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Abstract. We study the heat kernel transform on a nilmanifold Γ \N associated to an
H-type group. Using a reduction technique we reduce the problem to the case of Heisenberg
groups. The image of L2(Γ \N) under the heat kernel transform is shown to be a direct sum
of weighted Bergman spaces.

1. Introduction. The aim of this article to study the heat kernel transform on nil-
manifolds associated to nilpotent groups of Heisenberg type (H-type in short). Heat kernel
transform on the Heisenberg group H n and the nilmanifold associated to the standard lattice
Γ = Zn×Zn×(1/2)Z has been studied by Krötz-Thangavelu-Xu in [5] and [6], respectively.
Here we extend their results to the general nilmanifold associated to an H-type group.

The problem on H-type groups can be easily reduced to the case of H n via a partial
Radon transform. This technique employed by Ricci [11], Müller [8] and others has turned out
to be very useful. Thus given a nilmanifold on an H-type group, the problem can be reduced to
the study of a family of Heisenberg nilmanifolds. Lattice subgroups of the Heisenberg group
leading to nilmanifolds have been completely characterised, thanks to the work of Tolimieri
[14]. Up to an automorphism, coming from the symplectic group, they are given by lattices of
the form Γ (l) with l = (l1, . . . , ln) where lj ’s are positive numbers such that lj divides lj+1

(see next section).
Thus we reduce the problem to the study of the heat kernel transform on L2(Γ (l)\H n).

Using the same techniques employed in [6], we can decompose L2(Γ (l)\H n) into an orthogo-
nal direct sum of subspaces. This is achieved by means of variants of Weil-Brezin transforms.
The image of each of the subspaces under the heat kernel transform is then characterised. As
in the case dealt with in [6], we see that twisted Bergman spaces and Hermite-Bergman spaces
occur in the characterisation.

This work is closely related to [6] and the proofs are modelled after the corresponding
proofs there. Hence more often we omit proofs and supply only those which require a different
approach. In the next section, we deal with heat kernel transform on Heisenberg nilmanifolds.
The case of H-type nilmanifolds is treated in Section 3.
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2. Heat kernel transform on Heisenberg nilmanifolds. In this section we consider
the heat kernel transform for the Laplacian on a general Heisenberg nilmanifold. Using the
structure of such manifolds we reduce the problem to the case of certain special nilmani-
folds. We then use variants of the Weil-Brezin transform to study the decomposition of the
underlying L2 space and obtain its image under the heat kernel transform.

2.1. Heisenberg nilmanifolds. In this subsection we consider Heisenberg nilmani-
folds which are defined as quotients of H n by certain lattice subgroups. All such lattices have
been characterised and here we recall some results without proof from [14]. Our aim is to
look at the right regular representation of H n on L2(Γ \H n) for a general lattice and to ob-
tain a decomposition of L2(Γ \H n) into irreducible subspaces. The main references for this
subsection are [1, 2, 6, 14].

A discrete subgroup Γ of H n is said to be a lattice subgroup if the quotient Γ \H n is
compact. The standard example that has been studied in details in [6] is Γ = Zn × Zn ×
(1/2)Z. The quotient is Γ \H n � T 2n × S1 is clearly compact. It is a circle bundle over the
torus T 2n.

Let An stand for the group of automorphisms of H n and let A0
n be its identity component.

This group A0
n plays an important role in classifying all the lattices in H n. Let Sp(2n,R)

stand for the symplectic group consisting of all 2n × 2n matrices preserving the symplectic
form ω(ξ, η). That is, A ∈ Sp(2n,R) if and only if ω(Aξ,Aη) = ω(ξ, η). Every element
A ∈ Sp(2n,R) defines an automorphism in A0

n denoted by the same symbol: A(ξ, t) =
(Aξ, t) where ξ ∈ R2n, t ∈ R. Note that if Γ is a lattice then A(Γ ) is also a lattice. Thus we
have an action of A0

n on the set L(H n) of all lattices in H n.

Let Z stand for the centre of H n. Observe that Γ ∩ Z is a nontrivial discrete subgroup
of Z and hence there is a unique positive real number β(Γ ) such that

Γ ∩ Z = {(0, β(Γ )m) ; m ∈ Z} .

The lattice π(Γ ), where π : H n → R2n is the projection π(ξ, t) = ξ, satisfies the condition

[Γ,Γ ] ⊂ Γ ∩ Z = {(0, β(Γ )m) ; m ∈ Z} .

Indeed, if g = (ξ, t) and h = (η, s) then [g, h] = (0, ω(ξ, η)). Actually we have
ω(π(Γ ), π(Γ )) = β(Γ )Z whenever Γ is a lattice in H n. This motivates us to make the
following definition.

A lattice D in R2n is said to be a Heisenberg lattice if ω(D,D) = lZ for some l > 0.

The collection of such lattices will be denoted by HL(R2n). Thus π(Γ ) ∈ HL(R2n) for any
lattice Γ in H n and vice versa. We recall the following result of Tolimieri (see [14, Corollary
after Lemma 1.8]).

THEOREM 2.1. There is one to one correspondence between lattices in H n and
Heisenberg lattices in R2n.



HEAT KERNEL TRANSFORM ON NILMANIFOLDS 441

To each Heisenberg lattice D, one can associate n positive real numbers l1, l2, . . . , ln

with the property that lj divides lj+1. Set

Zn∗ = {l = (l1, l2, . . . , ln); lj+1l
−1
j ∈ Z} .

Let ej , 1 ≤ j ≤ 2n be the standard coordinate vectors in R2n. For l ∈ Zn∗ denote D(l) =
[e1, e2, . . . , en, l1en+1, l2en+2, . . . , lne2n] be the Z-module of R2n spanned by the vectors
e1, e2, . . . , en, l1en+1, . . . , lne2n. Then it is clear that D(l) ∈ HL(R2n) and ω (D(l),D(l)) =
Z.

THEOREM 2.2 ([14, Theorem 1.9]). For each D ∈ HL(R2n) there exist a unique l ∈
Zn∗, a unique d > 0 and an A ∈ Sp(2n,R) such that D = A (d.D(l)) .

Now combining the above theorems we can obtain the following result which gives the
structure of all lattices in H n. Given l ∈ Zn∗, let Γ (l) be the subgroup of H n generated by

ẽ1, ẽ2, . . . , ẽ2n ,

where ẽi = (ei, 0) for i = 1, 2, 3, . . . , n and ẽn+j = (lj en+j , 0) for j = 1, 2, . . . , n. Then
we have the following result from Tolimieri [14]. We denote the collection of all lattices on
the Heisenberg group by L(H n).

THEOREM 2.3 ([14, Theorem 1.10]). For each Γ ∈ L(H n) there exist a unique l ∈
Zn∗, a unique d > 0 and an A ∈ An such that Γ = A(d.Γ (l)).

In view of the above theorem, in studying the heat kernel transform we can restrict our-
selves to lattices of the form Γ (l).

2.2. Analysis on the nilmanifold Γ (l)\H n. In this subsection we consider the lattice
Λ = Γ (l), defined in the previous subsection, and consider the nilmanifold M = Γ (l)\H n

associated to it. As we remarked earlier, there is no loss of generality in doing so. The
Lebesgue measure on H n induces an invariant measure on M. So we get a unitary repre-
sentation R of H n on L2(M) defined by

R(g)F (Λh) = F(Λhg) , F ∈ L2(M) , g, h ∈ H n .

We can identify functions on M with functions on H n that are invariant under left translations
by elements of Λ. Since Λ = span{ẽ1, ẽ2, . . . , ẽ2n}, it is clear that

Λ = Zn × l1Z × l2Z × · · · × lnZ × (l1/2)Z

and any element h ∈ Λ will be h = (p, q1l1, q2l2, . . . , qnln, (l1/2)r), where p, q1, . . . , qn, r

are integers. To make the notation simple we denote (q1l1, q2l2, . . . , qnln) by ql. So we can
write any element h ∈ Λ as h = (p, ql, (l1/2)r).

Therefore, every Λ-invariant function is (l1/2)-periodic in the central variable. Thus by
defining

Hk(Λ) = {F ∈ L2(M) ; F(ξ, t) = e4πikt/ l1F(ξ, 0)} ,
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we get the orthogonal direct sum decomposition

L2(M) =
∑
k∈Z

Hk(Λ) .

Recall that for each λ ∈ R, λ �= 0, the Schrödinger representation πλ of H n is given by,

πλ(x, u, ξ)φ(v) = eiλξ eiλ(x·v+(1/2)x·u)φ(v + u) .

It is easy to check that each Hk(Λ) is R-invariant, and hence for every k �= 0 the Stone-von
Neumann theorem says that the restriction of R to Hk(Λ) decomposes into a direct sum of
irreducible representations each of which is unitarily equivalent to π4πk/l1.

Each of the Hk(Λ) can be further decomposed into orthogonal subspaces each of which
will be the image of L2(Rn) under a unitary operator. For the standard lattice Γ (1, 1, . . . , 1),

such a decomposition has been obtained in [6] (see also [12]). For the general case we refer to
[2, 6, 14]. As we closely follow [12] in obtaining this decomposition, we will be only sketchy
in our proof.

We first consider Weil-Brezin transform Vk defined on the Schwartz class S(Rn) by

Vkf (x, u, ξ) = eiλξ ei(λ/2)x·u ∑
m∈Zn

e
iλ

∑n
j=1 lj mj xj f (u + ml) ,

where ml = (m1l1,m2l2, . . . ,mnln). It is easy to check that Vkf is Λ-invariant. Further it
can be shown that the L2(M) norm of Vkf is just ‖f ‖2 and hence Vk can be extended to the
whole of L2(Rn) as an isometry onto Hk(Λ). We would like to decompose Hk(Λ) further
into mutually orthogonal subspaces.

To effect this decomposition, we introduce the finite group Ak which is defined by

Ak = Z/2kZ × Z/2kp2Z × · · · × Z/2kpnZ ,

where pi = li/ l1 for i = 1, 2, 3, . . . , n. For each j ∈ Ak define

Vk,jf (x, u, ξ) = e2πij ·xVkf (x, u, ξ) .

Let Hk,j be the image of L2(Rn) under Vk,j . Then we have the following decomposition.

PROPOSITION 2.4. For each k, Hk is the orthogonal direct sum of the spaces Hk,j ,

j ∈ Ak.

The proof of this proposition depends on several results. The orthogonality can be proved
by a direct decomposition. In what follows, we only indicate how a function F ∈ Hk can be
decomposed into a sum of elements of Hk,j .

Defining G(x, u) = F(x, u, 0) we see that the Λ-invariance of F translates into the
condition

G(x + m,u + nl) = ei(λ/2)(m·u−x·nl)G(x, u) .

We will show that every G(x, u) satisfying the above condition can be further decomposed as
G(x, u) = ∑

j∈Ak
Gj , where Gj satisfies some extra conditions.
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To this end, we define Gj,m(x, u) to be

e−πi
∑n

j=1(mj / lj )uj e−π(i/k)
∑n

i=1(mi/pi)jiG

(
x1 + 1

2k
m1, . . . , xn + 1

2kpn

mn, u

)
and consider the sum

∑
j∈Ak

∑
m∈Ak

Gj,m(x, u) which is given by

∑
m∈Ak

e
−πi

∑n
j=1(mj/ lj )uj G

(
x1 + 1

2k
m1, . . . , xn + 1

2kpn

mn, u

)
Ik(m) ,

where

Ik(m) =
( ∑

j∈Ak

e−π(i/k)
∑n

i=1(mi/pi)ji

)
.

Observe that we have ∑
j∈Ak

e−π(i/k)
∑n

i=1(mi/pi)ji = 0

unless m = 0 in which case the sum equals (2k) × · · · × (2kpn). Consequently, we have

∑
j∈Ak

∑
m∈Ak

Gj,m(x, u) =
n∏

i=1

(2kpi)G(x, u) .

Therefore, by defining

Gj(x, u) =
n∏

i=1

(2kpi)
−1

∑
m∈Ak

Gj,m(x, u) ,

we get the decomposition G = ∑
j∈Ak

Gj .

We now claim that Gj satisfies the extra condition

Gj

(
x1 + 1

2k
d1, . . . , xn + 1

2kpn

dn, u

)
= eπi(d/ l)·ueπi(1/k)(d/p)·jGj (x, u) .

To see this, we first observe that

Gj

(
x1 + 1

2k
d1, . . . , xn + 1

2kpn

dn, u

)
= eπi(d/ l)·ueπi(1/k)(d/p)·j ∑

m∈Ak

Gj,m+d (x, u) .

From the definition of Gj it follows, using the quasi-periodicity of G, that∑
m∈Ak

Gj,m(x, u) =
∑

m∈Ak

Gj,m+d (x, u) ,

and hence the claim is proved.
In order to complete the proof of the proposition we need to show that each Fj (x, u, ξ) is

equal to eiλ(k)ξGj (x, u), where λ(k) = 4πk/l1 can be written as Fj = Vk,jfj for some fj ∈
L2(Rn). In order to prove this we need the following two propositions. The first proposition
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deals with tempered distributions ν on Rn that are invariant under ρk(Λ) for ρk = πλ(k). If ν

is such a ditribution then F(x, u, ξ) = (ν, πλ(x, u, ξ)f ) where f is a Schwartz function on
Rn, gives a Λ-invariant function on H n. In view of this, the following proposition plays an
important role in the decomposition of Hk.

PROPOSITION 2.5. Every tempered distribution ν invariant under ρk(Λ) is of the form
ν = ∑

j∈Ak
cj νj with νj defined by

(νj , f ) =
∑

m∈Zn

f̂

(
j1 + 2km1

l1
,
j2 + 2km2p2

l2
, . . . ,

jn + 2kmnpn

ln

)
.

Here f̂ denotes the Fourier transform of the Schwartz class function f.

The proof of the above proposition is very similar to that of [6, Proposition 3.1] except
for some technicalities, so we skip it here.

We can also show that the matrix coefficients (νj , f ) can be expressed in terms of the
Weil-Brezin transforms Vk,j .

PROPOSITION 2.6. For each f ∈ S(Rn), we have

Fj (x, u, ξ) = Vk,jgj

(
u

l
,−lx, ξ

)
,

where u/l = (u1/l1, . . . , un/ln), lx = (l1x1, l2x2, . . . , lnxn) and f and gj are related by

gj (l1s1, . . . , lnsn) = f̂

(
j1

l1
+ 2k

l1
s1, . . . ,

jn

ln
+ 2k

l1
sn

)
.

For a proof of this proposition in the case of the standard lattice, we refer to [6]. The
same proof can be modified to suit the present case. Making use of the above two propositions
we can now complete the proof of Proposition 2.4. Again the proof is similar to that of the
standard lattice case. We provide a proof just for the sake of completeness.

It only remains to show that Gj can be written as

Gj(x, u) = Vk,jfj (x, u, 0), fj ∈ L2(Rn) .

To prove this, we consider

gj (x, u) = e−2πij ·xe−i(λ/2)x·uGj (x, u) ,

where λ = 4πk/l1, x = (x1, x2, . . . , xn). It is clear that the function gj is (1/2k, 1/2kp2, . . . ,

1/2kpn)-periodic in the variables x. Therefore, it admits an expansion of the form

gj (x, u) =
∑

m∈Zn

cm(u)eiλml·x ,

where ml = (m1l1,m2l2, . . . ,mnln) and the Fourier coefficients are given by

cm(u) =
∫

[0,1/2k)

· · ·
∫

[0,1/2kpn)

gj (x, u)e−iλml·xdx .
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Now the transformation property of Gj(x, u) leads to

gj (x, u − ml) = eiλml·xgj (x, u) .

From this relation it is then obvious that cm(u) = c0(u + ml). Hence we have

Gj = e2πij ·xei(λ/2)x·u ∑
m∈Zn

c0(u + ml)eiλml·x = Vk,jfj (x, u, 0) ,

where fj = c0 and c0 ∈ L2(Rn).

2.3. Heat kernel transform on Γ (l)\H n. In this subsection we consider the image
of L2(Γ (l)\H n) under the heat kernel transform. Let � stand for the standard left invariant
Laplacian on H n and let kt be the associated heat kernel. It is explicitly given by

kt (x, u, ξ) = cn

∫ ∞

−∞

(
λ

sinh tλ

)n

e−tλ2
eiλξ e−(λ/4)(coth tλ)(x2+u2)dλ .

The heat semigroup is defined by Stf = f ∗ kt , and for f ∈ L2(H n) it can be shown that
Stf extends to C2n+1 as an entire function. This transform taking f into the entire function
Stf is called the heat kernel transform.

The image of L2(H n) under the heat kernel transform has been studied in [5]. One
can also restrict the heat kernel transform to L2(M) where M is a nilmanifold and ask for a
characterisation of the image. When M is the nilmanifold associated to the standard lattice,
this has been done in [6]. Here we take up the general case. In view of the structure of
Heisenberg lattices, it is enough to look at the case Λ = Γ (l). Let SΛ

t stand for the heat
kernel transform restricted to L2(Λ\H n). It is easy to see that SΛ

t leaves each of Hk invariant,
and hence it is enough to characterise SΛ

t (Hk) for each k ≥ 0. We assume k �= 0 as the case
k = 0 can be handled as in [6].

In order to describe SΛ
t (Hk) we define certain spaces of entire functions. Let ϒ = Zn ×

(l1Z × l2Z × · · · × lnZ). We let Hk(R
2n,ϒ) stand for the space of all functions F(x, u) for

which eiλξF (x, u) ∈ Hk. These functions are characterised by the property

F(x + m,u + nl) = eiλ(u·m−x·nl)F (x, u)

for (m, nl) ∈ ϒ. Then for k �= 0 we define Ht
k(C

2n,ϒ) to be the space of all functions in
Hk(R

2n,ϒ) having entire extension to C2n and satisfying

‖F‖2
k,t =

∫
R2n

( ∫
Q(l)

∫
Q

|F(z,w)|2Wλ(k)
t (z,w)dudx

)
dydv < ∞ ,

where Q(l) = [0, l1) × · · · × [0, ln), Q = [0, 1)n and

Wλ
t (k)(z,w) = 2neiλ(k)(u·y−v·x)e−λ(k) coth(2tλ(k))(y2+v2) .

For each j ∈ Ak we also define the spaces Ht
k,j (C

2n,ϒ) as the subspaces of Ht
k(C

2n,ϒ)

satisfying the extra condition

G

(
z1 + 1

2k
d1, . . . , zn + 1

2kpn

dn,w

)
= eπi(d/ l)·ueπ(i/k)(d/p)·jG(z,w) ,
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where (d/p)·j = ∑n
i=1(di/pi)ji and (d/l)·u = ∑n

i=1(di/ li)ui . Then we have the following
proposition.

PROPOSITION 2.7. Ht
k( C2n,ϒ) is the orthogonal direct sum of Ht

k,j (C
2n,ϒ) as j

varies over Ak.

For a proof of this proposition and also for the proof of the following, we refer to [6].
The required modifications are left to the reader. The relation between Ht

k,j (C
2n,ϒ) and SΛ

t

is as follows.

THEOREM 2.8. An entire function F(z,w) belongs to Ht
k,j (C

2n,ϒ) if and only if

F(z,w) = etλ2
Vk,jf ∗ kt (z,w, 0) for some f ∈ L2(Rn).

The proof of this theorem given in [6] for the standard lattice case makes use of Hermite-
Bergman spaces. The Weil-Brezin transforms can be defined on these Hermite-Bergman
spaces and they intertwine the heat kernel transform. We refer to [6, Proposition 4.6]. Fi-
nally the image of L2(Λ\H n) under SΛ

t can be described as follows.

THEOREM 2.9. The image of L2(Λ\H n) under SΛ
t is the direct sum of

eiλ(k)ζHt
k,j (C

2n,ϒ), k ∈ Z, j ∈ Ak; that is,

SΛ
t (L2(Λ\H n)) =

∞∑
k=−∞

∑
j∈Ak

e2tλ(k)2
eiλ(k)ζHt

k,j (C
2n,ϒ) .

REMARK 2.1. Now if Λ = A(d.Γ (1)) then β(Λ) = d2 and so λ = 4πk/d2. Then
for any Λ-invariant function F, d−1A−1 ◦F is a Γ (1)-invariant function. So then using Vk,j ,

the corresponding Vk,j,Λ can be defined as Vk,j,Λ = d−1A−1 ◦ Vk,j and hence the same type
of results can be deduced.

3. Heat kernel transform on H-type nilmanifolds. In this section we study the heat
kernel transform on H-type groups N and their nilmanifolds. Using a partial Radon transform
we reduce the problem on N to a problem on H n. The problem on H-type nilmanifolds is also
reduced to the case of Heisenberg nilmanifolds.

3.1. H-type groups. H-type Lie algebras and Lie groups were introduced by Kaplan
[4]. We say that a Lie algebra n is of H-type if it is the direct sum v ⊕ z of two Euclidean
spaces with a Lie algebra structure such that z is the center of n and for all unit vector v ∈ v

the map ad(v) is a surjective isometry of the orthogonal complement of kerad(v) onto z. For
such an algebra we define a map J : z →End(v) by

(Jωv, v′) = (ω, [v, v′ ]) , ω ∈ z, v, v′ ∈ v .

It then follows that J 2
ω = −I whenever ω is a unit vector and hence Jω defines a complex

structure on v. The Hermitian inner product corresponding to this complex structure is given
by

〈(v,w〉)ω = (v,w) + i(Jωv,w) = (v,w) + i([v,w], ω) .
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Let 2n and m be the dimensions of v and z, respectively.
A step two nilpotent Lie group N is said to be an H-type group if its Lie algebra n is of

H-type. Identifying the group with its Lie algebra, we write the elements of N as (v, z) and,
in view of the Baker-Campbell- Hausdorff formula, the group law takes the form

(v, z)(v′, z′) = (v, z) + (v′, z′) + 1

2
[(v, z), (v′, z′)] .

The Heisenberg group H n is an H-type group. To every H-type algebra, we can associate
Heisenberg algebras as follows. Given a unit vector ω in z, let k(ω) stand for its orthogonal
complement in z. Then the quotient algebra n(ω) = n/k(ω) can be identified with v ⊕ R by
setting

[(v, t), (v′, t ′)]ω = (0, (Jωv, v′)) .

It has been shown in Ricci [11] that this algebra is isomorphic to the Heisenberg algebra hn.

We denote this group by H n
ω.

The above connection with Heisenberg algebras makes simple the representation theory
of H-type groups. The irreducible unitary representations of N comes in two groups. The
one-dimensional representations do not occur in the Plancherel formula and hence we do not
consider them. If π is any infinite-dimensional irreducible unitary representation, then its
restriction to the center is a character and hence π(0, z) = eiλ(ω,z)Id for some λ > 0 and ω ∈
Sm−1, where m is the dimension of z. The representation π factors through a representation
of H n

ω. By making use of the Stone-von Neumann theorem we can show that all irreducible
unitary representations are parametrised by (λ, ω). We denote such a representation by πλ,ω.

The Plancherel theorem for N can be deduced from that of H n by making use of (partial)
Radon transform. As we need to use this, we briefly recall the definition and some properties.
Given an integrable function f on N and ω ∈ Sm−1, we define a function on H n

ω by

fω(v, s) =
∫

k(ω)

f (v, sω + η)dη .

The collection fω completely determines f . Moreover, it can be verified that

(f ∗ g)ω(v, s) = fω ∗ gω(v, s) ,

where the first convolution is in N and the second in H n
ω. We also remark that πλ,ω(f ) =

πλ(fω) where πλ is the Schrödinger representation of H n
ω.

3.2. Heat kernel transform on H-type groups. We fix an orthonormal basis Xj, j =
1, 2, . . . , 2n, for the Lie algebra v and define the sublaplacian L = − ∑2n

j=1 X2
j as in the case

of the Heisenberg groups. Then it is known that L generates a diffusion semigroup which
is given by a kernel pt . This kernel has been explicitly calculated by Cygan [3] and Randall
[10]. Indeed, we have

pt (v, z) = cn

∫
Rm

e−iu·z
( |u|

sinh t|u|
)n

e−(1/4)|u|(coth t |u|)|v|2du .

This kernel is a positive Schwartz class function for which good estimates can be proved.
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Let Zj = ∂/∂zj , j = 1, 2, . . . ,m, and consider the full Laplacian � = L − ∑m
j=1 Z2

j .

The heat kernel associated to this operator is given by

qt (v, z) = cn

∫
Rm

e−t |u|2e−iu·z
( |u|

sinh t|u|
)n

e−(1/4)|u|(coth t |u|)|v|2du .

It then follows that qt (v, z) can be holomorphically extended to C2n × Cm as an entire func-
tion. For f ∈ L2(N) the function f ∗ qt (v, z), which solves the heat equation for �, also
extends to C2n × Cm as an entire function. We are interested in this transform taking f into
the holomorphically extendable function f ∗qt . We can ask for a characterisation of the image
of L2(N) under this transform.

In [5], this problem was treated for the Heisenberg group and it was shown that the
image is not a weighted Bergman transform in sharp contrast to the Euclidean case. There the
authors have obtained different characterisations. In this section we state and prove one such
characterisation for the heat kernel transform on N. For the motivation of the following we
refer to [13].

Consider the representations πλ,ω realised on a Hilbert space H. Given f ∈ L2(N)

the operator πλ,ω(f ) is Hilbert-Schmidt. The representations πλ,ω can also be realised on
the space of Hilbert-Schmidt operators on H simply defining πλ,ω(x, u, ξ)T as the action on
a Hilbert-Schmidt operator T . Note that we have slightly changed our notation and written
(x, u, ξ), x, u ∈ Rn, ξ ∈ Rm, for the elements of N. We can therefore, consider the oper-
ator valued function (x, u, ξ) �→ πλ,ω(x, u, ξ)πλ,ω(F ) and ask if it can be holomorphically
extended to Cn × Cn × Cm. We can show that it is so precisely when F = f ∗ qt for some
f ∈ L2(N). Thus we get the following characterisation of the image of L2(N) under the heat
kernel transform.

THEOREM 3.1. A function F belongs to the image of L2(N) under the heat kernel
transform if and only if (x, u, ξ) �→ πλ,ω(x, u, ξ)πλ,ω(F )∗ extends to Cn × Cn × Cm as an
entire function so that

‖πλ,ω(i(y, v, η))πλ,ω(F )∗‖HS

is square integrable over N × Rm with respect to the measure

e−(1/2t )|η|2pλ
2t (2y, 2v)|λ|n+m−1d(y, v, η)dλdω .

If F = f ∗ qt the above integral is a constant multiple of ‖f ‖2
2.

PROOF. Using partial Radon transform, we can quickly reduce the theorem to the case
of the Heisenberg group. Indeed, as we have already remarked, πλ,ω(F ) = πλ(Fω). We also
know that (qt )ω = kt , the heat kernel on H n

ω. Therefore, if F = f ∗ qt then πλ,ω(F ) =
πλ(fω ∗ kt ). The function fω does not belong to L2(H n

ω) but the modified Radon transform

Rωf (x, u, s) = D
(m−1)/2
s fω(x, u, s) ,
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where D
(m−1)/2
s is the fractional derivative of order (m − 1)/2, does. Since πλ(Rωf ) =

|λ|(m−1)/2πλ(fω), we can write

πλ,ω(x, u, ξ)πλ,ω(f ∗ qt )
∗ = |λ|(1−m)/2eiλω·ξπλ(x, u, 0)πλ(Rωf ∗ kt )

∗ .

We can therefore appeal to [13, Theorem 13.5] to conclude that

(x, u, ξ) �→ πλ,ω(x, u, ξ)πλ,ω(F )∗

extends to Cn × Cn × Cm as an entire function with the stated integrability condition.
By the same result, we can also conclude that the integral mentioned in the statement of

the theorem reduces to ∫
Sm−1

( ∫
R2n+1

|Rωf (x, u, s)|2d(x, u, s)

)
dω ,

which is nothing but ‖f ‖2
2. This proves half of the theorem. The other half can be prov-

ed, again using [13, Theorem 13.5] and the inversion formula for the modified Radon trans-
form. �

3.3. Nilmanifolds associated to H-type groups. We consider a nilmanifold M =
Γ \N where N is an H-type group and Γ is a lattice subgroup such that M is compact. Such
subgroups Γ are characterised by the property that logΓ is a subgroup of the underlying
additive group of the Lie algebra n. Here log stands for the inverse of the expenential map
exp:n → N. Given the nilmanifold Γ \N, we form L2(Γ \N) using an N-invariant measure.
We can then define the right regular representation UΓ of N on L2(Γ \N). We are interested
in decomposing L2(Γ \N) into subspaces that are irreducible under the action of UΓ .

This problem has been addressed in the more general context of nilmanifolds in Brezin
[2] and Auslander-Brezin [1]. For step two nilpotent Lie groups, Brezin [2] has reduced the
problem to the case of Heisenberg groups. For Heisenberg nilmanifolds he has used variants
of the Weil construction (which we have already seen in Section 2) to get the decompostion.
In the general case he has produced an algorithm which enables one to reduce the general case
to the step two case. The decomposition obtained by Brezin in the step two case is not good
enough for our purpose of studying heat kernel transforms. As we are dealing with a special
class of step two groups, we can obtain a very explicit decomposition of L2(Γ \N).

By making use of the following lemma, found in Müller [8], we reduce the H-type case
to the Heisenberg case directly. Recall that for every ω ∈ Sm−1 the map Jω defines a complex
structure on v = R2n. Therefore, we can find an orthogonal transformation σω such that
Jω = σωJσ t

ω, where J is the 2n × 2n matrix defining the standard symplectic form on R2n.

We then have the following lemma.

LEMMA 3.2. The mapping αω : N → H n defined by αω(v, z) = (σ t
ωv, z ·ω), (v, z) ∈

N is an epimorphism of Lie groups. If k(ω) is the kernel of αω and A = exp k(ω) then N/A

is isomorphic to H n.
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Given a lattice subgroup Γ of N and ω ∈ Sm−1, let us set Γω = αω(π(Γ )) where
π : N → N/A is the canonical projection. In order to show that Γω is a lattice subgroup of
H n we make use of the following theorem from [9].

THEOREM 3.3 ([9, Chapter 1, Theorem 4.7]). Suppose that Γ is a lattice (resp. uni-
form lattice) of a locally compact group G, H a closed normal subgroup of G and π : G →
G/H the canonical homomorphism. The subgroup π(Γ ) is a lattice (resp. uniform lattice) in
the group G/H if and only if Γ ∩ H is a lattice (resp. uniform lattice) in the group H.

We remark that, in the terminology of the above theorem, Γ is said to be a uniform
lattice if G/Γ is compact. By taking G = N and H = A as in the lemma, we see that Γω is
a uniform lattice provided Γ ∩ A is a uniform lattice in the group A. To check that this is so,
we make use of another theorem from [9].

THEOREM 3.4 ([9, Chapter 1, Theorem 4.5]). Suppose that Γ is a discrete subgroup
and H a closed subgroup of a locally compact group G. Further assume that Γ is a uniform
lattice of G. Then the subgroup Γ ∩ H is a uniform lattice if and only if the subgroup H is
Γ -closed (i.e., HΓ is closed).

Therefore, we only need to show that AΓ is closed. This can be done by following the
arguments presented in [2, Section 3]. Indeed, we need to start with the representation πλ,ω

in place of IN(φ) in [2], identify the kernel of the linear functional φ and proceed with the
computations. We will end up with the problem of showing AΓ to be closed. This is precisely
the content of [2, Lemma in Section 3]. We refer to this article for the details.

3.4. Heat kernel transform on H-type nilmanifolds. We are ready to look at the
heat kernel transform on an H-type nilmanifold M = Γ \N. We make use of the map αω in
order to reduce the problem to the Heisenberg nilmanifold Γω\H n

ω.

First we get a decomposition of L2(Γ \N) into subspaces irreducible under the action
of UΓ . From general theory (see Moore [7]), it is known that L2(Γ \N) decomposes into a
discrete direct sum of irreducible invariant subspaces for UΓ . On each of these subspaces, UΓ

will be unitarily equivalent to a finite multiple of πλ,ω for some λ > 0 and ω ∈ Sm−1. Let
πλ,ω be such a representation which occurs in UΓ and let K(λ,ω) be the invariant subspace.
Recalling that πλ,ω(v, z) = eiλz·ωπλ,ω(v, 0), we infer that each function f ∈ K(λ,ω) is
invariant under the right action of A which is just exp k(ω). Hence we can think of K(λ,ω)

as a subspace of L2(N/A) or even as a subspace of L2(Γω\H n) via the map αω.

As K(λ,ω) is invariant under UΓ , the subspace

K̃(λ, ω) = {f ; f ◦ αω ◦ π ∈ K(λ,ω)}
is invariant under Γω. Let H̃

j
λ,ω be the orthogonal subspaces of K̃(λ, ω) on each of which UΓω

is equivalent to πλ. Let H
j
λ,ω be the pull-back of H̃

j
λ,ω. Then we have the following theorem.

THEOREM 3.5. Given an H-type nilmanifold Γ \N, we have

L2(Γ \N) =
∑
λ,ω

∑
j

H
j
λ,ω ,
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where the sum is taken over all (λ, ω) such that πλ,ω occurs in UΓ .

Finally, by combining Theorem 2.9 and the above decomposition, we can describe the
image of L2(Γ \N) under SΓ

t .

THEOREM 3.6. In above notation, we have

SΓ
t (L2(Γ \N)) =

∑
λ,ω

∑
j

SΓ
t (H

j
λ,ω) .

In order to describe SΓ
t (H

j
λ,ω), we need to describe S

Γω
t (H̃

j
λ,ω) which we have done

in Theorem 2.9 when Γω = Γ (l). In general there exists A ∈ An and d > 0 such that
Γω = A(d.Γ (l)) and hence an explicit description of S

Γω
t (H̃

j
λ,ω) can, in principle, be written

down.
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