆ and �∗ := −∂t − ∆ + R. Furthermore, the heat kernel H satisfies the semigroup

property

H(x, t, y, s) =

∫

M

H(x, t, z, ρ)H(z, ρ, y, s) dVρ(z), ∀ x, y ∈ M, ρ ∈ (s, t) ⊂ (−∞, 1), (3.1)

and the following integral relationships

∫

M

H(x, t, y, s) dVt(x) ≤ 1, (3.2)

∫

M

H(x, t, y, s) dVs(y) = 1. (3.3)

For any (x, t) ∈ M × (−∞, 1), we define the conjugate heat kernel measure vx,t;s by dvx,t;s(y) =

K(x, t, y, s) dVs(y). It follows immediately from (3.3) that vx,t;s is a probability measure on M. In

particular, vx,t;t = δx.

With the help of the heat kernel, one can solve the (conjugate) heat solution from the given initial

condition. More precisely, it follows from [28, Lemma 5, Lemma 6] that

Theorem 3.1. Suppose [a, b] ⊂ (−∞, 1) and ua is a bounded function on the time slice (M, g(a)).

Then

u(x, t) ≔

∫

M

H(x, t, y, a)ua(y) dVa(y), ∀ t ∈ [a, b] (3.4)

is the unique bounded heat solution with the initial value ua. Similarly, suppose wb is an integrable

function on the time slice (M, g(b)). Then

w(y, s) ≔

∫

M

H(x, b, y, s)wb(x) dVb(x) (3.5)

is the unique conjugate heat solution with initial value wb such that

sup
s∈[a,b]

∫
|w| dVs < ∞. (3.6)

Next, we recall the following gradient estimate, which slightly strengthens [28, Corollary 1].
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Lemma 3.2. Let u be a bounded heat solution on M × [a, b] such that supM |∇u(·, a)| < ∞. Then

(i) We have

sup
M

|∇u(·, b)| ≤ sup
M

|∇u(·, a)|. (3.7)

(ii) Assume w is a nonnegative conjugate heat solution on M × [a, b] such that

sup
t∈[a,b]

∫

M

w dVt < ∞, (3.8)

then we have

2

∫ b

a

∫

M

|Hess u|2w dVtdt =

∫

M

|∇u|2w dV

∣∣∣∣∣
a

b

< ∞. (3.9)

Proof. (i) From �u = 0 and direct computation, we have

�|∇u|2 = −2|Hess u|2 ≤ 0. (3.10)

Therefore, (3.7) follows from Theorem 2.5 provided that

∫ b

a

∫

M

|∇u|2e−2 f dVtdt < ∞. (3.11)

Now, we fix r ≫ 1 and multiply both sides of �u = 0 by u(φr)2e−2 f . By integrating on M × [a, b],

we obtain

1

2

∫

M

u2(φr)2e−2 f dV

∣∣∣∣∣
b

a

−
∫ b

a

∫

M

u2φrφr
t e
−2 f dVtdt +

∫ b

a

∫

M

u2(φr)2 fte
−2 f dVtdt +

1

2

∫ b

a

∫

M

u2(φr)2Re−2 f dVtdt

=

∫ b

a

∫

M

{
−|∇(uφr)|2 + |∇φr |2u2 + 〈∇u2,∇ f 〉(φr)2

}
e−2 f dVtdt

=

∫ b

a

∫

M

{
−|∇(uφr)|2 + |∇φr |2u2 + (2|∇ f |2 − ∆ f )u2(φr)2 − 2u2φr〈∇φr,∇ f 〉

}
e−2 f dVtdt.

Since R ≥ 0 and ft = |∇ f |2 by (2.5), we have

∫ b

a

∫

M

|∇(uφr)|2e−2 f dVtdt +
1

2

∫

M

u2(φr)2e−2 f dV

∣∣∣∣∣
b

a

≤
∫ b

a

∫

M

{
|∇φr |2u2 + (|∇ f |2 − ∆ f )u2(φr)2 + u2φr(φr

t − 2〈∇φr ,∇ f 〉)
}

e−2 f dVtdt

=

∫ b

a

∫

M

{
|∇φr |2u2 +

1

1 − t

(
f − n

2

)
u2(φr)2 + u2φr(φr

t − 2〈∇φr,∇ f 〉)
}

e−2 f dVtdt,

where we have used the identity ∆ f − |∇ f |2 = τ̄( f − n/2) from (2.7) and (2.8).
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Since u is bounded on M × [a, b] and |∇ f |2 ≤ f /(1 − b), it follows from (2.12), (2.13), Lemma

2.3 and Lemma 2.4 that by letting r → +∞,

∫ b

a

∫

M

|∇u|2e−2 f dVtdt ≤ 1

2

∫

M

u2e−2 f dV

∣∣∣∣∣
a

b

+

∫ b

a

∫

M

1

1 − t

(
f − n

2

)
u2e−2 f dVtdt < ∞

and hence (3.11) holds.

(ii) Fix r ≫ 1 and ǫ ≪ 1. We calculate

∂t

∫

M

|∇u|2φrw dV =

∫

M

{
�(|∇u|2φr)w − (|∇u|2φr)�∗w

}
dV

=

∫

M

{
|∇u|2�φr + φr

�|∇u|2 − 2〈∇|∇u|2,∇φr〉
}

w dV

≤
∫

M

{
|∇u|2�φr − 2|Hess u|2φr + 4|Hess u||∇u||∇φr |

}
w dV

≤
∫

M

{
|∇u|2 |�φr | − (2 − ǫ2)|Hess u|2φr + 4ǫ−2 |∇u|2|∇φr |2(φr)−1

}
w dV. (3.12)

Since |∇u| is uniformly bounded by (3.7), it follows from (3.12), (2.12) and (2.15) that

2

∫ b

a

∫

M

|Hess u|2w dVtdt ≤
∫

M

|∇u|2w dV

∣∣∣∣∣
a

b

if we let r → +∞ and ǫ → 0. The other inequality can be proved similarly and hence (3.9) holds. �

Next, we prove

Proposition 3.3. For any [a, b] ⊂ (−∞, 1), suppose u and w are two smooth functions on M × [a, b]

satisfying �u = �∗w = 0. Then, the identity

∫

M

uw dVa =

∫

M

uw dVb (3.13)

holds under one of the following additional assumptions:

(i) sup
t∈[a,b]

∫

M

|wu| dVt +

∫ b

a

∫

M

|w||∇u| dVtdt < ∞.

(ii) sup
t∈[a,b]

∫

M

|wu| dVt +

∫ b

a

∫

M

|u||∇w| dVtdt < ∞.

Proof. (i) We take r ≫ 1 and calculate

∂t

∫

M

wuφr dV =

∫

M

{
w�(uφr) − (uφr)�∗w

}
dV

=

∫

M

w
{
u�φr + φr

�u − 2〈∇u,∇φr〉} dV

=

∫

M

w
{
u�φr − 2〈∇u,∇φr〉} dV.

11



By using (2.12) and (2.15), we conclude

∣∣∣∣∣∣

∫

M

wuφrdV

∣∣∣∣∣
b

a

∣∣∣∣∣∣ ≤ C(r−1 + r−
1
2 )

∫ b

a

∫

M

|w|(|u| + |∇u|) dVtdt.

By taking r →∞, we arrive at (3.13).

(ii) Similarly, we have

∂t

∫

M

uwφr dV =

∫

M

{
(�u)wφr − u�∗(wφr)

}
dV

=

∫

M

u
{−(�∗w)φr + w(∆φr + φr

t ) + 2〈∇w,∇φr〉} dV

=

∫

M

u
{
w(∆φr + φr

t ) + 2〈∇w,∇φr〉} dV.

Therefore, by (2.12), (2.13) and (2.14), we have

∣∣∣∣∣∣

∫

M

wuφrdV

∣∣∣∣∣
b

a

∣∣∣∣∣∣ ≤ C(r−1 + r−
1
2 + (1 − a)−1)

"
Kr

|u|(|w| + |∇w|) dVtdt,

where Kr := {r ≤ F(x, r) ≤ 2r, a ≤ t ≤ b}. Consequently, by our assumption, (3.13) holds if

r → ∞. �

Remark 3.4. Suppose �u = �∗w = 0.

(i) If sup
M

|∇u(·, a)| + sup
M×[a,b]

|u| + sup
t∈[a,b]

∫

M

|w| dVt < ∞, then assumption (i) holds by (3.7). If

sup
M×[a,b]

|u| + sup
t∈[a,b]

∫

M

|w| dVt < ∞ and u is positive, then |∇u| ≤ C/
√

t − a by [28, Lemma 18].

Therefore, (3.13) also holds by taking the limit for t ց a.

(ii) If sup
M×[a,b]

|u|+ sup
t∈[a,b]

∫

M

|w| dVt < ∞ and w(·, b) is a nonnegative function with compact support,

then assumption (ii) holds. Indeed, it follows from [28, Lemma 9] that

∫ b

a

∫

M

|∇w|2
w

dVtdt <

∞ and hence

∫ b

a

∫

M

|u||∇w| dVtdt ≤ C( sup
M×[a,b]

|u|)
(∫ b

a

∫

M

|∇w|2
w

dVtdt

) 1
2
(∫ b

a

∫

M

w dVtdt

) 1
2

< ∞.

For later applications, we prove the following estimate of the heat kernel.

Lemma 3.5. For any y ∈ M and s < t < 1, we set u(x, t) := H(x, t, y, s) and w̄(x, t) := (4πτ̄)−
n
2 e− f (x,t).

Then
∫

M

u(x, t)w̄(x, t) dVt(x) = w̄(y, s). (3.14)
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Proof. It is clear from the definition of w̄ that �∗w̄ = 0; see [28, Equation (28)]. Moreover, for any

[a, b] ⊂ (s, t], the assumption (ii) of Proposition 3.3 holds since

∫ b

a

∫

M

u|∇w̄| dVtdt ≤
∫ b

a

∫

M

uw̄(1 + |∇ f |) dVtdt

≤(4π(1 − b))−
n
2

∫ b

a

∫

M

u(1 + (1 − b)−
1
2 f

1
2 )e− f dVtdt

≤C

∫ b

a

∫
u dVtdt ≤ C(b − a)

where we have used (2.8) and (3.2) and the constant C depends only on n and b.

By choosing b = t and letting aց s, the proof of Proposition 3.3 yields

∫

M

uw̄φr dVt − w̄(y, s)φr(y, s) = o(r)

where o(r) → 0 as r → ∞. Therefore, we immediately obtain (3.14) by letting r → ∞. �

Next, we recall the definition of W1-Wasserstein distance.

Definition 3.6. Let (X, d) be a complete metric space and µ1, µ2 two probability measures on X.

Then the W1-Wasserstein distance between µ1 and µ2 is defined by

dW1
(µ1, µ2) := sup

f

(∫
f dµ1 −

∫
f dµ2

)

where the supremum is taken for all bounded 1-Lipschitz functions f . We also use dt
W1

to denote the

W1-distance with respect to g(t).

We prove the following monotonicity of the Wasserstein distance as [2, Lemma 2.7].

Proposition 3.7. Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker. For [a, b] ⊂
(−∞, 1), let w1,w2 ∈ C∞(M×[a, b]) be two nonnegative conjugate heat solutions such that

∫
M

wi dVt =

1 for any t ∈ [a, b] and i = 1, 2. We define the probability measures with dµi,t = wi(·, t) dVt, i = 1, 2.

Then

dt
W1

(µ1,t, µ2,t)

is increasing for t ∈ [a, b]. In particular, if t1 ≤ t2 < 1, then for any x1, x2 ∈ M and t ≤ t1,

dt
W1

(vx1 ,t1;t, vx2 ,t2;t)

is increasing and

dt
W1

(vx1 ,t1;t, vx2 ,t2;t) ≤ dt1 (x1, x2).

13



Proof. Let t1 ≤ t2, t1, t2 ∈ [a, b] and consider a bounded function u1 ∈ C∞(M) with supM |∇u1(·, t1)| ≤
1. Suppose u is the unique bounded heat solution on M × [t1, t2] starting from u1. Then it follows

from Lemma 3.2 (i) that

sup
M

|∇u(·, t)| ≤ 1

for any t ∈ [t1, t2]. Clearly, we have
∫

M

u dµ1,t1 −
∫

M

u dµ2,t1 =

∫

M

u(x, t1)w1(x, t1) dVt1 (x) −
∫

M

u(x, t1)w2(x, t1) dVt1 (x)

=

∫

M

u(x, t2)w1(x, t2) dVt2 (x) −
∫

M

u(x, t2)w2(x, t2) dVt2 (x)

=

∫

M

u dµ1,t2 −
∫

M

u dµ2,t2 ≤ d
t2
W1

(µ1,t2 , µ2,t2).

Here, we have used [28, Proposition 1] for the second equality. By taking the supremum over all

such u1, one obtains

d
t1
W1

(µ1,t1 , µ2,t1) ≤ d
t2
W1

(µ1,t2 , µ2,t2).

�

Next, we recall the following definition from [2, Definition 3.1].

Definition 3.8 (Variance). The variance between two probability measures µ1, µ2 on a Riemannian

manifold (M, g) is defined as

Var(µ1, µ2) :=

∫

M

∫

M

d2(x1, x2)dµ1(x1)dµ2(x2).

In the case µ1 = µ2 = µ, we write

Var(µ) = Var(µ, µ) =

∫

M

∫

M

d2(x1, x2)dµ(x1)dµ(x2).

We also define Vart as the variance with respect to the metric g(t).

For some basic properties of the variance, we refer the readers to [2, Lemma 3.2]. Next, we

prove the following results which originate from [2, Corollary 3.7, Corollary 3.8]. Before that, we

first prove the following maximum principle on the product manifold (cf. [1] [7] for related survey).

Theorem 3.9 (Maximum principle on the product). Let (Mn, g(t))t<1 be a Ricci flow associated with

a Ricci shrinker. Given any closed interval [a, b] ⊂ (−∞, 1) and a function u on M×M× [a, b] such

that

(∂t − ∆x − ∆y)u(x, y, t) ≤ 0. (3.15)

Suppose that

∫ b

a

∫

M×M

u2
+(x, y, t)e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt < ∞. (3.16)

If u(·, a) ≤ c, then u(·, b) ≤ c.
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Proof. The proof follows almost verbatim from [28, Theorem 6], except that we multiply (3.15) by

u+(x, y, t)(φr(x)φr(y))2e−2 f (x,t)−2 f (y,t) and do the integration. Since no other new ingredient is needed,

we omit the details here. �

Proposition 3.10. Under the same assumptions as in Proposition 3.7, if we further assume w1(·, b)

and w2(·, b) have compact supports, then

Vart(µ1,t, µ2,t) + Hnt

is increasing for t ∈ [a, b], where Hn := (n − 1)π2/2 + 4. Moreover, for any x1, x2 ∈ M,

Vart(vx1 ,b;t, vx2 ,b;t) + Hnt

is increasing for t ≤ b. In particular,

Vart(vx1 ,b;t, vx2 ,b;t) ≤ d2
b(x1, x2) + Hn(b − t) and Vart(vx,b;t) ≤ Hn(b − t).

Proof. For any [c, d] ⊂ [a, b], we set u ∈ C0(M × M × [c, b]) ∩ C∞(M × M × (c, b]) be the solution

to the following heat equation

(∂t − ∆x − ∆y)u = −Hn, u(·, c) = d2
c .

Indeed, by the existence of the heat kernel, one may define

u(x, y, t) :=

∫

M

∫

M

H(x, t, z, c)H(y, t,w, c)d2
c (z,w) dVc(z)dVc(w) − Hn(t − c). (3.17)

We first show (3.17) is well-defined. In fact, it is clear that

∫

M

∫

M

H(x, t, z, c)H(y, t,w, c)d2
c (z,w) dVc(z)dVc(w)

≤2

(∫

M

H(x, t, z, c)d2
c (z, p) dVc(z) +

∫

M

H(y, t,w, c)d2
c (w, p) dVc(w)

)
(3.18)

and the convergence of the last two integrals follows from [28, Corollary 5].

On the other hand, it follow from [2, Theorem 3.5] that

(∂t − ∆x − ∆y)d2
t (x, y) ≥ −Hn. (3.19)

Combining (3.17) and (3.19), we claim that u(x, y, t) ≤ d2
t (x, y) for any t ∈ [c, b]. Indeed, this

follows from the maximum principle Theorem 3.9 as long as the condition (3.16) is satisfied. First,

notice that

∫ b

c

∫

M×M

d4
t (x, y)e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt

≤8

∫ b

c

∫

M×M

(
d4

t (x, p) + d4
t (y, p)

)
e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt. (3.20)
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From Lemma 2.3 and Lemma 2.4, it is clear that (3.20) is bounded. In addition, it follows from

(3.18) that
∫ b

c

∫

M×M

(u(x, y, t) + Hn(t − c))2 e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt

≤8

∫ b

c

∫

M×M

(∫

M

H(x, t, z, c)d2
c (z, p) dVc(z)

)2

e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt

+ 8

∫ b

c

∫

M×M

(∫

M

H(y, t,w, c)d2
c (w, p) dVc(w)

)2

e−2 f (x,t)−2 f (y,t) dVt(x)dVt(y) dt

≤8

∫ b

c

∫

M×M

∫

M

H(x, t, z, c)d4
c (z, p)e−2 f (x,t)−2 f (y,t) dVc(z)dVt(x)dVt(y) dt

+ 8

∫ b

c

∫

M×M

∫

M

H(y, t,w, c)d4
c (w, p)e−2 f (x,t)−2 f (y,t) dVc(w)dVt(x)dVt(y) dt, (3.21)

where we have used Cauchy-Schwarz inequality for the last inequality. From Lemma 3.5, we obtain
∫ b

c

∫

M×M

∫

M

H(x, t, z, c)d4
c (z, p)e−2 f (x,t)−2 f (y,t) dVc(z)dVt(x)dVt(y) dt

≤
∫ b

c

∫

M

∫

M

∫

M

H(x, t, z, c)d4
c (z, p)e− f (x,t)−2 f (y,t) dVt(x)dVc(z)dVt(y) dt

≤
∫ b

c

∫

M

∫

M

(
1 − t

1 − c

) n
2

d4
c (z, p)e− f (z,c)−2 f (y,t) dVc(z)dVt(y) dt

≤
∫ b

c

∫

M

∫

M

d4
c (z, p)e− f (z,c)−2 f (y,t) dVc(z)dVt(y) dt < ∞

by Lemma 2.3 and Lemma 2.4. Similarly, the second term in (3.21) is also bounded. Therefore, we

have proved that u(x, y, t) ≤ d2
t (x, y) for any t ∈ [c, b].

By our assumption, w1(·, b) and w2(·, b) have compact supports, then it follows [28, Lemma 8,

Lemma 9] that

wi(x, t) ≤ Cw̄(x, t) (3.22)

for any c ≤ t ≤ b and
∫ b

c

∫

M

|∇wi|2
wi

dVtdt ≤ C (3.23)

for some constant C > 0.

Next, we set w1 = w1(x, t), w2 = w2(y, t), φr
x = φ

r(x) and φr
y = φ

r(y), then we compute

∂t

∫

M

∫

M

uw1w2φ
r
xφ

r
y dVt(x)dVt(y)

=

∫

M

∫

M

(∂t − ∆x − ∆y)(uφr
xφ

r
y)w1w2 dVt(x)dVt(y)

=

∫

M

∫

M

(
−Hnφ

r
xφ

r
y − u(∆xφ

r
xφ

r
y + ∆yφ

r
yφ

r
x)
)

w1w2 dVt(x)dVt(y)

+ 2

∫

M

∫

M

(∆xφ
r
x + 〈∇φr

x,∇w1〉)uφr
yw2 + (∆yφ

r
y + 〈∇φr

y,∇w2〉)uφr
yw1 dVt(x)dVt(y). (3.24)
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From (3.23), we have

(∫ b

c

∫

M

∫

M

|∇φr
x||∇w1||u|φr

yw2 dVt(x)dVt(y)dt

)2

≤
(∫ b

c

∫

M

∫

M

|∇φr
x|2u2(φr

y)2w1w2 dVt(x)dVt(y)dt

) (∫ b

c

∫

M

|∇w1|2
w1

dVtdt

)

≤C

∫ b

c

∫

M

∫

M

|∇φr
x |2u2w1w2 dVt(x)dVt(y)dt. (3.25)

Similarly, we have

(∫ b

c

∫

M

∫

M

|∇φr
y||∇w2||u|φr

xw1 dVt(x)dVt(y)dt

)2

≤C

∫ b

c

∫

M

∫

M

|∇φr
y|2u2w1w2 dVt(x)dVt(y)dt. (3.26)

Combining (3.22), (3.24), (3.25), (3.26) and the fact that −Hn(t − c) ≤ u ≤ d2
t (x, y), we conclude

by letting r → ∞ that

∫

M

∫

M

uw1w2 dVd(x)dVd(y) −
∫

M

∫

M

uw1w2 dVc(x)dVc(y) = −Hn(d − c). (3.27)

Since u ≤ d2
t (x, y), it follows from (3.27) and the definition of the variance that

Vard(µ1,d, µ2,d) + Hnd ≥ Varc(µ1,c, µ2,c) + Hnc.

Now, we assume wi = H(xi, b, ·, ·) for i = 1, 2. Then it follows from [28, Lemma 23] that

∫ b−ǫ

a

∫

M

|∇wi|2
wi

dVtdt ≤ C log ǫ−1. (3.28)

Therefore, one can use the same arguments as above, thanks to (3.28) and [28, Corollary 5], to

conclude that (3.27) still holds if [c, d] ⊂ [a, b − ǫ]. Since ǫ is arbitrary, we immediately show that

Vart(vx1 ,b;t, vx2 ,b;t) + Hnt

is increasing for any t ≤ b. �

Next, we recall the definition of H-center, where the conjugate heat kernel measure is concen-

trated.

Definition 3.11 (H-center). Given a constant H > 0, a point (z, t) ∈ M × (−∞, 1) is called an

H-center of (x0, t0) ∈ M × (−∞, 1) if t ≤ t0 and

Vart(δz, vx0 ,t0;t) ≤ H(t0 − t).

In particular, we have

dt
W1

(δz, vx0 ,t0;t) ≤
√

H(t0 − t). (3.29)
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From Proposition 3.10, the following result is immediate; see [2, Proposition 3.12].

Proposition 3.12. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Given

(x0, t0) ∈ M × (−∞, 1) and t ≤ t0 there is at least one point z ∈ M such that (z, t) is an Hn-center of

(x0, t0) and for any two such points z1, z2 ∈ M we have dt(z1, z2) ≤ 2
√

Hn(t0 − t).

The following result ensures that the conjugate heat kernel measure is concentrated around an

H-center; see [2, Proposition 3.13].

Proposition 3.13. If (z, t) is an H-center of (x0, t0), then for any L > 0,

vx0 ,t0;t

(
Bt(z,

√
LH(t0 − t))

)
≥ 1 − 1

L
. (3.30)

Combining the above Proposition with [28, Theorem 14], we obtain the following integral bound

for the conjugate heat kernel; see also [2, Theorem 3.14].

Proposition 3.14. If (z, t) is an Hn-center of (x0, t0), then for all r ≥ 0 and ǫ > 0 we have

vx0 ,t0;t

(
M \ Bt(z, r)

) ≤ C(n, ǫ) exp

(
− r2

(4 + ǫ)(t0 − t)

)
.

Proof. We apply [28, Theorem 14] for A = M \ Bt(z, r), B = Bt(z,
√

2Hn(t0 − t)) and σ = ǫ/8 to

obtain

vx0 ,t0;t

(
M \ Bt(z, r)

) ≤v
− 8
ǫ

x0 ,t0;t

(
Bt(z,

√
2Hn(t0 − t))

)
exp

(
−
(
r −
√

2Hn(t0 − t)
)2
+

(4 + ǫ/2)(t0 − t)

)

≤C(n, ǫ) exp

(
− r2

(4 + ǫ)(t0 − t)

)
,

where we have used (3.30) for L = 2 and H = Hn. �

In order to obtain the estimates on the Nash entropy, we first generalize the improved gradient

estimate [2, Theorem 4.1] to our setting. We define the following antiderivative of the 1-dimensional

heat kernel:

Φ(x) =

∫ x

−∞
(4π)−1/2e−t2/4 dt. (3.31)

Notice that Φt(x) := Φ(t−1/2 x) is a solution to the 1-dimensional heat equation with initial condition

χ[0,∞).

Theorem 3.15. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Given [a, b] ⊂
(−∞, 1) and a solution u ∈ C∞(M×[a, b]) to the heat equation �u = 0 and a constant T ≥ 0, suppose

that u only takes values in (0, 1) and |∇(Φ−1
T

(u(·, a)))| ≤ 1 if T > 0. Then |∇(Φ−1
T+t−a

(u(·, t)))| ≤ 1 for

all t ∈ [a, b].

Proof. We may assume that u takes values in (ǫ, 1−ǫ). Indeed, we can consider (1−2ǫ)u+ǫ instead

and let ǫ ց 0. With the extra assumption, it follows from [28, Lemma 18] that

|∇u| ≤ C1√
t − a

(3.32)
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on M × (a, b]. It is clear from the definition of Φt that supM |∇(Φ−1
T

(u(·, a + ǫ)))| → 0 if T ց 0.

Therefore, we only need to prove the case for T > 0 and then let T ց 0 and ǫ ց 0.

Now, we set u(x, t) = ΦT+t−a ◦ h(x, t). It follows from the definition of Φt that

|h| ≤ C2 (3.33)

on M × [a, b]. Moreover, since |∇h(·, a)| ≤ 1, it follows from (3.33) and Lemma 3.2(i) that

|∇h| ≤ C3 (3.34)

on M × [a, b]. By direct computation, see [2, Theorem 4.1] for details, we have

�|∇h|2 = −2|Hess h|2 − 1

T + t − a
〈∇h2,∇|∇h|2〉 + 1

2(T + t − a)
(1 − |∇h|2)|∇h|2. (3.35)

Therefore, if we set v = (|∇h|2 − 1)+, then it follows from (3.35) that

�v +
1

T + t − a
〈∇h2,∇v〉 ≤ 0.

Since |∇h2 | and v are uniformly bounded on M×[a, b] by (3.33) and (3.34), it follows from Theorem

2.6 that v ≤ 0 on M × [a, b]. In other words, |∇h| ≤ 1 on M × [a, b]. Thus the proof is complete. �

With the help of Theorem 3.15, one can follow verbatim as [2, Proposition 4.2] and [30, Propo-

sition 3.4] to obtain the following estimate.

Theorem 3.16. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker and [s, t] ⊂
(−∞, 1). Then for any x ∈ M, 1 ≤ p < ∞ and measurable subset X ⊂ M, we have

(t − s)
p

2

∫

X

(
|∇xH(x, t, ·, s)|

H(x, t, ·, s)

)p

dv ≤ C(n, p)v (X)

(
− log

(
v (X)

2

)) p

2

,

where dv = H(x, t, ·, s) dVs is the conjugate heat kernel measure. Moreover, for any x ∈ M and

w ∈ TxM with |w|t = 1, there holds that

(t − s)

∫

M

(
∂wH(x, t, ·, s)

H(x, t, ·, s)

)2

dv ≤ 1

2
. (3.36)

In particular, we have

(t − s)

∫

M

∣∣∣∣∣
∇xH(x, t, ·, s)

H(x, t, ·, s)

∣∣∣∣∣
2

dv ≤ n

2
. (3.37)

Another application of Theorem 3.15 is the following Lp-Poincaré inequality; see [2, Theorem

11.1].

Theorem 3.17 (Lp-Poincaré inequality). Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci

shrinker. Then for p ≥ 1 and any [s, t] ⊂ (−∞, 1) we have
∫

M

up dvs ≤ C(p)(t − s)
p

2

∫

M

|∇u|p dvs,

for any u ∈ W1,p(M, dvs) with
∫

M
u dvs = 0. Here, dvs(y) = H(x, t, y, s)dVs(y). One may choose

C(1) =
√
π and C(2) = 2.
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Proof. The proof for p , 2 follows verbatim from [2, Theorem 11.1]. Only the last statement

for p = 2 needs to be proved. It follows from [28, Theorem 13] that the probability measure dvs

satisfies the log-Sobolev inequality with the constant 1
2(t−s)

. It is a standard fact that the log-Sobolev

condition implies the Poincaré inequality; see [35, Theorem 22.17]. �

Next, we recall the definitions of the Nash entropy andW-entropy based at (x0, t0).

Definition 3.18. Given a Ricci flow (Mn, g(t))t<1 associated with a Ricci shrinker and a point

(x0, t0) ∈ M × (−∞, 1), let

dv = dvx0 ,t0;t(x) = (4πτ)−
n
2 e−b(x,t) dVt = H(x0, t0, x, t) dVt

where τ = t0− t. Then Perelman’sW-entropy and the Nash entropy based at (x0, t0) are respectively

defined as

W(x0 ,t0)(τ) =

∫

M

(
τ(2∆b − |∇b|2 + R) + b − n

)
dv, (3.38)

N(x0 ,t0)(τ) =

∫

M

b dv − n

2
. (3.39)

Now, we prove some basic properties of N andW.

Proposition 3.19. The following properties hold with Definition 3.18.

(a) W(x0 ,t0)(0) = 0 and for any τ0 > 0,

W(x0 ,t0)(τ0) = −2

∫ τ0

0

τ

∫

M

∣∣∣∣∣Rc + Hess b − g

2τ

∣∣∣∣∣
2

dvdτ. (3.40)

In particular,W(x0 ,t0)(τ) is nonpositive and decreasing.

(b) N(x0 ,t0)(0) = 0 and for any τ0 > 0,

N(x0,t0)(τ0) =
1

τ0

∫ τ0

0

W(x0 ,t0)(τ) dτ ≥ W(x0 ,t0)(τ0). (3.41)

(c) For any 0 < τ1 ≤ τ2,

N(x0 ,t0)(τ1) − n

2
log

(
τ2

τ1

)
≤ N(x0 ,t0)(τ2) ≤ N(x0,t0)(τ1). (3.42)

Proof. Given (x0, t0) and τ, we first prove that N(x0 ,t0)(τ) and W(x0 ,t0)(τ) are well-defined. In the

following, all constants Ci > 1 depend on (x0, t0), τ and the given Ricci shrinker.

It follows from [28, Theorem 19] that for any r ≥ 1,

∫

dt(x0 ,x)≥r
√
τ

dvt(x) ≤ C1e−
r2

8 . (3.43)
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Therefore, there exists C2 > 1 such that
∫

dt(p,x)≥r

dvt(x) ≤ C2e
− r2

C2 (3.44)

if r ≥ C2. In addition, it follows from [28, Theorem 15, Formula (203)] that

µ ≤ b(x, t) ≤ −3µ +
d2

t0
(x0, x)

3τ
+

4τ

3(1 − t0)2
F(x, t0). (3.45)

From (3.45) and Lemma 2.3, there exists C3 > 1 such that

−C3 ≤ b(x, t) ≤ C3(1 + F(x, t0)). (3.46)

Since F is decreasing with respect to t by (2.6), it follows from (3.46) and Lemma 2.3 that

b(x, t) ≤ C3(1 + F(x, t)) ≤ C4(1 + d2
t (p, x)).

for some C4 ≥ C3. Consequently, we obtain

|b(x, t)| ≤ C4(1 + d2
t (p, x)). (3.47)

Combining (3.44) and (3.47), we can estimate
∫

M

|b(x, t)| dvt(x) ≤C4 +C4

∫

M

d2
t (p, x) dvt(x)

=C4 +C4

∫

dt(p,x)≤C2

d2
t (p, x) dvt(x) +C4

∞∑

k=1

∫

2k−1C2≤dt(p,x)≤2kC2

d2
t (p, x) dvt(x)

≤C4 +C4C2
2 +C4

∞∑

k=1

(2kC2)2C2e−22k−2C2 < ∞. (3.48)

Therefore, it follows from the definition (3.39) thatN(x0 ,t0)(τ) is finite. Now, the fact thatW(x0 ,t0)(τ)

is well-defined follows from Perelman’s differential Harnack inequality [28, Theorem 21].

(a): The identity (3.40) follows from [28, Remark 6]. Notice that the integral in (3.40) is always

finite by [28, Lemma 30]. In particular,W(x0 ,t0)(0) = limτց0W(x0 ,t0)(τ) = 0.

(b): We fix r ≫ 1 and compute

∂τ

(
τ

∫

M

bφr dv

)
− n

2

=

∫

M

bφr dv − τ
∫

M

�(bφr) dv − n

2

=

∫

M

(
τ(2∆b − |∇b|2 + R)φr + bφr + τb�φr − 2τ〈∇b,∇φr〉 − n

2
(1 + φr)

)
dv, (3.49)

where we have used the fact that �b = −2∆b + |∇b|2 − R +
n

2τ
. For τ0 > 0, we integrate (3.49) from

0 to τ0 and obtain

τ0

(∫

M

bφr dv − n

2

)

=

∫ τ0

0

∫

M

(
τ(2∆b − |∇b|2 + R)φr + bφr + τb�φr − 2τ〈∇b,∇φr〉 − n

2
(1 + φr)

)
dvdτ, (3.50)
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where we have used (3.43) and (3.47). On the one hand, it follows from (2.15), (3.43) and (3.47)

that

lim
r→∞

∫ τ0

0

∫

M

τ|b||�φr | dvdτ = 0. (3.51)

On the other hand, we estimate

∫ τ0

0

∫

M

τ|∇b||∇φr | dvdτ ≤ Cr−
1
2 τ2

0

(∫ τ0

0

∫

M

τ2|∇b|2 dvdτ

)2

. (3.52)

Since the last integral is finite by [28, Lemma 25], it follows from (3.52) that

lim
r→∞

∫ τ0

0

∫

M

τ|∇b||∇φr | dvdτ = 0. (3.53)

Combining (3.50), (3.51) and (3.53), if we let r → ∞, then

τ0

(∫

M

b dv − n

2

)
=

∫ τ0

0

∫

M

(
τ(2∆b − |∇b|2 + R) + b − n

)
dvdτ,

which is exactly (3.41). Notice that the last inequality in (3.41) follows from the fact thatW(x0 ,t0)(τ)

is decreasing. Moreover, it follows from (3.41) andW(x0 ,t0)(0) = 0 that N(x0 ,t0)(0) = 0.

(c): The inequality (3.42) follows exactly the same as [2, Proposition 5.2 (5.7)] and we omit the

proof. �

Corollary 3.20. Under the same assumptions, we have
∫

M

(|∇b|2 + R)dv ≤ n

2τ
. (3.54)

∫

M

(
b − N(x0 ,t0)(τ) − n

2

)2

dv ≤ n. (3.55)

Proof. From the fact that N(x0 ,t0)(τ) ≥ W(x0 ,t0)(τ), we conclude that

lim
r→∞

∫

M

(2∆b − |∇b|2)φr + R dv ≤ n

2τ
, (3.56)

where we have used the differential Harnack inequality [28, Theorem 21]. From integration by

parts, we have
∫

M

(2∆b − |∇b|2)φr dv =

∫

M

|∇b|2φr − 2〈∇b,∇φr〉 dv. (3.57)

In addition, we can estimate

2

∫

M

|∇b||∇φr | dv ≤
∫

M

|∇b||∇φr | dv ≤
∫

M

ǫ|∇b|2φr + ǫ−1 |∇φr |2
φr

dv (3.58)

Therefore, it follows from (2.12), (3.56), (3.57) and (3.58) that
∫

M

(1 − ǫ)|∇b|2 + R dv ≤ n

2τ
.
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By letting ǫ ց 0, we obtain (3.54).

Now, it follows from the Poincaré inequality Theorem 3.17 and (3.54) that

∫

M

(
b − N(x0,t0)(τ) − n

2

)2

dv ≤ 2τ

∫
|∇b|2 dv ≤ n

and (3.55) is proved. �

Remark 3.21. From the proof of (3.54),W can be rewritten as

W(x0 ,t0)(τ) =

∫

M

(
τ(|∇b|2 + R) + b − n

)
dv,

which agrees with the original definition of Perelman [34, Formula (3.1)].

Corollary 3.22. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker (Mn, g, f ) ∈
M(A), then

0 ≥ N(x0,t0)(τ) ≥ W(x0 ,t0)(τ) ≥ µ ≥ −A (3.59)

for any (x0, t0) ∈ M × (−∞, 1) and τ > 0. In particular, given a Ricci shrinker, the Nash entropy is

always uniformly bounded.

Proof. For fixed (x0, t0) and τ > 0, it follows from [28, Theorem 20] that b increases quadratically.

Therefore, it is easy to see the function u, defined by u2 = (4πτ)−
n
2 e−b, belongs to W

1,2
∗ (M) defined

in [28, (92)]. From [28, Theorem 1], we immediately conclude that

W(x0 ,t0)(τ) ≥ µ(g(t0 − τ), τ) ≥ µ ≥ −A.

�

Following [2], we use the notation

N∗s (x, t) := N(x,t)(t − s).

Similar to [2, Theorem 5.9], we have

Theorem 3.23. Let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker. Then for any

s < t < 1, the following properties hold.

(i) N∗s is a Lipschitz function with Lipschitz constant

√
n

2(t − s)
.

(ii) In the distribution sense, we have

− n

2(t − s)
≤ �N∗s ≤ 0. (3.60)
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Proof. Without loss of generality, we assume s = 0 and consider t ∈ (0, 1). We first define the

following modified Nash entropy:

N r = N r(x, t) :=

∫
bφr dv − n

2
, (3.61)

where, as before, b = b(x,t)(y, 0) = − n
2

log(4πt) − log H(x, t, y, 0) and dv = H(x, t, y, 0) dV0(y).

Claim: N r converges to N∗
0

in C0
loc

on M × (0, 1), as r → ∞.

Proof of Claim: Given a spacetime compact set K ⊂ M × (0, 1), all constants Ci > 1 below

depends only K and the Ricci shrinker.

Similar to (3.44), there exists C1 > 1 such that

∫

d0(p,y)≥r

dv(y) ≤ C1e
− r2

C1 (3.62)

for any r ≥ C1. From the same argument leading to (3.47), we have

|b(x,t)(y, 0)| ≤ C2(1 + d2
0(p, y)). (3.63)

Combining (3.62), (3.63) and the fact that supp(φr)∩M× {0} ⊂ {C3r ≤ d2
0
(p, ·) ≤ C4r}, it is easy

to show as (3.48) that

lim
r→∞

∫

M

|b(x,t)(y, 0)|(1 − φr(y)) dv(y) = 0 (3.64)

uniformly for (x, t) ∈ K. From (3.64), the Claim is proved.

Next, for any vector w ∈ TxM with |w|t = 1 we compute

∂wN r(x, t) =

∫

M

{
(∂wb)Hφr + b(∂wH)φr} dV0

=

∫

M

{−(∂wH)φr + b(∂wH)φr} dV0 =: I + II, (3.65)

where H = H(x, t, y, 0). Notice that

∫

M

Hφr dV0 =

∫

M

H(x, t, y, 0)φr(y) dV0(y)

is the heat solution starting from φr. Therefore, it follows from (3.7) and (2.12) that

|I| ≤
∣∣∣∣∣∇x

∫

M

H(x, t, y, 0)φr(y) dV0(y)

∣∣∣∣∣ ≤ Cr−
1
2 . (3.66)

Next, we estimate

II =

∫

M

b
∂wH

H
φr dv =

∫

M

(
b − N∗0 −

n

2

)
∂wH

H
φr dv −

(
N∗0 +

n

2

)
I.
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Therefore, we have

|II| ≤
(∫

M

(
b − N∗0 −

n

2

)2

dv

) 1
2


∫

M

(
∂wH

H

)2

dv



1
2

+Cr−
1
2 ≤

√
n

2t
+Cr−

1
2 , (3.67)

where we have used (3.36), (3.55) and (3.66). Combining (3.65), (3.66) and (3.67), we obtain

∣∣∣∇xN r(x, t)
∣∣∣ ≤

√
n

2t
+Cr−

1
2 . (3.68)

SinceN r converges toN∗
0

locally uniformly by the Claim, we immediately conclude from (3.68)

that N∗
0

is
√

n
2t

-Lipschitz.

Next, by direct computation, we have

�N r(x, t) =

∫

M

∣∣∣∣∣
∇xH

H

∣∣∣∣∣
2

φr dv − n

2t

∫

M

φr dv. (3.69)

Combining (3.37), (3.69) and the Claim, it follows immediately that

− n

2t
≤ �N∗0 ≤ 0

in the distribution sense. �

Remark 3.24. Later, we will show that the conclusions in Theorem 3.23 hold in the classical sense

once we know the decay of the conjugate heat kernel; see Corollary 4.19.

As an application of Theorem 3.23, we prove the following oscillation of the Nash entropy.

Corollary 3.25. For any x1, x2 ∈ M and s < t∗ ≤ t1, t2 < 1, we have

N∗s (x1, t1) − N∗s (x2, t2) ≤
√

n

2(t∗ − s)
dt∗

W1

(
vx1 ,t1;t∗ , vx2 ,t2;t∗

)
+

n

2
log

(
t2 − s

t∗ − s

)
. (3.70)

In particular, if s < t∗ = t2 ≤ t1 < 1, then

N∗s (x1, t1) − N∗s (x2, t2) ≤
√

n

2(t2 − s)
d

t2
W1

(
vx1 ,t1;t2 , δx2

)
. (3.71)

If we further assume (x2, t2) is an Hn-center of (x1, t1), then

N∗s (x1, t1) − N∗s (x2, t2) ≤

√
nHn(t1 − t2)

2(t2 − s)
. (3.72)

Proof. The proof follows verbatim from [2, Corollary 5.11]. The only difference is that we consider

N r as defined in (3.61) instead and let r → ∞. �

25



4 Heat kernel estimates

Throughout this section, we assume (Mn, g(t))t<1 is the Ricci flow associated with a Ricci shrinker

inM(A). First, we recall the following no-local-collapsing theorem proved in [28, Theorem 22].

Theorem 4.1. For any x ∈ M and t < 1, if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ ceµrn (4.1)

for some constant c = c(n) > 0.

One can improve (4.1) by using the Nash entropy. Based on the Lipschitz property of the Nash

entropy, we can follow the same proof of [2, Theorem 6.1] to obtain the following result. Notice

that by (3.59), (4.2) is stronger than (4.1)

Theorem 4.2. For any x ∈ M and t < 1, if R ≤ r−2 on Bt(x, r), then

|Bt(x, r)|t ≥ c exp
(
Nx,t(r

2)
)

rn (4.2)

for some constant c = c(n) > 0.

By using (3.55), we also have the following volume estimate around an Hn-center by following

the same proof of [2, Theorem 6.2].

Theorem 4.3. For any x ∈ M and t < 1, if (z, t − r2) is an Hn-center of (x, t), then

|Bt−r2(z, r)|t−r2 ≥ c exp
(
Nx,t(r

2)
)

rn (4.3)

for some constant c = c(n) > 0 and any r ≥ 0.

Next, we recall the following upper bound estimate of the heat kernel proved in [28, Theorem

15], which has already been used in the last section.

Theorem 4.4. For any x, y ∈ M and s < t < 1, we have

H(x, t, y, s) ≤ e−µ

(4π(t − s))
n
2

. (4.4)

Instead of using the entropy µ, one can include the Nash entropy and obtain the following result;

see [2, Theorem 7.1].

Theorem 4.5. For any x, y ∈ M and s < t < 1, we have

H(x, t, y, s) ≤ C(n)

(t − s)
n
2

exp
(−Nx,t(t − s)

)
. (4.5)

Proof. The proof follows almost the same as [2, Theorem 7.1]. The main idea is to improve the

bound Z of the estimate

H(x, t, y, s) ≤ Z

(t − s)
n
2

exp
(−Nx,t(t − s)

)
.

Notice that such Z always exists by (4.4) and (3.59), which may depend on the Ricci shrinker.

Thanks to (3.70) and (4.3), we can follow the same argument as in [2, Theorem 7.1] to improve Z

to be Z/2, if Z ≥ Z̄(n). �

26



With the help of Theorem 3.16, Corollary 3.25 and Theorem 4.5, we obtain the following gradi-

ent estimate of the heat kernel as [2, Theorem 7.5], which improves [28, Lemma 18].

Theorem 4.6. For any x, y ∈ M and s < t < 1, then

|∇xH|(x, t, y, s)

H(x, t, y, s)
≤

√
C

t − s

√
log

(
C exp

(−Nx,t(t − s)
)

(t − s)
n
2 H(x, t, y, s)

)
(4.6)

for some constant C = C(n) > 0.

With the gradient estimate (4.6), one obtains the following non-expanding estimate as [2, Theo-

rem 8.1]. Notice that (4.7) generalizes the global volume estimate Lemma 2.4.

Theorem 4.7. For any x ∈ M, t < 1 and r ≥ 0, we have

|Bt(x, r)|t ≤ C(n) exp
(
Nx,t(r

2)
)

rn ≤ C(n)rn. (4.7)

Before we prove more refined heat kernel estimates, we first prove a series of lemmas.

Lemma 4.8 (Distance comparison). For any δ ∈ (0, 1), there exists a constant L1 = L1(n, δ) > 1

such that

dt(x, p) ≤ ds(x, p) + L1 ≤
L1√
1 − t

(dt(x, p) + 1) + L2
1 (4.8)

for any x ∈ M and −δ−1 ≤ s ≤ t < 1.

Proof. From (2.6) and (2.8), we have

− F

1 − t
≤ ∂tF = −(1 − t)R ≤ 0.

Therefore, for any x ∈ M,

1 − t

1 − s
F(x, s) ≤ F(x, t) ≤ F(x, s). (4.9)

Consequently, (4.8) follows from the combination of Lemma 2.3 and (4.9). �

As an application of the distance comparison, we have the following lower bound of the heat

kernel.

Theorem 4.9. For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant C = C(n,K, δ, A) > 1

satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1 − δ and dt(x, p) ≤ K, then

H(x, t, y, s) ≥ C−1

(t − s)
n
2

exp

(
− d2

s (x, y)

C−1(t − s)

)
. (4.10)
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Proof. In the proof, all constants Ci > 1 depend on n,K, δ and A.

It follows from [28, Formula (203)] that

H(x, t, y, s) ≥
C−1

1

(t − s)
n
2

exp

(
−

d2
t (x, y)

3(t − s)
− 4(t − s)

3(1 − t)2
F(y, t)

)
. (4.11)

From (4.8), we have

d2
t (x, y) ≤ 2(d2

t (x, p) + d2
t (p, y)) ≤ C2(d2

s (x, p) + d2
s (p, y) + 1) ≤ C3(d2

s (x, y) + 1), (4.12)

where we have used ds(x, p) ≤ C(dt(x, p) + 1) ≤ C(K + 1) by (4.8).

In addition, since F is decreasing with respect to t,

F(y, t) ≤ F(y, s) ≤ C4(d2
s (p, y) + 1) ≤ C5(d2

s (x, y) + 1), (4.13)

by Lemma 2.3. Combining (4.11), (4.12) and (4.13), it is easy to see (4.10) holds for some C. �

Lemma 4.10. For any K > 1, δ ∈ (0, 1) and A > 0, there exist constants L2 = L2(n,K, δ, A) > 1 and

L3 = L3(n, δ, A) > 1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1 − δ and dt(p, x) ≤ K, then for any Hn-center (z, s) of (x, t), we have

ds(x, z) ≤ L2

√
t − s (4.14)

and

ds(z, p) ≤ dt(x, p) + L3

√
t − s. (4.15)

Proof. Since dt(p, x) ≤ K, it follows from [28, Theorem 19] that

vx,t;s

(
M \ Bs(x, r

√
t − s)

)
≤ C2 exp

(
−r2

5

)
(4.16)

for any r ≥ 1 and C2 = C2(n,K, δ, A) > 0. On the other hand, by Proposition 3.14, we have

vx,t;s

(
M \ Bs(z, r

√
t − s)

)
≤ C(n) exp

(
−r2

5

)
(4.17)

for any r ≥ 0. Combining (4.16) and (4.17), (4.14) follows immediately.

If we assume (z′, s) to be an Hn-center of (p, t), then (4.14) indicates that

ds(z
′, p) ≤ C3(n, δ, A)

√
t − s. (4.18)

Then it follows from Proposition 3.7 and (3.29) that

ds(z, p) ≤ds(z, z
′) + ds(z

′, p)

≤ds
W1

(δz, δz′) +C3

√
t − s

≤ds
W1

(vx,t;s , vp,t;s) + ds
W1

(δz, vx,t;s) + ds
W1

(δz′ , vp,t;s) +C3

√
t − s

≤dt(x, p) + 2
√

Hn(t − s) +C3

√
t − s.

Therefore, (4.15) holds for L3 = C3 + 2
√

Hn. �
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Next, we prove the following rough heat kernel estimate.

Proposition 4.11. For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant L4 = L4(n,K, δ, A) >

1 satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1 − δ and ds(x, p) + ds(y, p) ≤ K, then

H(x, t, y, s) ≤ L4

(t − s)
n
2

exp

(
− d2

s (x, y)

L4(t − s)

)
. (4.19)

Proof. Without loss of generality, we assume s = 0. In the proof, all constants Ci depend on n,K, δ

and A.

Given 0 < t ≤ 1 − δ and x, y ∈ M with d0(x, p) + d0(y, p) ≤ K, we set d := d0(x, y). It follows

from Lemma 4.8 that

dl(x, p) + dl(y, p) ≤ C1 (4.20)

for any l ∈ [0, t]. Therefore, it follows from the local distance distortion estimate [28, Theorem 18]

that there exists C2 > 1 such that if d ≥ C2

√
t,

C−1
2 d ≤ dl(x, y) ≤ C2d (4.21)

for any l ∈ [0, t]. Notice that if d ≤ C2

√
t, (4.19) follows immediately from (4.4). Consequently, we

may assume d ≥ C2

√
t and hence (4.21) holds.

For any l ∈ [0, t/2], we apply [28, Theorem 14] for sets Bl(x,
√

t), Bl(y,
√

t) and parameter σ = 1

to obtain

vx,t;l

(
Bl(x,

√
t)
)

vx,t;l

(
Bl(y,

√
t)
)
≤ exp

(
− (dl(x, y) − 2

√
t)2
+

16t

)
≤ C3 exp

(
− d2

C3t

)
(4.22)

for some C3 > 1, where we have used (4.21). In addition, for any l ∈ [0, t/2] and dl(x, z) ≤
√

t, it

follows from [28, Theorem 18] that dt(x, z) ≤ C4

√
t. Therefore, it follows from [28, Theorem 17]

that

H(x, t, z, l) ≥ C−1
5 t−

n
2

and hence

vx,t;l

(
Bl(x,

√
t)
)
≥ C−1

5 t−
n
2 |Bl(x,

√
t)| ≥ C−1

6 , (4.23)

where we have used the fact that R is bounded on Bl(x,
√

t) and the no-local-collapsing Theorem

4.1.

Combining (4.22) and (4.23), we obtain for any l ∈ [0, t/2] that

∫

Bl(y,
√

t)

H(x, t, z, l) dVl(z) ≤ C7 exp

(
− d2

C3t

)
. (4.24)
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In light of (4.4), for any l ∈ [0, t/2], the above inequality implies that

∫

Bl(y,
√

t)

H2(x, t, z, l) dVl(z) ≤ C8

t
n
2

exp

(
− d2

C3t

)
. (4.25)

Integrating l from 0 to t/2, we have

∫ t
2

0

∫

Bl(y,
√

t)

H2(x, t, z, l) dVl(z)ds ≤ C9

t
n
2
−1

exp

(
− d2

C3t

)
. (4.26)

Consequently, the desired heat kernel estimate (4.19) follows from (4.26) and a parabolic mean

value inequality [6, Lemma 4.2]. Here, [6, Lemma 4.2] can be applied in our setting since the key

ingredient is the existence of a nice local cutoff function, which is constructed in [6, Theorem 1.3]

(see also Proposition 5.12). Once the existence of the local cutoff function is guaranteed, one can

follow verbatim the proof of [6, Lemma 4.2] to obtain the mean value inequality. �

We immediately obtain the following result by combining Lemma 4.10 and Proposition 4.11.

Corollary 4.12. For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant L5 = L5(n,K, δ, A) > 1

satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1 − δ and dt(x, p) + ds(y, p) ≤ K, then for any Hn-center (z, s) of (x, t),

we have

H(x, t, y, s) ≤ L5

(t − s)
n
2

exp

(
− d2

s (z, y)

L5(t − s)

)
. (4.27)

Proof. From Lemma 2.3 and (4.8), we have ds(x, p) + ds(y, p) ≤ C for some C = C(n,K, δ) > 0.

Then (4.27) follows from (4.14) and (4.19). �

Next, we prove the following technical result.

Lemma 4.13. There exists a positive constant Q̄ = Q̄(n) > 0 satisfying the following property.

Suppose x, y ∈ M, T ∈ (0, 1) and there exists an Hn-center (z, 0) of (x, T ) such that

H(x, T, y, 0) ≥ Q
exp

(
−N∗

0
(x, T )

)

T
n
2

exp

−
d2

0
(z, y)

QT

 (4.28)

for some Q ≥ Q̄. Then for any Hn-center (z′, T1) of (x, T ), there exist a point x1 ∈ M and an

Hn-center (z1, 0) of (x1, T1) such that

dT1
(x1, z

′) ≤ 10
√

Q
d0(z, y) (4.29)

and

H(x1, T1, y, 0) ≥ Q1

exp
(
−N∗

0
(x1, T1)

)

T
n
2

1

exp

−
d2

0
(z1, y)

Q1T1

 , (4.30)

where T1 = T/8 and Q1 = 2Q.
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Figure 1: Find a new point with improved lower bound

Proof. In the proof, all constants Ci > 1 depend only on n. We set

d := d0(z, y), a := H(x, T, y, 0), vt := vx,T ;t, and V :=

{
w ∈ M | H(w, T1, y, 0) ≥ a

2

}
.

Notice that by (4.28) and (4.5), we have

C1

exp
(
−N∗

0
(x, T )

)

T
n
2

≥ a ≥
√

Q ·
√

Q
exp

(
−N∗

0
(x, T )

)

T
n
2

exp

(
− d2

QT

)
.

Thus if Q̄ is sufficiently large, we have Q > Q̄ > C2
1

and derive from the above inequality that

d2

T
≥ Q log Q

2
. (4.31)

It follows from the semigroup property (3.1) that

a =

∫

M

H(w, T1, y, 0) dvT1
(w)

=

∫

M\V
H(w, T1, y, 0) dvT1

(w) +

∫

V

H(w, T1, y, 0) dvT1
(w)

≤a

2
vT1

(M \ V) +

∫

V

H(w, T1, y, 0) dvT1
(w)

≤a

2
+C1T

− n
2

1

∫

V

exp
(
−N∗0 (w, T1)

)
dvT1

(w), (4.32)

where we have used (4.5) for the last inequality. Moreover, it follows from (3.72) and the Lipschitz

property of N∗
0

that

−N∗0 (z′, T1) ≤ −N∗0 (x, T ) +C2

√
T − T1

T1

≤ −N∗0 (x, T ) +C3 (4.33)

31



and

−N∗0 (w, T1) ≤ −N∗0 (z′, T1) +

√
n

2T1

dT1
(w, z′) ≤ −N∗0 (x, T ) +C4T−

1
2 dT1

(w, z′) +C4. (4.34)

Now, we define B := BT1
(z′, 10Q−

1
2 d). Then it follows from (4.34)that

∫

V

exp
(
−N∗0 (w, T1)

)
dvT1

(w)

≤eC4 exp
(
−N∗0 (x, T )

) ∫

V

eC4T
− 1

2 dT1
(w,z′) dvT1

(w)

≤eC4 exp
(
−N∗0 (x, T )

) (
e10C4T

− 1
2 Q
− 1

2 dvT1
(V ∩ B) +

∫

M\B
eC4T

− 1
2 dT1

(w,z′) dvT1
(w)

)
. (4.35)

For a small constant β > 0 to be determined later, it follows from Proposition 3.14 that

∫

M\B
eC4T

− 1
2 dT1

(w,z′) dvT1
(w)

=

∞∑

k=1

∫

2k−1(10Q
− 1

2 d)≤dT1
(w,z′)≤2k(10Q

− 1
2 d)

eC4T
− 1

2 dT1
(w,z′) dvT1

(w)

≤
∞∑

k=1

eC42kT
− 1

2 10Q
− 1

2 d

∫

dT1
(w,z′)≥2k−1(10Q

− 1
2 d)

dvT1
(w)

≤C5

∞∑

k=1

exp

C42kT−
1
2 10Q−

1
2 d − (2k−110Q−

1
2 d)2

5(T − T1)



≤C5

∞∑

k=1

exp

−
(2k−110Q−

1
2 d)2

5T
+C6

 ≤ C7 exp

(
−20d2

QT

)
, (4.36)

where we have used the fact that exp
(
− 20d2

QT

)
≤ Q−10 ≪ 1 by (4.31).

Combining (4.28), (4.32), (4.35) and (4.36), we have

QT−
n
2 exp

(
− d2

QT

)
≤ C8T

− n
2

1

(
e10C4T

− 1
2 Q
− 1

2 dvT1
(V ∩ B) + exp

(
−20d2

QT

))
. (4.37)

Since Q is large, by (4.31) we have

Q exp

(
19d2

QT

)
≥ Q

21
2 ≥ 2C88

n
2 .

Then it is not hard to see from (4.37) that vT1
(V ∩ B) > 0. Thus there exists a point x1 ∈ V ∩ B

which satisfies (4.29). Then we take an Hn-center (z1, 0) of (x1, T1). The point selecting process is

illustrated in Figure 1.
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It follows from Proposition 3.7 and (3.29) that

d0(z, z1) =d0
W1

(δz, δz1
)

≤d0
W1

(vx,T ;0, vx1 ,T1;0) + d0
W1

(δz, vx,T ;0) + d0
W1

(δz1
, vx1 ,T1;0)

≤d
T1

W1
(vx,T ;T1

, δx1
) +

√
HnT +

√
HnT1

≤d
T1

W1
(vx,T ;T1

, δz′) + dT1
(z′, x1) +

√
HnT +

√
HnT1

≤
√

Hn(T − T1) +
√

HnT +
√

HnT1 + 10Q−
1
2 d

≤3
√

HnT + 10Q−
1
2 d. (4.38)

Therefore, we conclude

d0(z1, y) ≥ d − d0(z, z1) ≥ (1 − 10Q−
1
2 )d − 3

√
HnT (4.39)

and hence

d2
0(z1, y) ≥ (1 − 10Q−

1
2 )2

2
d2 − 9HnT. (4.40)

Since x1 ∈ V , from the definition of V and (4.28) we have

H(x1, T1, y, 0) ≥ a

2
≥ Q

exp
(
−N∗

0
(x, T )

)

2T
n
2

exp

(
− d2

QT

)
, (4.41)

which enables us to claim

Q
exp

(
−N∗

0
(x, T )

)

2T
n
2

exp

(
− d2

QT

)
≥ Q1

exp
(
−N∗

0
(x1, T1)

)

T
n
2

1

exp

−
d2

0
(z1, y)

Q1T1

 . (4.42)

Indeed, it follows from (4.34) that

−N∗0 (x1, T1) ≤ −N∗0 (x, T ) +C9(1 + d(QT )−
1
2 ). (4.43)

On the other hand, by (4.40) we have

exp


d2

0
(z1, y)

Q1T1

− d2

QT
−C9

√
d2

QT
−C9



≥ exp

(
1

QT

(
2(1 − 10Q−

1
2 )2 − 0.9

)
d2 − 36Hn

Q
−C10

)

≥ exp

(
d2

QT
− 36Hn

Q
−C10

)
≥

√
Q exp

(
−36Hn

Q
−C10

)
≥ 4 · 8 n

2 , (4.44)

where we have used (4.31) for the last inequality. As Q̄ is sufficiently large, it is clear that (4.42)

follows from the combination of (4.43) and (4.44). Consequently, we obtain (4.30). �
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Proposition 4.14. For any x, y ∈ M and t ∈ (0, 1),

H(x, t, y, 0) ≤ Q̄
exp

(
−N∗

0
(x, t)

)

t
n
2

exp

−
d2

0
(z, y)

Q̄t

 (4.45)

where (z, 0) is any Hn-center of (x, t) and Q̄ is the same constant in Proposition 4.13.

Proof. Suppose otherwise, there exist x, y ∈ M, T ∈ (0, 1) and an Hn-center (z, 0) of (x, T ) such that

H(x, T, y, 0) ≥ Q̄
exp

(
−N∗

0
(x, T )

)

T
n
2

exp

−
d2

0
(z, y)

Q̄T

 . (4.46)

Now, we define Qk = 2kQ̄ and Tk := 8−kT for k ∈ N. If we set x0 = x and z0 = z, then we claim

there are sequences xk, z
′
k

and zk satisfying

(a) (z′
k
, Tk) is an Hn-center of (xk−1, Tk−1).

(b) (zk, 0) is an Hn-center of (xk, Tk).

(c) dTk
(xk, z

′
k
) ≤ 10Q

− 1
2

k−1
d0(zk−1, y).

(d) d0(zk, zk−1) ≤ 3
√

HnTk−1 + 10Q
− 1

2

k−1
d0(zk−1, y).

(e) We have the heat kernel estimate

H(xk, Tk, y, 0) ≥ Qk

exp
(
−N∗

0
(xk, Tk)

)

T
n
2

k

exp

−
d2

0
(zk, y)

QkTk

 . (4.47)

The existence of xk, z
′
k

and zk satisfying (a)-(e) is obtained by Lemma 4.13 and an inductive

argument. Notice that (d) is guaranteed by (4.38).

Claim: bk := dTk
(xk, p) is uniformly bounded.

Proof of the Claim: We set dk := d0(zk, y) for k ∈ N. It follows from (d) that

dk ≤ dk−1 + d0(zk, zk−1) ≤
(
1 + 10Q

− 1
2

k−1

)
dk−1 + 3

√
HnTk−1. (4.48)

Therefore, it is easy to derive from (4.48) and the definitions of Qk and Tk that

dk ≤ K1 < ∞ (4.49)

for some constant K1 depending on d0(z, y), T, Q̄ and n. From (c) and (4.49), we have

dTk
(xk, z

′
k) ≤ 10Q

− 1
2

k−1
dk−1 ≤ 10K1Q

− 1
2

k−1
. (4.50)

Moreover, since (z′
k
, Tk) is an Hn-center of (xk−1, Tk−1), it follows from (4.15) that

dTk
(z′k, p) ≤ dTk−1

(xk−1, p) + L3

√
Tk−1 − Tk ≤ bk−1 + L3T

1
2

k−1
, (4.51)
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where L3 = L3(n, δ, A) > 0 for some fixed constant δ ∈ (0, 1) with T ≤ 1 − δ. Combining (4.50) and

(4.51), we obtain

bk ≤ bk−1 + 10K1Q
− 1

2

k−1
+ L3T

1
2

k−1
. (4.52)

From (4.52), it is clear that bk is uniformly bounded, and the Claim is proved.

Thanks to the Claim, we can apply Corollary 4.12 to obtain an upper bound of heat kernel, which

contradicts the lower bound (4.47) when k is sufficiently large. �

Now, we state the main theorem of this section regarding the heat kernel upper bound, which

generalizes and slightly improves [2, Theorem 7.2].

Theorem 4.15. (Mn, g(t))t<1 is the Ricci flow associated with a Ricci shrinker. For any ǫ > 0, there

exists a constant C = C(n, ǫ) > 0 such that

H(x, t, y, s) ≤
C exp

(−N(x,t)(t − s)
)

(t − s)
n
2

exp

(
− d2

s (z, y)

(4 + ǫ)(t − s)

)
, (4.53)

for any s < t < 1 and any Hn-center (z, s) of (x, t).

Proof. Without loss of generality, we assume s = 0. The proof is a modification of the proof of

Lemma 4.13 and all constants Ci > 1 depend on n and ǫ.

Suppose otherwise, there exist x, y ∈ M, T ∈ (0, 1), ǫ > 0 and an Hn-center (z, 0) of (x, T ) such

that

H(x, T, y, 0) ≥ Q
exp

(
−N∗

0
(x, T )

)

T
n
2

exp

−
d2

0
(z, y)

(4 + ǫ)T

 , (4.54)

where Q is a large constant determined later. We also set θ ∈ (0, 1) as a small parameter and θ3
1
= θ.

Define

d := d0(z, y), a := H(x, T, y, 0), vt := vx,T ;t, Tθ := θT,

V :=

{
w ∈ M | H(w, Tθ, y, 0) ≥ a

2

}
.

From (4.54) and (4.5), we have

exp

(
d2

T

)
≥

{
C−1

1 Q
}4+ǫ

. (4.55)

Now, we assume (z′, Tθ) is an Hn-center of (x, T ) and set B := BTθ(z
′, (1 − θ1)d). Similar to (4.34),

we have

−N∗0 (w, Tθ) ≤ −N∗0 (x, T ) +C2θ
− 1

2 T−
1
2 dTθ (w, z

′) +C2θ
− 1

2 . (4.56)
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By the same argument as (4.36), we apply Proposition 3.14 for ǫ/4 to obtain if θ < θ̄(ǫ),
∫

M\B
eC2θ

− 1
2 T
− 1

2 dTθ
(w,z′) dvTθ (w)

≤C3

∞∑

k=1

exp

(
C22kθ−

1
2 T−

1
2 (1 − θ1)d − (2k−1(1 − θ1)d)2

(4 + ǫ/4)(1 − θ)T

)

≤C3

∞∑

k=1

exp

(
− (2k−1(1 − θ1)d)2

(4 + ǫ/3)(1 − θ)T +C4θ
−1

)

≤C5 exp

(
− ((1 − θ1)d)2

(4 + ǫ/3)(1 − θ)T +C4θ
−1

)
. (4.57)

Similar to (4.37), we obtain

QT−
n
2 exp

(
− d2

(4 + ǫ)T

)
≤ C6T

− n
2

θ

(
eC2θ

− 1
2 T
− 1

2 (1−θ1)dvTθ (V ∩ B) + eC6θ
−1

exp

(
− ((1 − θ1)d)2

(4 + ǫ/3)(1 − θ)T

))
.

(4.58)

We claim that vTθ (V ∩ B) > 0. Indeed, it follows from (4.55) that

Q exp

((
(1 − θ1)2

(4 + ǫ/3)(1 − θ) −
1

(4 + ǫ)

)
d2

T

)
≥ Q exp

(
c(ǫ)d2

T

)
≥ Q1+c(ǫ)C

−c(ǫ)
1
≥ 2C6θ

− n
2 eC6θ

−1

,

where c(ǫ) > 0 depends only on ǫ > 0 and we choose θ < θ̄(ǫ) and Q sufficiently large. Therefore,

the claim follows from (4.58).

We choose a point x1 ∈ V ∩ B and an Hn-center (z1, 0) of (x1, Tθ). Similar to (4.38), we have

d0(z, z1) ≤ 3
√

HnT + (1 − θ1)d (4.59)

and hence

d0(z1, y) ≥ θ1d − 3
√

HnT . (4.60)

Moreover, as (4.43), we have by (4.56),

−N∗0 (x1, Tθ) ≤ −N∗0 (x, T ) + C2θ
− 1

2 (T−
1
2 d + 1). (4.61)

Now, by virtue of Proposition 4.14 and the definition of V , we have

Q̄ exp

−
d2

0
(z1, y)

Q̄Tθ

 ≥ H(x1, Tθ, y, 0) · T n
2 · exp

(
N∗0 (x1, Tθ)

)
≥ 1

2
Q exp

(
− d2

(4 + ǫ)T

)
. (4.62)

Since d2
0
(z1, y) ≥ θ2

1
d2/2 − 9HnT from (4.60), it follows from (4.61) and (4.62) that

Q exp

((
1

2θ1Q̄
− 1

(4 + ǫ)
− 1

)
d2

T
−C7θ

−1

)

≤Q exp

((
1

2θ1Q̄
− 1

(4 + ǫ)

)
d2

T
−C2θ

− 1
2 T−

1
2 d

)
≤ 2Q̄θ−

n
2 exp

(
9Hn

Q̄θ

)
, (4.63)

provided that θ ≤ θ̄(ǫ, Q̄). However, (4.63) is impossible by (4.55) if Q is sufficiently large.

In sum, we obtain a contradiction and (4.53) holds. �
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Combining Lemma 4.10 and Theorem 4.15, we have the following estimate, which improves

[28, Theorem 20].

Theorem 4.16. For any K > 1, δ ∈ (0, 1) and A > 0, there exists a constant C = C(n,K, δ, A) > 1

satisfying the following property.

Suppose −δ−1 ≤ s < t ≤ 1 − δ and dt(x, p) ≤ K, then

H(x, t, y, s) ≤ C

(t − s)
n
2

exp

(
− d2

s (x, y)

C(t − s)

)
. (4.64)

Remark 4.17. Given (x0, t0) ∈ M × (−∞, 1), if we set H(x0, t0, y, s) = (4π(t0 − s))−
n
2 e−b(y,s), then it

follows from Theorem 4.9 and Theorem 4.16 that b(y, s) increases quadratically.

Combining (4.64) and the standard regularity theory of the parabolic equation (cf. [20]), we have

the following derivative estimate of higher orders.

Corollary 4.18. Given (x0, t0) ∈ M × (−∞, 1) and s0 < t0, there exists a small parabolic neighbor-

hood P = Bt0(x0, r) × [t0 − r2, t0 + r2] such that for any m1,m2 ∈ N

|∂m1

t ∇m2
x H(x, t, y, s0)| ≤ 1

r2m1+m2
· Q

(t0 − s0)
n
2

· exp

−
d2

s0
(x0, y)

Q(t0 − s0)

 (4.65)

for some constant Q > 1 and any (x, t) ∈ P and y ∈ M.

Note that when (y, s0) is fixed, H(x, t, y, s0) is a heat solution. The scale r in the above Corollary

is small constant much less than the curvature radius at (x0, t0). Then inequality (4.65) can be

obtained by dominated convergence theorem. It indicates that one can take differentiation under

the integral sign if the integrand involves the heat kernel in many cases. As an application, we can

follow the same proof as in Theorem 3.23 to estimate |∇N∗s | and �N∗s without using φr. Therefore,

one obtains

Corollary 4.19. The Nash entropy N∗s (x, t) is smooth on M × (s, 1) satisfying

|∇N∗s | ≤
√

n

2(t − s)
and − n

2(t − s)
≤ �N∗s ≤ 0

in the classical sense.

We end this section by proving the following hypercontractivity; see [2, Theorem 12.1].

Theorem 4.20. Suppose that (x0, t0) ∈ M×(−∞, 1) and 0 < τ1 < τ2. Let u ∈ C2(M×[t0−τ2, t0−τ1])

be a nonnegative function satisfying �u ≤ 0 and having at most polynomial spatial growth in the

sense that

|u(x, t)| ≤ m(dm
t (p, x) + 1) (4.66)

for some m ∈ N. If 1 < q0 ≤ p0 < ∞ with

τ2

τ1

≥ p0 − 1

q0 − 1
,

then for dvt := dvx0 ,t0;t, (∫

M

up0 dvt0−τ1

)1/p0

≤
(∫

M

uq0 dvt0−τ2

)1/q0

. (4.67)
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Proof. Without loss of generality, we assume t0 = 0. We set p = p(t) = 1+ τ2(q0 − 1)|t|−1 for t < 0.

Notice that p(−τ2) = q0 and p(−τ1) ≥ p0 by our assumption.

When t < 0, direct calculation shows that

∂t

∫

M

upφr dvt −
∫

M

up
�φrdvt

=

∫

M

(
ṗup log u + pup−1

�u − p(p − 1)|∇u|2up−2
)
φr − 2〈∇up,∇φr〉 dvt

≤ ṗ

p

∫

M

φrup log up dvt −
p − 1

p

∫

M

|∇up|2
up

φr dvt − 2

∫

M

〈∇up,∇φr〉 dvt. (4.68)

Moreover, we have for any ǫ ≪ 1,

2

∫

M

|∇up||∇φr | dvt ≤ ǫ
∫

M

|∇up|2
up

φr dvt + ǫ
−1

∫

M

up|∇φr |2 dvt. (4.69)

Combining (4.68) and (4.69), we have

∂t

(∫

M

upφr dvt

) 1
p

=
1

p

(∫

M

upφr dvt

) 1
p
−1 (

∂t

∫

M

upφr dvt −
ṗ

p

(∫

M

upφr dvt

)
log

(∫

M

upφr dvt

))

≤1

p

(∫

M

upφr dvt

) 1
p
−1 (

ṗ

p

∫

M

φrup log up dvt −
ṗ

p

(∫

M

upφr dvt

)
log

(∫

M

upφr dvt

))

+
1

p

(∫

M

upφr dvt

) 1
p
−1 ((

ǫ − p − 1

p

) ∫

M

|∇up|2
up

φr dvt + ǫ
−1

∫

M

up
{
|∇φr |2 + �φr

}
dvt

)
. (4.70)

We integrate (4.70) from −τ2 to −τ1, let r → ∞ and then let ǫ → 0. By Theorem 4.4, (4.66), (2.12)

and (2.15), we obtain

(∫

M

up dvt

) 1
p

∣∣∣∣∣∣∣

−τ1

−τ2

≤
∫ −τ1

−τ2

1

p

(∫

M

up dvt

) 1
p
−1 (

ṗ

p

∫

M

up log up dvt −
ṗ

p

(∫

M

up dvt

)
log

(∫

M

up dvt

))
dt

+

∫ −τ1

−τ2

1

p

(∫

M

up dvt

) 1
p
−1 (
− p − 1

p

∫

M

|∇up|2
up

dvt

)
dt. (4.71)

Note that the log-Sobolev inequality [28, Theorem 13] implies that

ṗ

p

∫

M

up log up dvt −
ṗ

p

(∫

M

up dvt

)
log

(∫

M

up dvt

)
≤ ṗ

p
|t|

∫

M

|∇up |2
up

dvt =
p − 1

p

∫

M

|∇up|2
up

dvt.

Therefore, it follows from (4.71) that

(∫

M

up0 dv−τ1

) 1
p0

≤
(∫

M

up(−τ1) dv−τ1

) 1
p(−τ1)

≤
(∫

M

uq0 dv−τ2

) 1
q0

and the proof is complete. �
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Remark 4.21. If u ∈ C2(M × [t0 − τ2, t0 − τ1]) and satisfies �u = 0 and (4.66), then

(∫

M

|u|p0 dvt0−τ1

)1/p0

≤
(∫

M

|u|q0 dvt0−τ2

)1/q0

.

Indeed, one can apply (4.67) to
√

u2 + ǫ since �
√

u2 + ǫ ≤ 0, and let ǫ → 0.

5 Parabolic neighborhoods and ǫ-regularity theorem

In this section, we assume (Mn, g(t))t<1 is the Ricci flow associated with a Ricci shrinker inM(A).

Given (x0, t0) ∈ M×(−∞, 1), we first recall the conventional parabolic neighborhoods are defined

by

P(x0, t0; S ,−T−, T+) :=Bt0(x0, S ) × (
[t0 − T−, t0 + T+] ∩ (−∞, 1)

)
(5.1)

Q(x0, t0; S ,−T−, T+) :=
{
dt(x, x0) ≤ S , t ∈ [t0 − T−, t0 + T+] ∩ (−∞, 1)

}
(5.2)

for any S , T± ≥ 0. Based on the monotonicity of W1-distance in Proposition 3.7, we follow [2] to

define the following new parabolic neighborhoods.

Definition 5.1 (P∗-parabolic neighborhoods). Suppose that (x0, t0) ∈ M × (−∞, 1) and S , T± ≥ 0.

The P∗-parabolic neighborhood P∗(x0, t0; S ,−T−, T+) ⊂ M × (−∞, 1) is defined as the set of points

(x, t) ∈ M × (−∞, 1) with t ∈ [t0 − T−, t0 + T+] and

d
t0−T−

W1
(vx0 ,t0;t0−T− , vx,t;t0−T−) < S .

For any r > 0, we also define

P∗(x0, t0; r) :=P∗(x0, t0; r,−r2, r2)

P∗+(x0, t0; r) :=P∗(x0, t0; r, 0, r2)

P∗−(x0, t0; r) :=P∗(x0, t0; r,−r2, 0).

Similar definitions are also made for P±.

Some basic properties of P∗-parabolic neighborhoods can be found in [2, Proposition 9.4, Corol-

lary 9.6]. We state the following containment result from [2, Proposition 9.4 (d)].

Lemma 5.2. If A1, A2, T
±
1
, T±

2
≥ 0 and (x1, t1) ∈ P∗(x2, t2; A2,−T−

2
, T+

2
), then

P∗(x1, t1; A1,−T−1 , T
+
1 ) ⊂ P∗(x2, t2; A1 + A2,−(T−1 + T−2 ), T+1 + T+2 ).

We immediately have the following result from the distance comparison Lemma 4.8.

Lemma 5.3. Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant C =

C(n, A, δ) > 1 such that

P(p, t0; S ,−T−, T+) ⊂Q(p, t0; C(S + 1),−T−, T+)

Q(p, t0; S ,−T−, T+) ⊂P(p, t0; C(S + 1),−T−, T+)

provided that −δ−1 ≤ t0 − T− ≤ t0 + T+ ≤ 1 − δ.
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In order to investigate the relation between P∗-parabolic neighborhoods and conventional ones,

we first prove

Proposition 5.4. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose R(x0, t) ≤ r−2 for any t ∈
[t0 − r2, t0]. Then

d
t0−r2

W1
(vx0 ,t0;t0−r2 , δx0

) ≤ C(n, A)r. (5.3)

Proof. It follows from [28, Theorem 16] that

H(x0, t0, x0, t0 − r2) ≥ 1

(4πr2)
n
2

exp
(
−l(x0 ,t0)(x0, t0 − r2)

)
, (5.4)

From the definition of l(x0 ,t0)(x0, t0 − r2) we have

l(x0 ,t0)(x0, t0 − r2) ≤ 1

2r

∫ t0

t0−r2

√
t0 − s R(x0, s) ds ≤ 1

3
. (5.5)

Combining (4.53) for ǫ = 1, (5.4) and (5.5), it is clear that

d2
t0−r2(x0, z) ≤ C1r2

for some constant C1 = C1(n, A), where (z, t0 − r2) is an Hn-center of (x0, t0). Therefore,

d
t0−r2

W1
(vx0 ,t0;t0−r2 , δx0

) ≤ d
t0−r2

W1
(vx0 ,t0;t0−r2 , δz) + dt0−r2(x0, z) ≤ C2r,

where we have used (3.29) and C2 :=
√

Hn +
√

C1. �

Remark 5.5. From the proof, we conclude that (5.3) also holds for a constant C = C(n, A, α) if we

assume

R(x0, t) ≤
α

r2(t0 − t)

for some α > 0 and any t ∈ [t0 − r2, t0].

Corollary 5.6. For any s0 < t0 < 1, we have

d
s0

W1
(vp,t0;s0

, δp) ≤ C(n, A)
√

t0 − s0. (5.6)

Proof. From the self-similarity of the flow, we know that

R(p, t) =
R(p, 0)

1 − t
≤ n

2(1 − t)
≤ n

2(t0 − t)

for any t < t0. Therefore, the conclusion follows from Proposition 5.4 and Remark 5.5. �

Proposition 5.7. Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant

C = C(n, A, δ) > 1 such that

Q(p, t0; S ,−T−, T+) ⊂ P∗(p, t0; S +C,−T−, T+)

provided that t0 − T− ≥ −δ−1.
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Proof. For any (x, t) ∈ Q(p, t0; S ,−T−, T+), we have

d
t0−T−

W1
(vp,t0;t0−T− , vx,t;t0−T−)

≤d
t0−T−

W1
(vp,t;t0−T− , vx,t;t0−T−) + d

t0−T−

W1
(vp,t0;t0−T− , vp,t;t0−T−)

≤dt(x, p) + d
t0−T−

W1
(vp,t0;t0−T− , vp,t;t0−T−) ≤ S + d

t0−T−

W1
(vp,t0;t0−T− , vp,t;t0−T−), (5.7)

where we have used Proposition 3.10. In addition, it follows from Corollary 5.6 that

d
t0−T−

W1
(vp,t0;t0−T− , vp,t;t0−T−) ≤ d

t0−T−

W1
(vp,t0;t0−T− , δp) + d

t0−T−

W1
(vp,t;t0−T− , δp) ≤ C(n, A, δ). (5.8)

Therefore, the conclusion follows from (5.7) and (5.8). �

Next, we recall the following version of the local distance distortion estimate, which can be

proved almost exactly as [28, Theorem 18]; see also [16, Section 4.3], [17, Theorem 3.1] and [6,

Theorem 1.1].

Lemma 5.8. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose R ≤ r−2 on P−(x0, t0; r) (resp.

P(x0, t0; r)). Then

ρ1dt(x, x0) ≤ dt0 (x, x0) ≤ ρ−1
1 dt(x, x0)

if dt0 (x, x0) ≤ ρ1r and t ∈ [t0 − (ρ1r)2, t0) (resp. t ∈ [t0 − (ρ1r)2, t0 + (ρ1r)2] ∩ (−∞, 1)), where

ρ1 = ρ1(n, A) ∈ (0, 1). In particular,

P−(x0, t0; ρ2
1r) ⊂ Q−(x0, t0; ρ1r) ⊂ P−(x0, t0; r) (5.9)

(
resp. P(x0, t0; ρ2

1r) ⊂ Q(x0, t0; ρ1r) ⊂ P(x0, t0; r)
)
. (5.10)

Thanks to Proposition 5.4 and Lemma 5.8, we have the following result.

Proposition 5.9. There exists a constant ρ2 = ρ2(n, A) ∈ (0, 1) satisfying the following prop-

erty. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on P(x0, t0; r,−(ρ2r)2) (resp.

P(x0, t0; r,−(ρ2r)2, (ρ2r)2)). Then

P−(x0, t0; ρ2r) ⊂ P∗(x0, t0; r,−(ρ2r)2, 0) (5.11)

(
resp. P(x0, t0; ρ2r) ⊂ P∗(x0, t0; r,−(ρ2r)2, (ρ2r)2)

)
. (5.12)

Proof. In the proof, all constants Ci > 1 depend on n and A and ρ1 is from Lemma 5.8. We only

prove (5.11), and the proof of (5.12) is similar. Moreover, we set 0 < τ ≪ 1 to be determined later.

For any (y, s) ∈ P−(x0, t0; τr), it follows from Lemma 5.8 that

dt(y, x0) ≤ C1τr (5.13)
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for any t ∈ [t0 − (τr)2, s]. In particular, R(y, t) ≤ r−2 for any t ∈ [t0 − (τr)2, s]. Therefore, it follows

from Proposition 5.4 that

d
t0−(τr)2

W1
(vy,s;t0−(τr)2 , δy) ≤ C2τr. (5.14)

It follows from (5.13) and (5.14) that

d
t0−(τr)2

W1
(vy,s;t0−(τr)2 , vx0 ,t0;t0−(τr)2)

≤d
t0−(τr)2

W1
(vx0 ,t0;t0−(τr)2 , δx0

) + d
t0−(τr)2

W1
(vy,s;t0−(τr)2 , δy) + dt0−(τr)2(y, x0) ≤ C3τr < r,

if τ is sufficiently small. From this, it is immediate that (5.11) holds for small ρ2. �

Now, we prove

Proposition 5.10. Given δ ∈ (0, 1), t0 ∈ (−∞, 1), T± ≥ 0 and S ≥ 0, there exists a constant

C = C(n, A, δ) > 1 such that

P∗(p, t0; S ,−T−, T+) ⊂ Q(p, t0;
√

2S +C,−T−, T+) (5.15)

provided that t0 − T− ≥ −δ−1. In particular, it implies that P∗(p, t0; S ,−T−, T+) is precompact in

M × (−∞, 1) if t0 + T+ < 1.

Proof. In the proof, all constants Ci > 1 depend on n, A and δ. It follows from (5.6) that

d
t0−T−

W1
(δp, vp,t0;t0−T−) ≤ C1. (5.16)

For any (x1, t1) ∈ P∗(p, t0; S ,−T−, T+), we assume (z, t0 − T−) to be an Hn-center of (x1, t1). By

(5.16) and the definition of P∗ neighborhood, we have

dt0−T−(p, z) ≤d
t0−T−

W1
(δp, vp,t0;t0−T−) + d

t0−T−

W1
(vp,t0;t0−T− , δz)

≤d
t0−T−

W1
(δz, vx1 ,t1;t0−T−) + d

t0−T−

W1
(vp,t0;t0−T− , vx1 ,t1;t0−T−) +C1

≤S +C2. (5.17)

Set vt = vx1 ,t1;t and compute

∂t

∫

M

φr dvt =

∫

M

�φr dvt.

By (2.15), we have

φr(x1, t1) ≥
∫

M

φr dvt0−T− −C(n)r−1(t1 − t0 + T−) ≥
∫

F≤r

1 dvt0−T− −C3r−1.

Note that φr = 1 if F ≤ r and r is large. In light of (5.17) and Lemma 2.3, the set {F ≤ r} contains a

large geodesic ball centered at z. Thus by Proposition 3.13, the above inequality implies that

φr(x1, t1) ≥
∫

F≤r

1 dvt0−T− −C3r−1 ≥ 1

2
(5.18)
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if 2
√

r = S +C4. Since φr is supported on F ≤ 2r, we conclude from (5.18) that

F(x1, t1) ≤ 2r =
(S +C4)2

2
.

From Lemma 2.3 and Lemma 4.8, we immediate conclude that

dt1 (p, x1) ≤
√

2S +C5.

Now, the last conclusion follows from (5.15) and Lemma 5.3. �

Corollary 5.11. Given (x0, t0) ∈ M × (−∞, 1) and S , T± ≥ 0, P∗(x0, t0; S ,−T−, T+) is precompact

in M × (−∞, 1) if t0 + T+ < 1.

Proof. It is clear that (x0, t0) ∈ P∗(p, t0; S ′,−1, 0) for some large S ′ > 0. Therefore, it follows from

Lemma 5.2

P∗(x0, t0; S ,−T−, T+) ⊂ P∗(p, t0; S + S ′,−(1 + T−), T+).

Therefore, the conclusion follows from Proposition 5.10. �

Next, we recall the following existence of the local cutoff function from [6, Theorem 1.3].

Proposition 5.12. Given (x0, t0) ∈ M × (−∞, 1) and r > 0, there exists a constant ρ3 = ρ3(n, A) ∈
(0, 1) satisfying the following property.

Suppose R ≤ r−2 on P(x0, t0; r, 0,−τ) with 0 < τ ≤ (ρ3r)2. Then there exists a function ϕ ∈
C∞(M × [t0 − τ, t0]) with the following properties:

(a) 0 ≤ ϕ < 1 on M × [t0 − τ, t0].

(b) ϕ > ρ3 on P(x0, t0; ρ3r, 0,−τ).

(c) ϕ = 0 outside P(x0, t0; r, 0,−τ).

(d) |∇ϕ| ≤ r−1 and |∂tϕ| + |∆ϕ| ≤ r−2.

(e) �ϕ ≤ 0 on M × [t0 − τ, t0].

Proof. We sketch the proof for readers’ convenience. In [6, Theorem 1.3], ϕ is constructed as the

smoothing of ψ2, where

ψ(x, t) := c1 max{K(x, t) − c, 0}

for some constants c, c1 > 0 on U × [t0 − τ, t0] for some open set U ⊂ Bt0(x0, r), where ψ = 0 on

∂U × [t0 − τ, t0] and can be extended to be 0 outside U × [t0 − τ, t0]. Here, K(x, t) = H(x, t, y, s) for

some appropriate (y, s) such that K(x0, t0) ≥ (4π(t0 − s))−
n
2 e−n/2 and t0 − s is sufficiently small.

The estimates of (a)-(d) follow from [28, Lemma 20]. From the definitions of ψ and ϕ, it is clear

that (e) also holds. �
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Next, we prove

Proposition 5.13. There exists a constant ρ4 = ρ4(n, A) ∈ (0, 1) satisfying the following property.

Given (x0, t0) ∈ M × (−∞, 1) and r > 0, suppose that R ≤ r−2 on P(x0, t0; r,−(ρ4r)2, 0) (resp.

P(x0, t0; r,−(ρ4r)2, (ρ4r)2)). Then

P∗−(x0, t0; ρ4r) ⊂ P(x0, t0; r,−(ρ4r)2, 0) (5.19)

(
resp. P∗(x0, t0; ρ4r) ⊂ P(x0, t0; r,−(ρ4r)2, (ρ4r)2)

)
. (5.20)

Proof. In the proof, all positive constants Ci > 1 depend only on n and A. Moreover, we set

0 < τ≪ 1 to be determined later.

For any (y, s) ∈ P∗−(x0, t0; τr), we assume (z, t0 − (τr)2) to be its Hn-center. From Proposition

5.4, we have

dt0−(τr)2 (z, x0)

≤ d
t0−(τr)2

W1
(δx0

, vx0 ,s;t0−(τr)2) + d
t0−(τr)2

W1
(vy,s;t0−(τr)2 , vx0 ,s;t0−(τr)2 ) + d

t0−(τr)2

W1
(δz, vy,s;t0−(τr)2 )

≤ C1τr. (5.21)

We assume τ < ρ3 and consider the cutoff function ϕ constructed in Proposition 5.12. If we set

vt = vy,s;t, then by direct computation,

∂t

∫

M

ϕ dvt =

∫

M

�ϕ dvt ≥ −r−2,

where we have used Proposition 5.12(d). By integration, we have

ϕ(y, s) ≥
∫

M

ϕ dvt0−(τr)2 − τ. (5.22)

Notice that ϕ > ρ3 on P(x0, t0; ρ3r, 0, (τr)2). Combining this fact with (5.21) and Proposition 3.13,

we conclude that if τ is sufficiently small,

ϕ(y, s) ≥
∫

M

ϕ dvt0−(τr)2 − τ ≥ ρ3

2
> 0.

On the other hand, since ϕ = 0 outside P(x0, t0; r,−(τr)2), we conclude that

dt0 (x0, y) ≤ r

and hence (5.19) holds. �

Next, we recall the definition of the curvature radius.
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Definition 5.14 (Curvature radius). For any (x, t) ∈ M × (−∞, 1), the curvature radii at (x, t) are

defined as

rRm(x, t) := sup
{
r > 0 | |Rm| ≤ r−2 on P(x, t; r)

}
,

r−Rm(x, t) := sup
{
r > 0 | |Rm| ≤ r−2 on P−(x, t; r)

}
,

rs
Rm(x, t) := sup

{
r > 0 | |Rm| ≤ r−2 on Bt(x, r)

}
.

It is clear from the definition that rRm(x, t) ≤ r−
Rm

(x, t) ≤ rs
Rm

(x, t). In addition, it follows from

Theorem 4.1 and the pseudolocality theorem [28, Theorem 24] on Ricci shrinkers that there exists

a constant C = C(n, A) > 1 such that

r−Rm(x, t) ≤ CrRm(x, t). (5.23)

We are in a position to obtain the following ǫ-regularity theorem; see [2, Theorem 10.2].

Theorem 5.15 (ǫ-regularity). There exists a small constant ǫ = ǫ(n) > 0 satisfying the following

property. Given (x, t) ∈ M × (−∞, 1) and r > 0, suppose that N(x,t)(r
2) ≥ −ǫ, then rRm(x, t) ≥ ǫr.

Proof. We only sketch the proof as the details can be found in [2, Theorem 10.2]. The key

step is a point-picking argument in the spacetime with respect to the curvature radius rRm. More

precisely, one needs to show that for any A > 0 with 10ArRm(x, t) ≤ 1/2, there exists a point

(x′, t′) ∈ P∗−(x′, t′; 10ArRm(x, t)) such that rRm(x′, t′) ≤ rRm(x, t) and rRm ≥ rRm(x′, t′)/10 on

P∗−(x′, t′; ArRm(x′, t′)). Otherwise, one can iteratively pick a sequence of spacetime points (xi, ti) in

a compact set of M × (−∞, 1) satisfying rRm(xi, ti)→ 0. In light of Lemma 5.2, all (xi, ti) fall into a

given P∗−-parabolic neighborhood, which is precompact by Corollary 5.11. Note that the curvature

radius of (xi, ti) shrinks by a definite portion in each step, the bounded geometry of a compact set

implies that the process must terminate in finite steps, say (xk, tk) = (x′, t′). Such choice of (x′, t′)
guarantees that it has almost maximal curvature radius in spacetime neighborhood. Notice that

similar point-picking arguments can be found in [34, Theorem 10.1] and [16, Proposition 3.43].

If the ǫ-regularity theorem fails, we could obtain a sequence of pointed Ricci flows such that

rRm = 1 at the base points after the point-picking and appropriate rescalings. Since nearby points

have curvature radii uniformly bounded from below, the sequence converges smoothly to a limit

Ricci flow which is the Euclidean spacetime by the assumption of the Nash entropy. Therefore,

rRm = 1 must be violated and we obtain a contradiction. �

Using the ǫ-regularity theorem, one immediately has the following gap property, following the

same proof of [28, Theorem 3].

Corollary 5.16. Suppose (Mn, g, f , p) is a non-flat Ricci shrinker. Then

N(p,0)(ǫ
−2) < −ǫ,

where ǫ is the same constant in Theorem 5.15.
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Proof. Suppose N(p,0)(ǫ
−2) ≥ −ǫ and (M, g) is a non-flat Ricci shrinker, it follows from Theorem

5.15 that rRm(p, 0) ≥ 1. In particular, it implies that |Rm(p, t)| ≤ 1 for any t ∈ [0, 1). By the

self-similarity of the flow, we have |Rm|(p, 0) = |Rm|(p, t)(1 − t) and hence |Rm|(p, 0) = 0, which

contradicts the fact that R > 0 for non-flat Ricci shrinkers. �

We conclude this section by stating the following two results, whose proofs are more or less

standard. See [2, Theorem 10.3, Theorem 10.4].

Theorem 5.17. For any ǫ > 0 there is a δ = δ(ǫ) > 0 such that the following holds. Given

(x, t) ∈ M × (−∞, 1) and r > 0, if Nx,t(r
2) ≥ −δ, then

|Rm| ≤ ǫr−2 on P(x, t; ǫ−1r,−(1 − ǫ)r2, ǫ−1r2).

Moreover, we have N∗
t−r2 ≥ −ǫ on P(x, t; ǫ−1r,−(1 − ǫ)r2).

Theorem 5.18. For any ǫ > 0 and Y < ∞ there is a δ = δ(ǫ, Y) > 0 such that the following holds.

Given (x, t) ∈ M × (−∞, 1) and r > 0, suppose that |Rm| ≤ r−2 on P−(x, t; r) and Nx,t(r
2) ≥ −Y.

Then Nx,t(δr
2) ≥ −ǫ.

6 Metric flows and F-convergence

In previous sections, we have generalized (or slightly improved) the theorems and tools in [2].

Notice that these results also hold for Ricci flows induced by Ricci shrinkers (cf. Definition 2.2)

since most of them are scaling-invariant. In a few cases, one needs to modify the assumptions

correspondingly. For instance, the conditions in Theorem 4.9 and Theorem 4.16 need to be changed

to −δ−1λ ≤ t < s ≤ (1 − δ)λ and dt(x, p) ≤ Kλ1/2, if the Ricci flow associated with a Ricci shrinker

is parabolically rescaled by λ > 0.

Based on these results and techniques, one can generalize the theory of F-convergence in [3] and

[4] from compact Ricci flows to the setting of Ricci flows induced by Ricci shrinkers.

Notice that the results in [3] and [4] are already generalized by Bamler to Ricci flows with

complete time-slices and bounded curvature on compact time-intervals (cf. [5]). In [5, Appendix

A], some issues in the non-compact case are addressed and can be resolved similarly in the setting

of Ricci shrinkers by the results and techniques developed in previous sections. For instance, by

Theorem 4.9 and Theorem 4.16, it is known that the conjugate heat kernel decays exponentially

and the function b induced by the conjugate heat kernel increases quadratically (cf. Remark 4.17).

Therefore, the weak splitting maps (cf. [4, Definition 5.6]) constructed in [4, Section 10] have at

most quadratic spatial growth. Moreover, it follows from [4, Proposition 12.1, Remark 12.3] that

one can construct a bounded strong splitting map with bounded gradient from a given weak splitting

map.

At various places in [4], one also needs to consider integral
∫

uφr instead of
∫

u, and take the

limit for r → ∞ after all the estimates (e.g., u = �|ωl| in [4, Lemma 17.37]). This technique has

already appeared multiple times in previous sections. As a showcase, we generalize the integral

estimates in [4, Section 6] to Ricci flows associated with Ricci shrinkers in Appendix A. These

estimates are frequently used in [4] and are of independent interest.

Now, we recall the following definition of the metric flow from [3, Definition 3.2].
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Definition 6.1 (Metric flow). Let I ⊂ R be a subset. A metric flow over I is a tuple of the form

(X, t, (dt)t∈I , (vx;s)x∈X,s∈I,s≤t(x))

with the following properties:

(1) X is a set consisting of points.

(2) t : X → I is a map called time-function. Its level sets Xt := t−1(t) are called time-slices and

the preimages XI′ := t−1(I′), I′ ⊂ I, are called time-slabs.

(3) (Xt, dt) is a complete and separable metric space for all t ∈ I.

(4) vx;s is a probability measure on Xs for all x ∈ X, s ∈ I, s ≤ t(x). For any x ∈ X the family

(vx;s)s∈I,s≤t(x) is called the conjugate heat kernel at x.

(5) vx;t(x) = δx for all x ∈ X.

(6) For all s, t ∈ I, s < t, T ≥ 0 and any measurable function us : Xs → [0, 1] with the property

that if T > 0, then us = Φ ◦ fs for some T−1/2-Lipschitz function fs : Xs → R (if T = 0, then

there is no additional assumption on us), the following is true. The function

ut : Xt −→ R, x 7−→
∫

Xs

us dvx;s

is either constant or of the form ut = Φ ◦ ft, where ft : Xt → R is (t − s + T )−1/2-Lipschitz.

Here, Φ is given by (3.31).

(7) For any t1, t2, t3 ∈ I, t1 ≤ t2 ≤ t3, x ∈ Xt3 we have the reproduction formula

vx;t1 =

∫

Xt2

v·;t1 dvx;t2 ,

meaning that for any Borel set S ⊂ Xt1

vx;t1 (S ) =

∫

Xt2

vy;t1 (S )dvx;t2 (y).

Given a metric flow X over I, we recall the following definitions from [3, Definition 3.20, 3.30].

Definition 6.2 (Conjugate heat flow). A family of probability measures (µt ∈ P(Xt))t∈I′ over I′ ⊂ I

is called a conjugate heat flow if for all s, t ∈ I′, s ≤ t we have

µs =

∫

Xt

vx;s dµt(x).

Definition 6.3 (H-Concentration). Given a constant H > 0, a metric flowX is called H-concentrated

if for any s ≤ t, s, t ∈ I, x1, x2 ∈ Xt

Var(vx1 ;s, vx2;s) ≤ d2
t (x1, x2) + H(t − s).
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Next, we recall the definition of the metric flow pair from [3, Definition 5.1, 5.2]. Roughly

speaking, two metric flow pairs are equivalent if they are the same in the metric measure sense

almost everywhere.

Definition 6.4 (Metric flow pair). A pair (X, (µt)t∈I′) is called a metric flow pair over I ⊂ R if:

1. I′ ⊂ I with |I \ I′| = 0.

2. X is a metric flow over I′.

3. (µt)t∈I′ is a conjugate heat flow on X with supp µt = Xt for all t ∈ I′.

If J ⊂ I′, then we say that (X, (µt)t∈I) is fully defined over J. We denote by FJ
I

the set of equiv-

alence classes of metric flow pairs over I that are fully defined over J. Here, two metric flow

pairs (Xi, (µi
t)t∈I′,i ), i = 1, 2, that are fully defined over J are equivalent if there exists an isometry

φ : X1
I′ → X2

I′ (cf. [3, Definition 3.13]) such that |I′,1 \ I′| = |I′,2 \ I′| = 0, (φt)∗µ1
t = µ

2
t for all t ∈ I′

and J ⊂ I′.

We will only consider I := (−∞, 0] for simplicity. Then for any pointed Ricci flow (Mn, g(t), x0)t∈I

induced by a Ricci shrinker, one can define (X, (µt)t∈I) as follows.

(X := M × (I \ {0}) ⊔ x0 × {0}, t := projI , (dt)t∈I , (vx,t;s)(x,t)∈M×I,s∈I,s≤t, µt := vx0 ,0;t

)
. (6.1)

Then we have

Proposition 6.5. The pair (X, (µt)t∈I) defined in (6.1) is an Hn-concentrated metric flow pair that is

fully defined over I.

Proof. The conditions (1)-(5) in the definition of the metric flow can be easily checked. Condi-

tion (6) follows from (3.15) and (7) from the semigroup property (3.1). The metric flow is Hn-

concentrated by Proposition 3.10. �

Next, we recall the definition of a correspondence between metric flows; see [3, Definition 5.4].

Definition 6.6 (Correspondence). Let (Xi, (µi
t)t∈I′,i ) be metric flows over I, indexed by some i ∈ I.

A correspondence between these metric flows over I′′ is a pair of the form

C :=
(
(Zt, d

Z
t )t∈I′′ , (ϕ

i
t)t∈I′′,i ,i∈I

)
,

where:

1. (Zt, d
Z
t ) is a metric space for any t ∈ I′′.

2. I′′,i ⊂ I′′ ∩ I′,i for any i ∈ I.

3. ϕi
t : (Xi

t, d
i
t)→ (Zt, d

Z
t ) is an isometric embedding for any i ∈ I and t ∈ I′′,i.

If J ⊂ I′′,i for all i ∈ I, we say that C is fully defined over J.
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Given a correspondence, one can define the F-distance, see [3, Definition 5.6, 5.8].

Definition 6.7 (F-distance within correspondence). We define the F-distance between two metric

flow pairs within C (uniform over J),

d
C,J
F

(
(X1, (µ1

t )t∈I′,1 ), (X2, (µ2
t )t∈I′,2 )

)
,

to be the infimum over all r > 0 with the property that there is a measurable subset E ⊂ I′′ with

J ⊂ I′′ \ E ⊂ I′′,1 ∩ I′′,2

and a family of couplings (qt)t∈I′′\E between µ1
t , µ

2
t such that:

(1) |E| ≤ r2.

(2) For all s, t ∈ I′′ \ E, s ≤ t, we have
∫

X1
t ×X2

t

d
Zs

W1
((ϕ1

s)∗ν
1
x1;s
, (ϕ2

s)∗ν
2
x2;s

)dqt(x1, x2) ≤ r.

Notice that (2) above implies that for any t ∈ I′′ \ E,

dGW1

(
(X1

t , d
1
t , µ

1
t ), (X2

t , d
2
t , µ

2
t )
) ≤ d

Zt

W1
((ϕ1

t )∗µ
1
t , (ϕ

2
t )∗µ

2
t ) ≤ r. (6.2)

Here, dGW1
denotes the Gromov-W1-Wasserstein distance, see [3, Definition 2.11] for the precise

definition.

Definition 6.8 (F-distance). The F-distance between two metric flow pairs (uniform over J),

dJ
F

(
(X1, (µ1

t )t∈I′,1 ), (X2, (µ2
t )t∈I′,2 )

)
,

is defined as the infimum of

d
C,J
F

(
(X1, (µ1

t )t∈I′,1 ), (X2, (µ2
t )t∈I′,2 )

)
,

over all correspondences C between X1,X2 over I′′ that are fully defined over J.

With all those definitions, it can be proved (cf. [3, Theorem 5.13, 5.26]) that (FJ
I
, dJ
F
) is a com-

plete metric space, with possible infinite distances.

In addition, F-convergence implies F-convergence within a correspondence; see [3, Theorem

6.12]. More precisely,

Theorem 6.9. Let (Xi, (µi
t)t∈I′,i ), i ∈ N ∪ {∞}, be metric flow pairs over I that are fully defined over

some J ⊂ I. Suppose that for any compact subinterval I0 ⊂ I

d
J∩I0

F

(
(Xi, (µi

t)t∈I0∩I′,i ), (X∞, (µ∞t )t∈I0∩I′,∞ )
)→ 0.

Then there is a correspondence C between the metric flows Xi, i ∈ N ∪ {∞}, over I such that

(Xi, (µi
t)t∈I′,i )

F,C,J−−−−−−−−−→
i→∞

(X∞, (µ∞t )t∈I′,∞ )

on compact time intervals, in the sense that

d
C,J∩I0

F

(
(Xi, (µi

t)t∈I0∩I′,i ), (X∞, (µ∞t )t∈I0∩I′,∞ )
)→ 0

for any compact subinterval I0 ⊂ I.
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For a sequence of Ricci flows (Mn
i
, gi(t)), xi)t∈I induced by Ricci shrinkers, one can use the F-

compactness theorem for metric flow pairs [3, Corollary 7.5, Theorem 7.6] to obtain the following

result.

Theorem 6.10 (F-compactness). Let (Mn
i
, gi(t), xi)t∈I be a sequence of pointed Ricci flows induced

by Ricci shrinkers with the corresponding metric flow pairs (Xi, (µi
t)t∈I) as described in (6.1).

After passing to a subsequence, there exists an Hn-concentrated metric flow pair (X∞, (µ∞t )t∈I)

for which X∞ is future continuous in the sense of [3, Definition 4.25] such that the following holds.

There is a correspondence C between the metric flows Xi, i ∈ N ∪ {∞}, over I such that on compact

time-intervals

(Xi, (µi
t)t∈I)

F,C−−−−−−−→
i→∞

(X∞, (µ∞t )t∈I). (6.3)

Moreover, the convergence (6.3) is uniform over any compact J ⊂ I that only contains times at

which X∞ is continuous, see [3, Definition 4.25]. Notice that X∞ is continuous everywhere except

possibly at a countable set of times, by [3, Corollary 4.35].

We sketch the main ideas and steps of Theorem 6.10 modulo all technical details.

1. One needs a characterization of the compactness for a subset in (M, dGW1
), the isometry

classes of all metric measure space (X, d, µ), where µ ∈ P(X) with supp µ = X and dGW1

denotes the Gromov-W1-Wasserstein distance (cf. [3, Definition 2.11]). LetMr(V, b) ⊂ M be

the subset consisting of (X, d, µ) satisfying

Var(µ) ≤ Vr2 and µ ({x ∈ X | µ(D(x, ǫr)) < b(ǫ)}) ≤ ǫ, ∀ǫ ∈ (0, 1]. (6.4)

Here, V, r are two positive constants and b : (0, 1] → (0, 1] is a function. Moreover, D(x, ǫr)

denotes a closed ball with center x and radius ǫr. It is proved by [3, Theorem 2.27] that

Mr(V, b) is compact.

2. For any metric flow pair (X, (µt)t∈I) defined in (6.1). It is clear by Hn-concentration that

Var(µt) ≤ Hn|t|. It can be proved (cf. [3, Proposition 4.1] with τ = ǫ3

8Hn
) that for any t < 0,

(Xt, dt, µt) ∈ Mr(V, b), (6.5)

where V = 1/8, r =
√

8Hn|t|, b(ǫ) = Φ(ǫ−2
√

8Hn)/2 and Φ is given by (3.31). The proof

of (6.5) uses Definition 6.1(6)(7) in an essential way. Therefore, for any t ≤ 0, (Xi, di
t, µ

i
t)

subconverges in GW1 to a limit metric measure space.

3. To compare different time-slices of (X, (µt)t∈I), one considers the function

D(t) :=

∫

Xt

∫

Xt

dt dµtdµt (6.6)

for t ∈ I. It is not hard to prove (cf. [3, Lemma 4.7]) that for any s ≤ t ∈ I,

−
√

Hn(t − s) ≤ D(t) − D(s) ≤
√

Var(µt) − Var(µs) + Hn(t − s) + 2
√

Hn(t − s). (6.7)

It follows immediately from (6.7) that D(t) is continuous on a complement of a countable

subset of I. In addition, it is proved (cf. [3, Theorem 4.31]) that for any t0 ≤ 0, D(t) is
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continuous at t0 is equivalent to the statement that (Xt, dt, µt) is continuous at t0 in the GW1

sense. In this case, one can construct an isometric embedding of (Xt, dt) and (Xt0 , dt0 ) into a

metric space (Zt, d
Z
t ) with an explicit coupling qt between µt and µt0 for t close to t0. Therefore,

one concludes that the metric flow (Xt, µt) is continuous on I except at a countable set of times.

4. For the sequence (Xi, (µi
t)t∈I) in (6.3), we consider the limit

D∞(t) := lim
t→∞

Di(t), (6.8)

which exists for any t ∈ I by taking a subsequence. Indeed, by (6.7), we may assume that

D∞(t) exists for t ∈ I ∩ Q and D∞(t) − D∞(s) ≥ −
√

Hn(t − s) for any s, t ∈ I ∩ Q with s ≤ t,

after taking a subsequence if necessary. Therefore, there exists a countable set S ⊂ I such

that D∞ is continuous on I \ S , by extending the definition of D∞. Moreover, (6.8) holds for

any t ∈ I \ S . Now, (6.8) also holds for t ∈ S , by further taking a subsequence.

The F-convergence of (Xi, (µi
t)t∈I) can be constructed as follows. We assume D∞(t) is contin-

uous at I \ S for a countable set S . For a large k > 0, we take a compact set I1 ⊂ [−k, 0] \ S

so that |[−k, 0] \ I1| is small. Then I1 is finitely covered by compact intervals Iti centered at

ti ∈ I1 such that |Iti | and the oscillation of all Di and D∞ on each Iti are sufficiently small. By

steps 1 and 2 above, one can construct a correspondence C0 that is fully defined on the finite

set I0 := {ti} between Xi, so that

d
C0,I0

F

(
(Xi, (µi

t)t∈I0
), (X j, (µ

j
t )t∈I0

)
)
< ǫ (6.9)

for any ǫ > 0, if i, j are sufficiently large. Then by using the small oscillation of Di on Iti , one

can extend the correspondence C0 to C1 over I1 so that (Xi, (µi
t)t∈I1

) forms a Cauchy sequence

over I1 in the sense of (6.9) with respect to d
C1,I1

F
(cf. [3, Lemma 7.24]). By letting k → ∞ and

taking a diagonal sequence, we obtain from the completeness of (FI , dF) a limit metric flow

pair (X∞, (µ∞t )t∈I\S ), which has an extended definition for all t ∈ I by the future completion

(cf. [3, Section 4.4]) so that (X∞, (µ∞t )t∈I) is right continuous for t ∈ I. Notice that Definition

6.1(1)-(7) for (X∞, (µ∞t )t∈I) are inherited from (Xi, (µi
t)t∈I). In addition, one can construct a

correspondence C so that

(Xi, (µi
t)t∈I)

F,C−−−−−−−→
i→∞

(X∞, (µ∞t )t∈I)

on compact time intervals and the convergence is uniform over the set on which (X∞, (µ∞t )t∈I)

is continuous. Moreover, (X∞
t′ , d

∞
t′ , µ

∞
t′ ) ⊂ Mr(V, b) as (6.5) and Var(µ∞t ) ≤ Hn|t| for any t ∈ I.

Notice that X∞
0

consists of a single point from which µ∞t is the conjugate heat measure.

Remark 6.11. In [3, Theorem 7.4], a general compactness for a subset FJ
I
(H,V, b, r) ⊂ FJ

I
is proved

by the same method as described above.

It follows from [3, Theorem 8.2, 8.4] that the limit metric flow pair (X∞, (µ∞t )t∈I) obtained in (6.3)

is a length space for any t ∈ I. In general, further geometric information contained in (X∞, (µ∞t )t∈I)

is scarce. However, if (Mn
i
, gi(t)) are induced by Ricci shrinkers inM(A), then, in particular, their

Nash entropies are uniformly bounded by Corollary 3.22. In this case, one obtains much more

concrete structure theorem regarding the limit metric flow obtained in (6.3); see [4, Theorem 2.3,

2.4, 2.5, 2.6, 2.46] and [3, Theorem 9.31].
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Theorem 6.12. Let (Mn
i
, gi(t), xi)t∈I be a sequence of pointed Ricci flows induced by Ricci shrinkers

inM(A) and (X∞, (µ∞t )t∈I) the limit metric flow pair obtained in Theorem 6.10. Then the following

properties hold.

(1) There exists a decomposition

X∞0 = {x∞}, X∞t<0 = R ⊔ S, (6.10)

such that R is given by an n-dimensional Ricci flow spacetime (R, t, ∂∞
t
, g∞), in the sense of

[3, Definition 9.1] and dimM∗(S) ≤ n − 2, where dimM∗ denotes the ∗-Minkowski dimension

in [3, Definition 3.42]. Moreover, µ∞t (St) = 0 for any t < 0.

(2) Every tangent flow (X′, (vx′∞;t)t≤0) at every point x ∈ X∞ is a metric soliton in the sense of

[3, Definition 3.57]. Moreover, X′ is the Gaussian soliton iff x ∈ R. If x ∈ S, the singular

set of (X′, (vx′∞;t)t≤0) on each t < 0 has Minkowski dimension at most n − 4. In particular,

if n = 3, the metric soliton is a smooth Ricci flow associated with a 3-dimensional Ricci

shrinker. If n = 4, each slice of the metric soliton is a smooth Ricci shrinker orbifold with

isolated singularities.

(3) Rt = R ∩ X∞t is open such that the restriction of dt on Rt agrees with the length metric of gt.

(4) The convergence (6.3) is smooth on R, in the following sense. There exists an increasing

sequence U1 ⊂ U2 ⊂ . . . ⊂ R of open subsets with
⋃∞

i=1 Ui = R, open subsets Vi ⊂ Mi × I,

time-preserving diffeomorphisms φi : Ui → Vi and a sequence ǫi → 0 such that the following

holds:

(a) We have

‖φ∗i gi − g∞‖
C

[ǫ−1
i

]
(Ui)
≤ ǫi,

‖φ∗i ∂i
t
− ∂∞
t
‖

C
[ǫ−1

i
]
(Ui)
≤ ǫi,

‖wi ◦ φi − w∞‖
C

[ǫ−1
i

]
(Ui)
≤ ǫi,

where gi is the spacetime metric induced by gi(t), and wi is the conjugate heat kernel

defined by dµi = widgi, i ∈ N ∪ {∞}.
(b) Let y∞ ∈ R and yi ∈ Mi × (−∞, 0). Then yi converges to y∞ within C (cf. [3, Definition

6.18]) if and only if yi ∈ Vi for large i and φ−1
i

(yi)→ y∞ in R.

(c) If the convergence (6.3) is uniform at some time t ∈ I, then for any compact subset

K ⊂ Rt and for the same subsequence we have

sup
x∈K∩Ui

dZ
t (ϕi

t(φi(x)), ϕ∞t (x)) −→ 0.

Theorem 6.12 is a flow version of the Cheeger-Colding theory (cf. [11], [12] and [13]). Its

proof shares similar strategy as its elliptic counterparts. Many concepts also have counterparts. For

example, tangent flow corresponds to tangent space, metric soliton corresponds to metric cone. We

recall their definitions. See [3, Definition 6.55, 3.57].
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Definition 6.13 (Tangent flow). Let X be a metric flow over I and x0 ∈ Xt0 a point. We say that a

metric flow pair (X′, (v′xmax;t)t∈I) is a tangent flow of X at x0 if there is a sequence of scales λk > 0

with λk →∞ such that for any T > 0 the parabolic rescalings

(X−t0 ,λk

[−T,0]
, (v−t0 ,λk

x0;t )λ−2
k

t+t0∈I′,t∈[−T,0]

)

F-converge to (X′
[−T,0]

, (v′xmax;t)t∈[−T,0]).

Definition 6.14 (Metric soliton). A metric flow pair (X, (µt)t∈I) is called a metric soliton if there is

a tuple (
X, d, µ, (v′x;t)x∈X;t≤0

)

and a map φ : X → X such that the following holds:

1. For any t ∈ I, the map φt : (Xt, dt, µt) → (X,
√

td, µ) is an isometry between metric measure

spaces.

2. For any x ∈ Xt, s ∈ I with s ≤ t, we have (φs)∗vx;s = v′
φt(x);log(s/t)

.

Roughly speaking, a metric soliton is a metric flow pair induced by a metric measure space in a

shrinking way. In general, a tangent flow of a metric flow may not be a metric soliton. In the setting

of Theorem 6.12, every tangent flow of (X∞, (µ∞t )t∈I) is also an F-limit of a sequence of Ricci flows

induced by Ricci shrinkers inM(A) (cf. [3, Theorem 6.58]).

Notice that the limit metric flow (X∞, (µ∞t )t∈I) in (6.3) always admits a regular-singular decom-

position

X∞t<0 = R ⊔ S,

so that R is given by a Ricci flow spacetime (cf. [3, Definition 9.1]). The key point is to control

the size of the singular part in the appropriate sense. To avoid the distance distortion at different

time-slices, one can redefine the Hausdorff and Minkowski dimensions (denoted by H∗ and M∗
respectively) by using the P∗-parabolic balls instead of the conventional ones; see [3, Definition

3.41, 3.42].

One can control the size of S quantitatively. Let (Mn, g(t))t∈I be the Ricci flow induced by a Ricci

shrinker inM(A). We fix a point (x0, t0) ∈ M× I and define τ = t0− t and H(x0, t0, ·, ·) = (4πτ)−
n
2 e−b.

We next recall the following definitions from [4, Definition 5.1, 5.5, 5.6, 5.7], which indicate the

extent to which the local geometry around (x0, t0) is a Ricci shrinker, Ricci flat space or splitting off

an Rk.

Definition 6.15 (Almost self-similarity). Let (Mn, g(t))t∈I be the Ricci flow induced by a Ricci

shrinker. The point (x0, t0) ∈ M × I is called (ǫ, r)-selfsimilar if the following holds:

∫ t0−ǫr2

t0−ǫ−1r2

∫

M

τ
∣∣∣∣Rc + ∇2b − 1

2τ
g
∣∣∣∣
2
dvx0 ,t0;tdt ≤ ǫ,

∫

M

∣∣∣τ(2△b − |∇b|2 + R) + b − n − Nx0,t0(r2)
∣∣∣dvx0 ,t0;t ≤ ǫ, ∀t ∈ [t0 − ǫ−1r2, t0 − ǫr2].
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Definition 6.16 (Almost static). The point (x0, t0) is called (ǫ, r)-static if the following holds:

r2

∫ t0−ǫr2

t0−ǫ−1r2

∫

M

|Rc|2dvx0 ,t0;tdt ≤ ǫ,

r2

∫

M

R dvx0 ,t0;t ≤ ǫ, ∀t ∈ [t0 − ǫ−1r2, t0 − ǫr2].

Definition 6.17 (Weak splitting). (x0, t0) is called weakly (k, ǫ, r)-split if there exists a vector-valued

function ~y = (y1, . . . , yk) : M × [t0 − ǫ−1r2, t0 − ǫr2] → Rk with the following properties for all

i, j = 1, . . . , k:

(1) We have

r−1

∫ t0−ǫr2

t0−ǫ−1r2

∫

M

|�yi|dvx0 ,t0;tdt ≤ ǫ.

(2) We have

r−2

∫ t0−ǫr2

t0−ǫ−1r2

∫

M

|∇yi · ∇y j − δi j|dvx0 ,t0;tdt ≤ ǫ.

Definition 6.18 (Strong splitting). (x0, t0) is called strongly (k, ǫ, r)-split if there exists a vector-

valued function ~y = (y1, . . . , yk) : M × [t0 − ǫ−1r2, t0 − ǫr2] → Rk with the following properties for

all i, j = 1, . . . , k:

(1) yi solves the heat equation �yi = 0 on M × [t0 − ǫ−1r2, t0 − ǫr2].

(2) We have

r−2

∫ t0−ǫr2

t0−ǫ−1r2

∫

M

|∇yi · ∇y j − δi j|dvx0 ,t0;tdt ≤ ǫ.

(3) For all t ∈ [t0 − ǫ−1r2, t0 − ǫr2] we have

∫

M

yi dvx0 t0;t = 0.

It can be proved (cf. [4, Proposition 12.1]) that if (x0, t0) is weakly (k, ǫ, r)-split, then it is strongly

(k, δ(ǫ), r)-split. With these definitions, one can consider the following quantitative stratification.

Definition 6.19. For ǫ > 0 and 0 < r1 < r2 ≤ ∞ the effective strata

S̃ǫ,0r1,r2
⊂ S̃ǫ,1r1,r2

⊂ S̃ǫ,2r1,r2
⊂ . . . ⊂ S̃ǫ,n+2

r1,r2
⊂ M × I

are defined as follows: (x′, t′) ∈ S̃ǫ,kr1,r2
if and only for all r′ ∈ (r1, r2) none of the following two

properties hold:

1. (x′, t′) is (ǫ, r′)-selfsimilar and weakly (k + 1, ǫ, r′)-split.
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2. (x′, t′) is (ǫ, r′)-selfsimilar, (ǫ, r′)-static and weakly (k − 1, ǫ, r′)-split.

By a delicate choice of the covering by P∗-parabolic balls, it can be proved, see [4, Proposition

11.2], that for any 0 < σ < ǫ, there are points (x1, t1), . . . , (xN , tN) ∈ S̃ǫ,kσr,ǫr ∩ P∗(x0, t0; r) with

N ≤ C(A, ǫ)σ−k−ǫ and

S̃ǫ,kσr,ǫr ∩ P∗(x0, t0; r) ⊂
N⋃

i=1

P∗(xi, ti;σr). (6.11)

Notice that (6.11) can be regarded as a parabolic version of the covering in [12] by Cheeger and

Naber.

On the complement of S̃ǫ,n−2
σr,ǫr , the following ǫ-regularity theorem is proved (cf. [4, Proposition

17.1]), which can be viewed as a parabolic analogue of Cheeger-Naber’s codimension 4 theorem in

[13]. Roughly speaking, one needs to rule out the tangent flows which are Ricci-flat, and split off

an Rn−3.

Proposition 6.20. There exists a constant ǫ = ǫ(n, A) > 0 such that the following holds. Let

(Mn, g(t))t∈I be the Ricci flow induced by a Ricci shrinker inM(A). Suppose that (x0, t0) is strongly

(n − 1, ǫ, r)-split or strongly (n − 3, ǫ, r)-split and (ǫ, r)-static. Then rRm(x0, t0) ≥ ǫr.

There are many implications of Proposition 6.20. Notice that one has the following decomposi-

tion:

X∞t<0 = R∗ ⊔ S∗,
where R∗ ⊂ R is the set of points where the convergence (6.3) is smooth as defined in [3, Section

9.4]. Since S ⊂ S∗, one can obtain the estimate of ∗-Minkowski dimension of S by that of S∗ from

(6.11) and Proposition 6.20 (cf. [4, Theorem 15.28 (a)]). Moreover, it can be proved that S∗ ∩ X∞t
has measure 0 for any t < 0 (cf. [4, Theorem 15.28 (b)]). Therefore, Theorem 6.12 (1) is obtained.

Since S has measure 0 on each time-slice, one can extend the definition of the Nash entropy

on X∞. Therefore, the Nash entropy at the base point x′ of any tangent flow (X′, (vx′ ;t)t∈I) of

(X∞, (µ∞t )t∈I) is a constant. By the relation between the Nash entropy and the almost self-similarity

(cf. [4, Proposition 7.1]), one concludes that (X′, (vx′ ;t)t∈I) is a metric soliton since its regular part

admits an incomplete Ricci shrinker and the tangent flow itself is determined by its regular part

due to the high codimension of the singular part (cf. [4, Theorem 15.60, 15.69]). Moreover, the

singular set on each time-slice of (X′, (vx′ ;t)t∈I) has Minkowski dimension ≤ n − 4 (cf. [4, Theorem

2.16]). Furthermore, the fact that x ∈ R iff X′ is the Gaussian soliton follows from the ǫ-regularity

theorem 5.15 and the convergence of the Nash entropies under (6.3) (cf. [4, Theorem 2.11, 2.14]).

Notice that if n = 4, each time-slice of (X′, (vx′ ;t)t∈I) is a smooth orbifold with isolated singularities

since each tangent flow at any singular point of (X′, (vx′ ;t)t∈I) is a flat cone (cf. [4, Theorem 2.46]).

Therefore, we obtain Theorem 6.12 (2).

For Theorem 6.12 (3), the inequality dt ≤ dgt
is clear. The opposite inequality is proved by

showing that any u ∈ C0(Rt) that is 1-Lipschitz with respect to dgt
is also 1-Lipschitz with respect

to dt (cf. [4, Theorem 15.28 (c)]). The argument uses the high codimension of S, the fact that X∞
is future continuous at t, and the fact that R = R∗, which can be proved by using the ǫ-regularity

theorem and the convergence of the Nash entropies (cf. [4, Corollary 15.47]).

Once we know R = R∗, the diffeomorphisms in Theorem 6.21 (4) can be obtained by patching

all local conventional Ricci flows into a Ricci flow spacetime by a center of mass construction
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(cf. [3, Theorem 9.31]). Notice that similar constructions are well-known for the Cheeger-Gromov

convergence (cf. Remark 7.7 of [24] and references therein). All assertions Theorem 6.21 (4) are

proved by smooth convergence. Therefore, Theorem 6.12 (4) is obtained.

As an application of the theory of F-convergence, we have the following backward pseudolocal-

ity theorem; see [4, Theorem 2.47]. Earlier backward pseudolocality can be found in [34, Corollary

11.6(b)] [15, Lemma 4.2] [16, Theorem 4.7] [6, Theorem 1.5].

Theorem 6.21 (Backward pseudolocality theorem). For any n ∈ N and α > 0 there is an ǫ(n, α) > 0

such that the following holds.

Let (Mn, g(t))t∈I be a Ricci flow induced by a Ricci shrinker. Given (x0, t0) ∈ M × I and r > 0, if

|Bt0(x0, r)| ≥ αrn, |Rm| ≤ (αr)−2 on Bt0(x0, r),

then

|Rm| ≤ (ǫr)−2 on P(x0, t0; (1 − α)r,−(ǫr)2, 0).

Note that the combination of the above theorem with the forward pseudolocality (cf. Theorem

24 of [28]), we arrive at the two-sided pseudolocality. Thus Theorem 1.6 is proved.

Combining Theorem 6.21 and (5.23), we have

Corollary 6.22 (Comparison of the curvature radii). There exists a constant C(n, A) > 1 such that

the following holds.

Let (Mn, g(t))t∈I′ be a Ricci flow induced by a Ricci shrinker inM(A). Then for any (x, t) ∈ M×I′,

rRm(x, t) ≤ r−Rm(x, t) ≤ rs
Rm(x, t) ≤ CrRm(x, t).

Another application is the following integral estimate using the quantitative stratification; see [4,

Theorem 2.28].

Theorem 6.23. Let (Mn, g(t))t<1 be a Ricci flow associated with a Ricci shrinker inM(A). Then for

any (x0, t0) ∈ M × (−∞, 1), r > 0 and ǫ > 0,

∫

[t0−r2,t0+r2]∩(−∞,1)

∫

P∗(x0 ,t0;r)∩M×{t}
|Rm|2−ǫ dVtdt

≤
∫

[t0−r2,t0+r2]∩(−∞,1)

∫

P∗(x0 ,t0;r)∩M×{t}
r−4+2ǫ

Rm dVtdt ≤ C(n, A, ǫ)rn−2+2ǫ . (6.12)

As a corollary, we prove

Corollary 6.24. Let (Mn, g, f , p) be a Ricci shrinker inM(A). Then

∫

d(p,·)≤r

|Rm|2−ǫ dV ≤
∫

d(p,·)≤r

r−4+2ǫ
Rm dV ≤ Crn+2ǫ−2, (6.13)

∫

d(p,·)≥1

|Rm|2−ǫ
dn+2ǫ−2(p, ·) dV ≤

∫

d(p,·)≥1

r−4+2ǫ
Rm

dn+2ǫ−2(p, ·) dV ≤ C (6.14)

for any ǫ > 0 and r ≥ 1, where rRm(·) = rRm(·, 0) and C = C(n, A, ǫ).
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Proof. We consider the Ricci flow (M, g(t))t<1 associated with the given Ricci shrinker. It follows

from Proposition 5.7 that

Q(p, 0; 1, 0, 1) ⊂ P∗(p, 0; C1, 0, 1) ⊂ P∗(p, 0; C1)

for some constant C1 = C1(n, A) > 1. Therefore, it follows from Theorem 6.23 that with (x0, t0) =

(p, 0) and r = C1 that

∫ 1

0

∫

dt(p,·)<1

|Rm|2−ǫ dVtdt ≤ C(n, A, ǫ). (6.15)

Since g(t) = (1−t)(ψt)∗g and ψt is defined by (2.3), we have dt(x, p) =
√

1 − td(xt, p) and |Rm|(x, t) =

|Rm|(xt)/(1 − t), where xt = ψt(x). Therefore, we have

∫

dt(p,x)<1

|Rm|2−ǫ(x, t) dVt(x) = (1 − t)
n
2
−2+ǫ

∫

d(x,p)< 1√
1−t

|Rm|2−ǫ(x) dV(x). (6.16)

By a change of variable with t = 1 − r−2, it follows from (6.15) and (6.16) that

∫ ∞

1

r1−2ǫ−nm(r) dr ≤ C(n, A, ǫ), (6.17)

where

m(r) :=

∫

d(·,p)<r

|Rm|2−ǫ dV.

We claim that there exists a sequence ri → ∞ such that

lim
i→∞

m(ri)

rn+2ǫ−2
i

= 0. (6.18)

Otherwise, there exists a constant δ > 0 such that m(r) ≥ δrn+2ǫ−2 for sufficiently large r. However,

it contradicts (6.17).

We apply the integration by parts to (6.17) from 1 to ri to (6.17) and obtain

∫

1≤d(p,·)≤ri

|Rm|2−ǫ
dn+2ǫ−2(p, ·)

dV ≤ C(n, A, ǫ) + m(ri)r
2−2ǫ+n
i .

By letting i→ ∞, we have from (6.18) that

∫

d(p,·)≥1

|Rm|2−ǫ
dn+2ǫ−2(p, ·)

dV ≤ C(n, A, ǫ). (6.19)

In addition, we have for any r ≥ 1,

r2−2ǫ−n

∫

1≤d(p,·)≤r

|Rm|2−ǫ dV ≤
∫

1≤d(p,·)≤r

|Rm|2−ǫ
dn+2ǫ−2(p, ·)

dV ≤ C(n, A, ǫ).
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Therefore, for any r ≥ 1,

∫

d(p,·)≤r

|Rm|2−ǫ dV ≤ C(n, A, ǫ)rn+2ǫ−2, (6.20)

since m(1) is bounded by (6.17). In sum, the inequalities involving |Rm| in (6.13) and (6.14) are

proved.

Notice that for any (x0, t0) ∈ M × (−∞, 1), it follows from the definition of ψt (2.3) that

ψθ(t) ◦ ψt0 = ψt,

where θ(t) :=
t−t0
1−t0

. Therefore, for any t < 1,

g(t) = (1 − t)(ψt)∗g = (1 − t0)(1 − θ(t))(ψt0 )∗(ψθ(t))∗g = (1 − t0)(ψt0 )∗g(θ(t)).

Therefore,

rRm(x0, t0) =
√

1 − t0rRm(x
t0
0
, 0).

Now, the conclusion regarding rRm can be proved similarly. �

We end this section by proving a gap property for the volume ratio at infinity.

Corollary 6.25. Let (Mn, g, f , p) be a Ricci shrinker inM(A). Suppose

lim inf
r→∞

|B(p, r)|
rn

= 0. (6.21)

Then

|B(p, r)| ≤ Crn−2+ǫ (6.22)

for any r ≥ 1 and some C = C(n, A, ǫ).

Proof. We claim that rRm(x) < 2 for any x. Indeed, if rRm(x) ≥ 2, we have

|Rm|(y, t) < 1

for any y ∈ B(x, 1) and t < 1. By the same argument as in [28, Corollary 9], we obtain that

ψt (B(x, 1)) ⊂ B

(
p,

c1√
1 − t

)
\ B

(
p,

c2√
1 − t

)
(6.23)

for c1 > c2 > 0, if t is sufficiently close to 1. From the standard distance distortion and Theorem

4.1, we obtain that

|ψt (B(x, 1)) | ≥ c3(1 − t)−
n
2 . (6.24)

However, (6.23) and (6.24) contradict (6.21). Thus the desired inequality (6.22) follows immedi-

ately from (6.13). �
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Appendix

A Integral estimates for the conjugate heat kernel

In this appendix, we generalize some integral estimates regarding the conjugate heat kernel from [4,

Section 6] to Ricci flows associated with Ricci shrinkers. These estimates also hold for Ricci flows

induced by Ricci shrinkers since they are scaling-invariant.

Throughout this appendix, let (Mn, g(t))t<1 be the Ricci flow associated with a Ricci shrinker

in M(A). We fix a spacetime point (x0, t0) ∈ M × (−∞, 1) and set dvt = dvx0 ,t0;t and τ = t0 − t.

Moreover, we define w = w(x, t) and b = b(x, t) by w = H(x0, t0, x, t) = (4π(t0 − t))−
n
2 e−b.

Lemma A.1. There exists a constant C = C(n, A) > 1 such that for any 0 < τ0 < τ1,

∫ t0−τ0

t0−τ1

∫

M

{
|Rc|2 + |∇2b|2

}
dvt dt ≤ Cτ−1

0

(
1 + log

τ1

τ0

)
. (A.1)

Proof. Without loss of generality, we assume t0 = 0.

From Corollary 3.20, we have for any τ > 0 that
∫

M

|∇b|2 + R dv−τ ≤
n

2τ
. (A.2)

Direct calculation shows that

∂t

∫

M

Rwφr dVt =

∫

M

{
(�R)wφr − R�∗(wφr)

}
dVt

=

∫

M

2|Rc|2wφr + R
{
w(∆φr + φr

t ) + 2〈∇w,∇φr〉} dVt

=

∫

M

{
2|Rc|2φr + R(∆φr + φr

t ) − 2R〈∇b,∇φr〉
}

dvt.

Integrating the above equation from −τ1 to −τ0, we obtain

∫ −τ0

−τ1

∫

M

2|Rc|2φr dvtdt

≤
∫

M

Rφr dv−τ0
+

∫ −τ0

−τ1

∫

M

{
R(|∆φr | + |φr

t |) + R2|∇φr | + |∇b|2 |∇φr |
}

dvtdt. (A.3)

From (2.8) and Lemma 2.3, R increases at most quadratically. Combining (2.12), (2.13), (2.14)

and (A.2), it follows that the last integral in (A.3) tends to 0 as r → ∞. Therefore, we obtain

∫ −τ0

−τ1

∫

M

|Rc|2 dvtdt ≤ 1

2

∫

M

R dv−τ0
≤ n

4τ0

. (A.4)

On the other hand, it follows from (3.40) and Corollary 3.22 that

∫ −τ0

−τ1

2τ

∫

M

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

dvtdt ≤ −W(x0 ,t0)(τ1) ≤ A. (A.5)
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By virtue of the elementary identity (x − y)2 ≥ x2/2 − y2, it follows from (A.5) that

τ0

∫ −τ0

−τ1

∫

M

|Rc + ∇2b|2 dvtdt ≤
∫ −τ0

−τ1

τ

∫

M

|Rc + ∇2b|2 dvtdt ≤ A +
n

2
log

τ1

τ0

. (A.6)

Combining (A.4) and (A.6), the conclusion follows immediately. �

Lemma A.2. There exists a constant C = C(n, A) > 1 such that the following estimates hold for

any t < t0 and 0 ≤ s ≤ 1/4.

∫

M

{
1 + |b| + τ(|∆b| + |∇b|2 + R)

}
esb dvt ≤ C. (A.7)

Proof. We compute

d

ds

∫

M

esb dvt =

∫

M

besb dvt. (A.8)

Here, the differentiation under the integral sign is allowed by Theorem 4.16 and Remark 4.17. By

the differential Harnack inequality [28, Theorem 21], we calculate

∫

M

besb dvt ≤
∫

M

(τ(−2∆b + |∇b|2 − R) + n)esb dvt

=

∫

M

(τ((2s − 1)|∇b|2 − R) + n)esb dvt ≤ n

∫

M

esb dvt, (A.9)

where the integration by parts in the equality can be justified similarly as in Remark 3.21. Combin-

ing (A.8) and (A.9), we obtain

∫

M

esb dvt ≤ ens.

On the other hand, it follows from Theorem 4.4 that b ≥ −A. Therefore, it follows from (A.9) and

the above inequality that

∫

M

{
|b| + τ(|∇b|2 + R)

}
esb dvt ≤ C(n, A). (A.10)

Applying the differential Harnack inequality and the integration by parts again, we obtain

∫

M

2τ|∆b|esb dvt ≤
∫

M

{
|u| + τ(|∇b|2 + R) + |b| + n

}
esb dvt

=

∫

M

{
−u + τ(|∇b|2 + R) + |b| + n

}
esb dvt

≤
∫

M

{
2sτ|∇b|2 + 2|b| + 2n

}
esb dvt ≤ C(n, A),

where u = τ(2∆b − |∇b|2 + R) + b − n ≤ 0. It is clear that (A.7) follows from the combination of

(A.10) and the above inequality. �
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Lemma A.3. There exists a constant C = C(n) > 1 such that the following estimates hold for any

t < t0 and 0 ≤ s ≤ 1/4.

∫

M

|∇b|4esb dvt ≤ C

∫

M

|∇2b|2esb dvt. (A.11)

Proof. In the proof, all constants C > 1 depend only on n, which may be different line by line.

We compute for s ≤ 1/4 that

∫

M

|∇b|4φresb dvt

=(4πτ)−
n
2

∫

M

|∇b|4φre(s−1)b dVt

=(4πτ)−
n
2 (s − 1)−1

∫

M

|∇b|2〈∇b,∇e(s−1)b〉φr dVt

=(4πτ)−
n
2 (1 − s)−1

∫

M

(
2∇2b(∇b,∇b) + |∇b|2∆b

)
φre(s−1)b dVt + Z

≤C(4πτ)−
n
2 (1 − s)−1

∫

M

|∇2b||∇b|2φre(s−1)b dVt + Z

≤1

4

∫

M

|∇b|4φresb dvt +C

∫

M

|∇2b|2φresb dvt + Z, (A.12)

where the remainder

Z : = (1 − s)−1

∫

M

|∇b|2〈∇b,∇φr〉esb dvt ≤ 2

∫

M

|∇b|3 |∇φr |esb dvt

≤ 1

4

∫

M

|∇b|4φresb dvt + 4

∫

M

|∇b|2|∇φr |2(φr)−1esb dvt. (A.13)

Applying Lemma A.2 and (2.12), we conclude from (A.12) and (A.13) that

∫

M

|∇b|4esbφr dvt ≤ C

∫

M

|∇2b|2esbφr dvt + ǫ(r) (A.14)

where ǫ(r) → 0 as r → ∞. Thus we arrive at (A.11) by letting r → ∞ in the above inequality. �

The main result of this section is the following spacetime integral estimate.

Proposition A.4. There exists a constant C = C(n, A) > 1 and s̄ = s̄(n) < 1 such that the following

estimates hold for any r > 0, 0 < θ < 1/2 and s ≤ s̄.

∫ t0−θτ0

t0−τ0

∫

M

τ(|Rc|2 + |∇2b|2 + |∇b|4)esb dvtdt ≤ C log θ−1. (A.15)

Proof. In the proof, all constants C depend on n, and C′ depend on n and A. Moreover, we use ǫ(r)

to denote a function independent of t such that ǫ(r) → 0 if r → ∞. Those terms may be different

line by line. Without loss of generality, we assume t0 = 0.
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We set u = τ(2∆b− |∇b|2 +R)+ b− n ≤ 0. Recall that from [34], we have the celebrated identity

�
∗(uw) = −2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

w.

Moreover, we have

�b = −2∆b + |∇b|2 − R +
n

2τ
= τ−1(b − u − n/2).

Direct computation shows that

∂t

∫

M

uwesbφr dVt

=

∫

M

{
�(esbφr)uw − esbφr

�
∗(uw)

}
dVt

=

∫

M

{(
(�esb)φr + esb(�φr) − 2〈∇φr ,∇esb〉

)
uw + 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

wesbφr

}
dVt

=

∫

M

{(
(s�b − s2|∇b|2)esbφr + esb(�φr) − 2〈∇φr,∇esb〉

)
u + 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

esbφr

}
wdVt,

=

∫

M

{(
(sτ−1(b − u − n/2) − s2|∇b|2)φr + �φr − 2s〈∇φr,∇b〉

)
u + 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

φr

}
esbdvt.

It follows that

∂t

∫

M

uwesbφr dVt

≥
∫

M

{
(sτ−1(b − u − n/2))uφr +

(
�φr − 2s〈∇φr,∇b〉) u + 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

φr

}
esbdvt

≥
∫

M

{
−Csτ−1(u2 + b2 + 1)φr +

(
�φr − 2s〈∇φr ,∇b〉) u + 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

φr

}
esbdvt

≥
∫

M

{
−Cs

(
τ((∆b)2 + |∇b|4 + R2) + τ−1(b2 + 1)

)
+ 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2
}
φresbdvt + Xt, (A.16)

where

Xt :=

∫

M

(
�φr − 2s〈∇φr,∇b〉) uesbdvt.

Define X′ :=
∫ −θτ0

−τ0
|Xt| dt. Then it follows from Lemma A.2 and inequalities (2.12) to (2.15) that

for any positive δ we have

|X′| ≤
∫ −θτ0

−τ0

∫

M

(|�φr | + 2s|∇φr ||∇b|)|u|esb dvtdt

≤ǫ(r) +

∫ −θτ0

−τ0

∫

M

(
δ−1|∇φr |2(φr)−1τ|∇b|2 + δτ−1u2φr

)
esb dvtdt

≤ǫ(r) + δ

∫ −θτ0

−τ0

∫

M

τ−1u2φresb dvtdt. (A.17)
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It is clear from the definition of u that u2 ≤ C
(
τ2(|∆b|2 + |∇b|2 + R)) + b2 + 1

)
. In addition, since

−A ≤ b ≤ −τ(2∆b − |∇b|2 + R) + n, we have

b2 ≤ C′
(
τ2(|∆b|2 + |∇b|4 + R2) + 1

)
. (A.18)

Combining these facts with (A.14), we may choose δ in (A.17) sufficiently small such that

|X′| ≤ ǫ(r) +
1

10

∫ −θτ0

−τ0

∫

M

τ(|∇2b|2 + |Rc|2)φresb dvtdt + log θ−1. (A.19)

Similarly, we compute

∂t

∫

M

τResbwφr dVt

=

∫

M

{
�(τResb)φrw − τResb

�
∗(φrw)

}
dVt

=

∫

M

{(
�(τR)esb + τR�esb − 2τ〈∇R,∇esb〉

)
φrw + τResb (

(∆φr + φr
t )w + 2〈∇w,∇φr〉)

}
dVt

=

∫

M

{(
�(τR)esb + τR�esb

)
φrw + 2τR

(
∆esb − 〈∇esb,∇b〉

)
φrw

}
dVt + Yt

=

∫

M

{
2τ|Rc|2 − R + τR

(
s�b + (s2 − 2s)|∇b|2 + 2s∆b

)}
φresbdvt + Yt

≥
∫

M

{
2τ|Rc|2 − R −Cs

(
τ(R2 + |∇b|4 + (∆b)2) + R

)}
φresbdvt + Yt, (A.20)

where

Yt : =

∫

M

τResb (
(∆φr + φr

t )w + 2〈∇w,∇φr〉 + 2s〈∇b,∇φr〉) dVt

=

∫

M

τR
(
∆φr + φr

t + (2s − 2)〈∇b,∇φr〉) esb dvt.

We define similarly Y :=
∫ −θτ0

−τ0
|Yt | dt. Then it follows from Lemma A.2 and inequalities (2.12) to

(2.15) that

|Y ′| ≤ǫ(r) +C

∫ −θτ0

−τ0

∫

M

(
δ−1|∇φr |2(φr)−1τ|∇b|2 + δτR2φr

)
esb dvtdt

≤ǫ(r) +C

∫ −θτ0

−τ0

∫

M

δτR2φresb dvtdt

≤ǫ(r) +
1

10

∫ −θτ0

−τ0

∫

M

τ(|∇2b|2 + |Rc|2)φresb dvtdt, (A.21)

for δ sufficiently small.
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Combining (A.16) and (A.20), we obtain

∂t

∫

M

(τR + u)esbφr dvt

≥
∫

M

{
−Cs

(
τ(|∇b|4 + |∇2b|2 + R2) + τ−1 + R

)
+ 2τ

∣∣∣∣∣Rc + ∇2b − g

2τ

∣∣∣∣∣
2

+ 2τ|Rc|2 − R

}
φresbdvt

+ Xt + Yt

≥
∫

M

{
−Cs

(
τ(|∇b|4 + |∇2b|2 + R2)

)
+ τ(|∇2b|2 + |Rc|2)

}
φresbdvt + Xt + Yt −C′τ−1, (A.22)

where we have used Lemma A.2.

If s is sufficiently small, it follows from (A.22) and (A.14) that

∂t

∫

M

(τR + u)esbφr dvt

≥1

2

∫

M

τ(|∇2b|2 + |Rc|2)esbφr dvt + Xt + Yt −C′τ−1 + ǫ(r). (A.23)

By integration from −τ0 to −θτ0, we obtain from (A.23), Lemma A.2, (A.19) and (A.21) that

∫ −θτ0

−τ0

∫

M

τ(|∇2b|2 + |Rc|2)esbφr dvtdt ≤ C′ log θ−1 + ǫ(r).

Letting r → ∞, we obtain

∫ −θτ0

−τ0

∫

M

τ(|∇2b|2 + |Rc|2)esb dvtdt ≤ C′ log θ−1. (A.24)

Thus the inequality (A.15) follows from the combination of (A.24) and Lemma A.3.

�
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