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Abstract

We consider the following non-local operator

Af(x) = lim
ε→0

∫
{y∈Rd : |x−y|>ε}

(f(y)− f(x))n(x, y) dh.

where
n(x, y) � 1

|x− y|d+2
(

ln 2
|x−y|

)1+β
for |x− y| ≤ 1

and β ∈ (0, 1].
We prove upper estimates for the transition density of the associated symmetric

Markov jump process X. Examples of Lévy processes with generator of the type above
are studied.
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1 Introduction

Recently the interest in non-local opearators within the theory of partial differential
equations has increased. From the probabilistic point of view, it is interesting that many
non-local operators can be understood as infinitesimal generators of some discontinuous
Markov processes.

A typical example is the fractional Laplacian (−∆)α/2 in Rd, α ∈ (0, 2). It is given
by

(−∆)α/2f(x) = lim
ε→0+

∫
{y∈Rd : |x−y|>ε}

(f(y)− f(x))
cd,α

|x− y|d+α
dy,

where cd,α = α2α−1Γ((d+α)/2)

πd/2Γ(1−α/2)
. The probabilistic counterpart of this operator is the

rotationally invariant α-stable process, which is a Markov jump process with the jumping
kernel

n(x, y) =
cd,α

|x− y|d+α
.

One way to associate a non-local operator on Rd to a Markov jump process in Rd is
given by the theory of Dirichlet forms. To a regular and symmetric Dirichlet form we
can associate a symmetric Hunt process X and a properly exceptional set N ⊂ Rd such
that X can start from any point in Rd \ N .

In this paper we take d ≥ 1 and consider jumping kernels n(x, y) in Rd satisfying
the following assumptions:

(A1) there exist K ≥ 1 and β ∈ (0, 1] such that

K−1

|x− y|d+2
(

ln 2
|x−y|

)1+β
≤ n(x, y) ≤ K

|x− y|d+2
(

ln 2
|x−y|

)1+β

for all x, y ∈ Rd such that |x− y| ≤ 1;

(A2) there exists M ≥ 0 such that

sup
x∈Rd

∫
|x−y|>1

n(x, y) dy ≤M ;

(A3) n is symmetric, i.e.

n(x, y) = n(y, x) for all x, y ∈ Rd.

Define for f ∈ C1
c (Rd)

E(f, g) =
1
2

∫
Rd

∫
Rd

(f(y)− f(x))(g(y)− g(x))n(x, y) dx dy (1.1)

and set
F = C1

c (Rd)
E1
, (1.2)

where E1(f, f) = E(f, f) + ‖f‖22.
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Similarly as in [FOT94, Example 1.2.4] we can prove that (E ,F) is a regular Dirichlet
form and thus there exists an associated Hunt processX. The singularity of n at diagonal
is stronger then the corresponding singularity for stable or stable-like processes. Hence
the process X is ”between” stable-like processes and diffusions. On the other hand, n
is not scale invariant.

Denote by N the properly exceptional set of the Hunt process X. Then for any
x ∈ Rd \ N and t > 0 we can define the transition semigroup {Pt}t≥0 by

Ptf(x) = Ex[f(Xt)] for t > 0 and f ≥ 0. (1.3)

By P (t, x, dy) we denote the transition probabilities for t > 0 and x ∈ Rd \N . It can be
proved (cf. Corollary 4.4) that there exists a positive symmetric kernel p(t, x, y) defined
on (0,∞)× (Rd \ N )× (Rd \ N ) such that

P (t, x, dy) = p(t, x, y)dy.

Now we can state our main result.

Theorem 1.1 Let β ∈ (0, 1]. Then there exists a constant C > 0 and a properly
exceptional set N ⊂ Rd such that for all t ≤ 1 and x, y ∈ Rd \ N , |x− y| ≤ 1 we have

p(t, x, y) ≤ C min

t−d/2
(

ln
2
t

)βd/2
,

t

|x− y|d+2
(

ln 2
|x−y|

)β
.

�

We remark that in order to derive upper bounds of p(t, x, y) for |x − y| ≥ 1 some
additional assumptions on n(x, y) are needed.

Now we explain our strategy of proof of the main result. To get on-diagonal upper
estimates of p(t, x, y) we use Nash inequality. Application of techniques from the proof
of Theorem 3.1 in [CK08] would lead to weaker upper estimates.

To obtain an appropriate Nash inequality we have to find a Lévy process Y whose
Dirichlet form is comparable to the Dirichlet form of the process X. The construction
of process Y is explained in Section 3. The process Y is obtained by subordination and
has the characteristic exponent

Φ(ξ) = φ(|ξ|2),

where
φ(λ) = φβ(λ) =

λ

[ln(1 + λ)]β

when β ∈ (0, 1) and

φ(λ) = φ1(λ) =
λ

ln(1 + λ)
− 1

when β = 1.
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Also, Y is an example of a jump process whose jumping kernel satisfies conditions
(A1)-(A3) (cf. Proposition 3.3).

In Section 4 we obtain Nash inequality for a particular class of Lévy processes that
includes process Y . Comparing Dirichlet forms (cf. Proposition 3.4) of processes X and
Y , we get the following Nash inequality for the process X (cf. Proposition 4.2)

‖f‖22φ

(
‖f‖4/d2

‖f‖4/d1

)
≤ A E(f, f) + δ‖f‖22, for all f ∈ L1(Rd) ∩ L2(Rd), (1.4)

where δ > 0 and A′ > 0 are constants. Inequality (1.4) implies the following estimate
(cf. Corollary 4.4)

p(t, x, y) ≤ c

{
t−d/2

(
ln 2

t

)β d/2
eδ t 0 < t < 1

t−d/2eδ t t ≥ 1,
(1.5)

for all x, y ∈ Rd\N . In particular, for the process Y the estimate (1.5) holds with δ = 0.
We note that equivalence between Nash inequalities of the form (1.4) and transition

density estimates of the corresponding process is also considered in [KS10]. Some more
general Nash inequalities were studied in [BCSC07, BM07, Cou96].

In Section 5 we extend Davies’ method (cf. [Dav87, Dav89, CKS87]) to obtain off-
diagonal estimates and apply it in the case of the process X. The idea of Davies was to
define a new semigroup (Pψt )t≥0 by

Pψt f = e−ψPt(eψf),

for some function ψ : Rd → [0,∞) and to try to find an estimate of the form

‖Pψt ‖1→∞ ≤ mψ(t),

for some function mψ : (0,∞)→ [0,∞). As a result

p(t, x, y) ≤ eψ(x)−ψ(y)mψ(t).

If we chose ψ within some class of functions to make eψ(x)−ψ(y)mψ(t) as small as possible,
we can get satisfying upper estimates.

Originally, this method was developed to obtain Gaussian estimates. It was extended
to more general Markov semigroups in [CKS87]. Then it was applied to stable and stable-
like jump processes (see [BL02], [CK03], [BBCK09], [CKK08], [BGK09]). In [CKS87]
the authors start from a Nash inequality of the form

‖f‖2+2α/d
2 ≤ (AE(f, f) + δ‖f‖22)‖f‖2α/d1 (1.6)

for some α ∈ (0, 2). Since our version of Nash inequality is not of the form (1.6), we
need to extend Davies’ method. As an intermediate step we use the logarithmic Sobolev
inequality, results from Chapter 2 in [Dav89] and some estimates involving Dirichlet
forms from [CKS87].
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In Subsection 5.1 we start with the on-diagonal upper estimate of the form

‖Pt‖1→∞ ≤ C t−d/α`(t)eδ t,

where ` : (0,∞)→ (0,∞) varies slowly at infinity (cf. Section 2) and prove that

‖Pψt ‖1→∞ ≤ C ′t−d/α`(t)eDψt+ δ t,

for a constant Dψ > 0 depending on ψ (cf. Theorem 5.2). Finally, in Subsection 5.2
we apply this technique to get off-diagonal upper bounds for the process X and we also
finish the proof of Theorem 1.1.

Let us fix some notation. For x ∈ Rd and r > 0 by B(a, r) we denote the open ball
in Rd with radius r and center a. We say that f(x) ∼ g(x) as x→∞ if

lim
x→∞

f(x)
g(x)

= 1.

The Lebesgue measure of the set A ⊂ Rd is denoted by |A|.
If (S,F , µ) is a measure space, then for 1 ≤ p, q ≤ ∞ and a linear operator

A : Lp(S, µ)→ Lq(S, µ) we set

‖A‖p→q = sup{‖Af‖q : f ∈ Lp(S, µ), ‖f‖p ≤ 1}.

2 Preliminaries

We start this section with some results from the theory of regular variation. For detailed
exposition of this theory the reader is referred to [BGT87].

A function ` : (0,∞)→ (0,∞) is slowly varying (at infinity) if for any λ > 0

lim
x→∞

`(λx)
`(x)

= 1.

Now we state some of the results of this theory that will be used in this paper.

Theorem 2.1 Let ` : (0,∞)→ (0,∞) be a function which is slowly varying at infinity.

(i) (Karamata’s theorem) If α < −1, then

xα+1`(x)∫∞
x tα`(t) dt

∼ −α− 1 as x→∞.

(ii) (Potter’s theorem) If ` is bounded on every compact subset of (0,∞) then for any
γ > 0 there exists a constant B = B(γ) > 0 such that

`(x)/`(y) ≤ Bmax {(x/y)γ , (y/x)γ} for x, y > 0.
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(iii) (Asymptotic inversion) Assume that ` satisfies the following condition

lim
x→∞

` (x `(x))
`(x)

= 1. (2.1)

If ρ > 0, then for f : (0,∞)→ (0,∞) defined by

f(x) = xρ`(x), x > 0,

there exists a function g : (0,∞)→ (0,∞) such that

f(g(x)) ∼ g(f(x)) ∼ x as x→∞.

The function g has the following asymptotic behavior

g(x) ∼ x1/ρ

`
(
x1/ρ

)1/ρ as x→∞.

Proof. (i) [BGT87, Theorem 1.5.10], (ii) [BGT87, Theorem 1.5.6 (ii)], (iii) [BGT87,
Theorem 1.5.12, Proposition 1.5.15, Corollary 2.3.4] �

Let Y = (Yt,Px) be a purely discontinuous Lévy process in Rd. In this case we have

Ex[eiξ·(Yt−Y0)] = e−tΦ(ξ), ξ ∈ Rd

where the characteristic exponent Φ is of the form

Φ(ξ) =
∫

Rd\{0}

(
1− eiξ·y + iξ · y1{|y|≤1}

)
ν(dy).

The measure ν is called the Lévy measure. It is a measure on Rd satisfying ν({0}) = 0
and ∫

Rd
(1 ∧ |y|2)ν(dy) <∞.

We can associate a Dirichlet form (Q,D(Q)) to Y in the following way (cf. [FOT94,
Example 1.4.1])

Q(f, g) =
∫

Rd
f̂(ξ)ĝ(ξ)Ψ(ξ) dξ (2.2)

D(Q) = {f ∈ L2(Rd) : Q(f, f) <∞}.

Here f̂ denotes the Fourier transform of f , that is

f̂(ξ) = (2π)−d/2
∫

Rd
eiξ·xf(x) dx

for f ∈ L1(Rd) ∩ L2(Rd) and it is then extended to L2(Rd) in the usual way.
A function φ : (0,∞)→ (0,∞) is called a Bernstein function if it has derivatives of

all orders and
(−1)n−1φ(n)(λ) ≥ 0 for all n ∈ N and λ > 0.
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We say that φ : (0,∞)→ (0,∞) is a completely monotone function if it has derivatives
of all orders and

(−1)nφ(n)(λ) ≥ 0 for all n ∈ N ∪ {0} and λ > 0.

If φ is a Bernstein function, then it has the following representation (cf. [SSV10, Theo-
rem 3.2])

φ(λ) = a+ bλ+
∫

(0,∞)
(1− e−λt)µ(dt), (2.3)

where a, b ≥ 0 and µ is a measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ t)µ(dt) <∞. (2.4)

Since 1 − e−λt ≤ 2 min{λt, 1}, by the dominated convergence theorem and (2.4) we
deduce that

lim
λ→0 +

φ(λ) = a.

A subordinator is a Lévy process S = (St)t≥0 taking values in [0,∞). The Laplace
transform of the law of St is given by

Ee−λSt = e−tφ(λ), λ > 0.

Here φ : (0,∞)→ R is called the Laplace exponent and it is a Bernstein function. More
precisely, it has the representation (2.3) with a = 0 (see p. 72 in [Ber96]). In probabilistic
context, the measure µ in (2.3) is called the Lévy measure.

Conversely, for a Bernstein function φ with a = 0 in representation (2.3) there exists
a subordinator S = (St)t≥0 whose Laplace exponent is φ (cf. [Ber96, Theorem I.1]).

The potential measure U of the subordinator S is defined by

U(A) = E
∫ ∞

0
1{St∈A} dt =

∫ ∞
0

P(St ∈ A) dt for a measurable A ⊂ [0,∞).

If we define the Laplace transform of the measure U by

LU(λ) =
∫ ∞

0
e−λsU(ds), λ > 0

then by the use of the Fubini’s theorem we obtain

LU(λ) =
∫ ∞

0

∫
(0,∞)

e−λsP(St ∈ ds) dt =
∫ ∞

0
e−tφ(λ) dt =

1
φ(λ)

.

A Bernstein function φ is called a special Bernstein function if the function

φ∗(λ) =
λ

φ(λ)

is also a Bernstein function. We call a Bernstein function φ a complete Bernstein function
if the Lévy measure µ in the representation (2.3) has a completely monotone density
with respect to the Lebesgue measure.
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It follows from [SSV10, Proposition 7.1] that if φ is a complete Bernstein, then φ∗ is
also a complete Bernstein function. In particular, φ is a special Bernstein function and
the Lévy measure of φ∗ has a completely monotone density.

Let B = (Bt,Px) be a Brownian motion in Rd independent of the subordinator
S = (St)t≥0. We define the subordinate Brownian motion Y = (Yt,Px) by

Yt = BSt , t ≥ 0.

It follows from [Sat99, Theorem 30.1] that Y is a Lévy process with the characteristic
exponent

Ψ(ξ) = φ(|ξ|2).

The process Y is purely discontinuous Lévy process and the characteristic exponent
Φ of Y is of the form

Φ(ξ) =
∫

Rd
(1− eiξ·h + iξ · h1{|h|≤1}(x)) J(h) dh (2.5)

with J(h) = j(|h|), where

j(r) = (4π)−d/2
∫

(0,∞)
t−d/2e−

r2

4t µ(dt), r > 0. (2.6)

It is easy to see that j is a non-increasing function. The function J is called the jumping
kernel.

3 Estimates of jumping kernel and comparison

of Dirichlet forms

The main idea of this section is to find a Lévy process Y = (Yt,Px) whose jumping kernel
J behaves like the jumping kernel n for small jumps. This is important, because, once
we have such Lévy process we can use Fourier analysis to obtain the Nash inequality for
this process.

Let S = (St)t≥0 be a subordinator with the Laplace exponent

φ(λ) = φ1(λ) =
λ

ln(1 + λ)
− 1 (3.1)

when β = 1 and

φ(λ) = φβ(λ) =
λ

[ln(1 + λ)]β
(3.2)

when β ∈ (0, 1).

Remark 3.1 First we explain why φβ defines a Laplace exponent of some subordinator.
Define ` : (0,∞)→ (0,∞) by `(λ) = ln(1 + λ). It is easy to see that

`(λ) =
∫ ∞

0
(1− e−λt)t−1e−t dt. (3.3)
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Since
t 7→ t−1e−t =

∫ ∞
0

e−st1(1,∞)(s) ds, t > 0, (3.4)

is a completely monotone function, we deduce that ` is also a special Bernstein function.

(i) Let β = 1. In this case `∗(λ) = λ/`(λ) is a Bernstein function and it has repre-
sentation given by (2.3) with a = limλ→0+ `

∗(λ) = 1. Thus φ(λ) = `∗(λ)− 1 is the
Laplace exponent of some subordinator.

(ii) Let β ∈ (0, 1). Since a constant function is a complete Bernstein function, from
[SSV10, Proposition 7.10] we conclude that

λ 7→ [ln(1 + λ)]β

is also a complete Bernstein function. Because

lim
λ→0+

λ

[ln(1 + λ)]β
= 0

we conclude that φ is the Laplace exponent of some subordinator.

♦

Let B = (Bt)t≥0 be a Brownian motion in Rd independent of the subordinator S
and let Y = (Yt)t≥0 be the subordinate Brownian motion defined by

Yt = BSt , t ≥ 0.

We know that Y is a Lévy process with the characteristic exponent

Φ(ξ) = φ(|ξ|2).

Let T = (Tt)t≥0 be the subordinator with the Laplace exponent

ϑ(λ) = [ln(1 + λ)]β.

By Remark 3.1 the Lévy measure of T has a completely monotone density. Therefore
the Lévy measure of S has also a completely monotone density, which we denote by µ(t).
It follows from [SSV10, Corollary 10.7 and Corollary 10.8] that the potential measure
V of T has a non-increasing density v(t) and that the following is true

v(t) = 1 +
∫ ∞
t

µ(s) ds, t > 0. (3.5)

The following proposition has been proved in [ŠSV06] in the case β = 1.

Proposition 3.2 For any β ∈ (0, 1] we have

v(t) ∼ 1

β t
(
ln 1

t

)1+β
, t→ 0 + .
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Proof. The Laplace transform of V is

LV (λ) =
1

ϑ(λ)
=

1
[ln(1 + λ)]β

.

It can be directly checked that for any x > 0

lim
λ→0+

LV ( 1
λx)− LV ( 1

λ)(
ln 1

λ

)−(1+β)
=

1
β

lnx

and thus by the de Haan’s Tauberian theorem (cf. [BGT87, Theorem 3.9.1]) and de
Haan’s monotone density theorem (cf. [BGT87, Theorem 3.6.8]) we deduce that

v(t) ∼ 1

β t
(
ln 1

t

)1+β
, t→ 0 + .

�

Now we can prove the asymptotic behavior of the jumping function J of Y . Recall
that J(x) = j(|x|), where j is given by (2.6).

The proof of the following proposition is basically the proof of [ŠSV06, Lemma 3.1].
Here we use Potter’s theorem (cf. Theorem 2.1 (iii)) in the proof. The same idea was
used in [KSV, Lemma 5.1].

Proposition 3.3 The following asymptotic behavior of the function j holds

j(r) ∼
4Γ(d2 + 1)
β πd/2

1

rd+2
(
ln 1

r2

)1+β
, r → 0 + .

Proof. Using Proposition 3.2 and (3.5) we get∫ ∞
t

µ(s) ds ∼ 1

β t
(
ln 1

t

)1+β
, r → 0 +

and thus by the Karamata’s monotone density theorem (cf. [BGT87, Theorem 1.7.2])
we have

µ(t) ∼ 1

β t2
(
ln 1

t

)1+β
, r → 0 + . (3.6)

Changing variable in (2.6) we get

j(r) = (4π)−d/2
∫ ∞

0
t−d/2e−

r2

4t µ(t) dt

= 4−1π−d/2r−d+2

∫ ∞
0

td/2−2e−tµ

(
r2

4t

)
dt

= 4−1π−d/2r−d+2µ(r2)
∫ ∞

0
td/2−2e−t

µ
(
r2

4t

)
µ(r2)

dt. (3.7)
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By Potter’s theorem (cf. Theorem 2.1 (ii)) we see that there is a constant c1 > 0 such
that

µ
(
r2

4t

)
µ(r2)

≤ c1(t2−1/2 ∨ t2+1/2) for all t > 0 and r > 0.

Therefore we can apply the dominated convergence theorem in (3.7) to obtain

lim
r→0+

j(r)
4π−d/2r−d+2µ(r2)

= Γ(d/2 + 1)

since

lim
r→0+

µ
(
r2

4t

)
µ(r2)

= 16t2.

�

Recall that (E ,F) and (Q,D(Q)) are the Dirichlet forms associated with processes
X and Y , respectively.

Proposition 3.4 There exists A > 0 such that

Q(f, f) ≤ AE1(f, f) for all f ∈ F .

Proof. Let f ∈ F . By Proposition 3.3 and property (A1) we conclude that there is a
constant c1 > 0 such that∫ ∫

|x−y|≤1
(f(y)− f(x))2j(|y − x|) dx dy ≤ c1

∫ ∫
|x−y|≤1

(f(y)− f(x))2

|x− y|d+2
(

ln 2
|x−y|

)1+β
dx dy

≤ c1KE(f, f). (3.8)

Using Proposition 3.3 again we get∫ ∫
|x−y|>1

(f(y)− f(x))2j(|y − x|) dx dy ≤ 2
∫ ∫

|x−y|>1

(
f(y)2 + f(x)2

)
j(|y − x|) dh dx

= 4‖f‖22 sup
x∈Rd

∫
|x−y|>1

j(|y − x|) dy

≤ 4c2‖f ||22, (3.9)

for some constant c2 > 0. By combining (3.8) and (3.9) we obtain desired inequality. �
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4 Nash inequality and on-diagonal upper bounds

In this section we prove the Nash inequality for the class of Lévy processes that contains
the Lévy process Y . More precisely, let S = (St)t≥0 be a subordinator with the Laplace
exponent

φ(λ) =
λ

`(λ)
− c.

Here ` : (0,∞) → (0,∞) is a special Bernstein function which is slowly varying at ∞
such that

lim
λ→∞

`(λ`(λ))
`(λ)

= 1 (4.1)

and such that
c = lim

λ→0+

λ

`(λ)

exists.
Let Z = (Zt)t≥0 be the corresponding subordinate Brownian motion and denote by

(Q′,D(Q′)) the corresponding Dirichlet form. Recall that we can write

Q′(f, g) =
∫

Rd
f̂(ξ)ĝ(ξ)φ

(
|ξ|2
)
dξ.

Remark 4.1 (i) Note that `(λ) = [ln(1+λ)]β satisfies condition (4.1) and that c = 0,
for β ∈ (0, 1) and c = 1 for β = 1.

(ii) φ is non-decreasing since it is a Bernstein function.

♦

Proposition 4.2 (Nash inequality) There exist constants B1, B2 > 0 such that for
any f ∈ L1(Rd) ∩ L2(Rd) the following inequality holds

B1‖f‖22φ

(
B2
‖f‖4/d2

‖f‖4/d1

)
≤ Q′(f, f).

Proof. Let f ∈ L1(Rd) ∩ L2(Rd) such that ‖f‖1 = 1. Then

|f̂(ξ)| ≤ 1.

By Plancherel theorem, for R > 0 we obtain

‖f‖22 =
∫
|ξ|≤R

|f̂(ξ)|2 dξ +
∫
|ξ|>R

|f̂(ξ)|2 dξ

≤ c1R
d + φ(R2)−1

∫
|ξ|>R

|f̂(ξ)|2φ(|ξ|2) dξ

≤ c1R
d + φ(R2)−1Q′(f, f), (4.2)
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since φ is non-decreasing.
Let R0 > 0 be chosen so that

c1R
d
0 = φ(R2

0)−1Q′(f, f).

This is possible, since ϕ : (0,∞)→ R defined by

ϕ(x) = xdφ(x2)

satisfies lim
x→0+

ϕ(x) = 0 and lim
x→∞

ϕ(x) =∞. Moreover, since ϕ is strictly increasing, we

have
R0 = ϕ−1(c−1

1 Q
′(f, f)).

If we set R = R0 in (4.2) we obtain

‖f‖22 ≤ 2c1

[
ϕ−1(c−1

1 Q
′(f, f))

]d
and consequently

ϕ
(

(2c1)−1/d‖f‖2/d2

)
≤ 2Q′(f, f). (4.3)

If f ∈ L1(Rd) ∩ L2(Rd), we can replace f by ‖f‖−1
1 f in (4.3) to obtain desired in-

equality. �

Now we can obtain on-diagonal upper estimates for the process X. Recall that the
transition semigorup (Pt)t≥0 of the process X is defined by (1.3) and the process can
start at any point which is not in the properly exceptional set N .

For β ∈ (0, 1) we define mβ : (0,∞)→ R by

mβ(t) =

{
t−d/2

(
ln 2

t

)βd/2
t ≤ 1

t−d/(2(1−β)) t > 1.
(4.4)

If β = 1, we define m1 : (0,∞)→ R by

m1(t) =

{
t−d/2

(
ln 2

t

)d/2
t ≤ 1

t−d/2 t > 1.
(4.5)

Proposition 4.3 Let β ∈ (0, 1]. Then there exists a constant D1 > 0 such that for any
t > 0

‖Ptf‖1→∞ ≤ D1mβ(t)e2A t.

Proof. Using Proposition 3.4 and Proposition 4.2 we conclude that the following Nash
inequality holds

B1‖f‖22φ

(
B2
‖f‖4/d2

‖f‖4/d1

)
≤ AE(f, f) +A‖f‖22,
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where for β = 1 we have
φ(x) =

x

ln(1 + x)
− 1

and for β ∈ (0, 1)
φ(x) =

x

[ln(1 + x)]β
.

By [KS10, Proposition 3] we conclude that there exists a constant c1 > 0 such that

‖Ptf‖1→∞ ≤
[
φ−1

(
1
c1 t

)]d/2
e2At.

Let β = 1. Since

φ(x) ∼ x

2
, x→ 0 + and φ(x) ∼ x

lnx
, x→∞

we get (cf. Theorem 2.1 (iii))

φ−1(x) ≤ c2 x for x ≤ 1 and φ−1(x) ≤ c3 x lnx for x > 1.

Similarly, for β ∈ (0, 1) we have

φ(x) ∼ x1−β, x→ 0 + and φ(x) ∼ x

(lnx)β
, x→∞

and so

φ−1(x) ≤ c4 x
1/(1−β) for x ≤ 1 and φ−1(x) ≤ c5 x(lnx)β for x > 1.

�

Corollary 4.4 There exists a properly exceptional set N ′ ⊂ Rd and a positive sym-
metric kernel p(t, x, y) defined on (0,∞)× (Rd \ N ′)× (Rd \ N ′) such that

Ptf(x) =
∫

Rd
p(t, x, y)f(y) dy for all x ∈ Rd \ N ′ and f ≥ 0.

Moreover, for any β ∈ (0, 1] we have the following estimate

p(t, x, y) ≤ D1mβ(t)e2At for all x, y ∈ Rd \ N ′ and t > 0.

Proof.
Follows directly from Proposition 4.3 and [BBCK09, Theorem 3.1]. �
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5 Davies’ method and off-diagonal upper bounds

In this section we extend Davies’ method for off-diagonal upper estimates given in
[CKS87]. Since this technique is of independent interest, we give it in a more general
setting in Subsection 5.1. We apply this technique to our case in Subsection 5.2

5.1 Davies’ method

Let S be a locally compact separable metric space and let µ be a Radon measure on
S. Consider a regular symmetric Dirichlet form (E ,D(E)) on L2(S, µ) and assume that
there exists a positive and symmetric bilinear form

Γ: D(E)×D(E)→ L1(S, µ),

such that
E(fh, g) + E(gh, f)− E(h, fg) =

∫
S
hΓ(f, g) dµ. (5.1)

It follows from [BH91, Proposition 4.1.3] that such bilinear form is unique if it exists.
The bilinear form Γ is sometimes called the carré du champ.

Using (5.1) we can easily check the following Leibniz rule

E(fg, h) =
1
2

∫
S
fΓ(g, h) dµ+

1
2

∫
S
gΓ(f, h) dµ (5.2)

for all f, g, h ∈ D(E).
Let (Pt)t≥0 be the symmetric Markovian semigroup on L2(S, µ) corresponding to the

Dirichlet form (E ,D(E)) (cf. [FOT94, Theorem 1.4.1]) and assume that there exists a
kernel P (t, x, dy) such that

Ptf(x) =
∫
S
f(y)P (t, x, dy) for all f ∈ L2(S, µ).

The symmetry of (Pt)t≥0 can now be expressed in the following way∫
S

∫
S
f(x)g(y)P (t, x, dy)µ(dx) =

∫
S

∫
S
f(y)g(x)P (t, x, dy)µ(dx) (5.3)

for all t > 0, x ∈ S and bounded and measurable functions f, g : S → [0,∞).

Remark 5.1 Let X = (Xt)t≥0 be a jump process in Rd with the jumping kernel n(x, y).
The corresponding Dirichlet form is given by

E(f, g) =
1
2

∫
Rd

∫
Rd

(f(y)− f(x))(g(y)− g(x))n(x, y) dx dy

D(E) = {f ∈ L2(Rd) : E(f, f) <∞}.

In this case S = Rd and µ is the Lebesgue measure on Rd. Using the last display,
symmetry of X and (5.1) we can check that the carré du champ exists and it is given
by

Γ(f, g)(x) =
∫

Rd
(f(y)− f(x))(g(y)− g(x))n(x, y) dx dy for f, g ∈ D(E).
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♦
Let ψ ∈ D(E) ∩ Cb(S) such that

Λ(ψ) = ‖e−2ψΓ(eψ, eψ)‖1/2∞ ∨ ‖e2ψΓ(e−ψ, e−ψ)‖1/2∞ <∞.

Now we can follow the proof of Theorem 3.9 in [CKS87] and use (5.1), Leibniz rule (5.2)
and the symmetry assumption (5.3) to obtain the following inequality

E(fp/2, fp/2) ≤ p

2
E(e−ψfp−1, eψf) +

9p2

2
Λ(ψ)2‖f‖pp (5.4)

for p ≥ 2 and for all non-negative f ∈ D(E) ∩ Cb(S). Note that the expression on the
left hand side of (5.4) is finite by [CKS87, Lemma 3.5].

Assume that the semigroup (Pt)t≥0 satisfies

‖Ptf‖2→∞ ≤ t−α`(t)eδt for all t > 0. (5.5)

where α > 0, δ ≥ 0 and ` : (0,∞) → (0,∞) is a function which is slowly varying at 0.
By symmetry and duality

‖Ptf‖1→∞ ≤ t−2α`(t/2)2e2δt for all t > 0.

It is well known that then Pt has a kernel p(t, x, y), that is

Ptf(x) =
∫
S
p(t, x, y)f(y)µ(dy).

Davies’ idea was to define a new semigroup by

Pψt f(x) = e−ψ(x)Pt(eψf)(x)

and to obtain similar estimate for Pψt as in (5.5). Note that

Pψt f(x) =
∫
S
e−ψ(x)p(t, x, y)eψ(y)f(y)µ(dy).

Choosing suitable ψ it is possible to obtain off-diagonal upper heat kernel estimates.
In [CKS87, Theorem 3.25)] this was done in the case when ` ≡ 1 with the help of the
Nash inequality. In our case we use the logarithmic Sobolev inequality.

By (5.5) and Theorem 2.2.3 in [Dav89] we deduce the following logarithmic Sobolev
inequality∫

S
f(x)2 ln f(x)µ(dx) ≤ εE(f, f) + (δε− α ln ε+ ln `(ε)) ‖f‖22 + ‖f‖22 ln ‖f‖2 (5.6)

for all non-negative f ∈ D(E) ∩ L1(S, µ) ∩ Cb(S) and ε > 0.

Theorem 5.2 Suppose that the logarithmic Sobolev inequality (5.6) holds. There ex-
ists a constant D2 > 0 such that for any ψ ∈ D(E) ∩ L1(S, µ) ∩ Cb(S) we have

‖Pψt f‖2→∞ ≤ D2 t
−α`(t) eδt+36Λ(ψ)2t for all t > 0.
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Proof. First we need the logarithmic Sobolev inequality for (Pψt )t≥0. Let f ∈ D(E) ∩
L1(S, µ) ∩ Cb(S) be a non-negative function, p ≥ 2 and ε > 0. Applying (5.6) to fp/2

we get∫
S
f(x)p ln f(x)µ(dx) ≤ 2p−1εE(fp/2, fp/2)+2p−1 (δε− α ln ε+ ln `(ε)) ‖f‖pp+‖f‖pp ln ‖f‖p.

Using (5.4) in the last display we arrive at∫
S
f(x)p ln f(x)µ(dx) ≤ εE(e−ψfp−1, eψf) + 9pεΛ(ψ)2‖f‖pp

+ 2p−1 (δε− α ln ε+ ln `(ε)) ‖f‖pp + ‖f‖pp ln ‖f‖p. (5.7)

Let Lψ be the L2-generator of the semigroup (Pψt )t≥0. Then

E(e−ψfp−1, eψf) = lim
t→0+

(
e−ψfp−1,

Pt(eψf)− eψf
t

)
L2(S,µ)

= lim
t→0+

(
fp−1,

Pψt f − f
t

)
L2(S,µ)

= (fp−1,Lψf)L2(S,µ)

Therefore, for any t > 0, we may apply [Dav89, Theorem 2.2.7] with

ε(p) =
8t
p2
.

We obtain

ln ‖Pψt f‖2→∞ ≤
{∫ ∞

2

[
9Λ(ψ)2ε(p) + 2p−2 (δε(p)− α ln ε(p) + ln `(ε(p)))

]
dp

}
=
{

36Λ(ψ)2t+ 2δt/3 + c1 − α ln t+ 2
∫ ∞

2
ln `

(
8t/p2

)
p−2 dp

}
. (5.8)

By Potter’s theorem (cf. Theorem 2.1 (ii)) we deduce that there is a constant c2 > 0
such that

ln `
(
8t/p2

)
ln `(t)

≤ c2p
1/2 for all p ≥ 2.

Thus we can estimate the integral in (5.8)∫ ∞
2

ln `
(
8t/p2

)
p−2 dp =

∫ ∞
2

ln `
(
8t/p2

)
ln `(t)

p−2 dp+ ln `(t)/2

≤ c3 + ln `(t)/2.

From the last display and (5.8) we get

‖Pψt ‖2→∞ ≤ c4t
−α`(t)e(36Λ(ψ)2+δ)t‖f‖2 for all t > 0. (5.9)

�
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Corollary 5.3 Suppose that the logarithmic Sobolev inequality (5.6) holds. There
exists a constant D3 > 0 such that for any ψ ∈ D(E)∩L1(S, µ)∩Cb(S) the following is
true

p(t, x, y) ≤ D3 t
−2α`(t)2 e2δt+72Λ(ψ)2t−ψ(y)+ψ(x) for all t > 0.

�

Proof. It can be easily checked that the adjoint operator of Pψt is P−ψt . By using duality
and Theorem 5.2 we obtain the result. �

5.2 Off-diagonal upper bounds

In this subsection we use the setting from Section 4.

Theorem 5.4 For any β ∈ (0, 1] there exists a constant D4 > 0 such that for all
x, y ∈ Rd \ N satisfying 0 < |x− y| ≤ 1 we have

p(t, x, y) ≤ D4
t

|x− y|d+2
(

ln 2
|x−y|

)β
for all 0 < t ≤ |x− y|2

(
ln 2
|x−y|

)β
.

Proof. Let β ∈ (0, 1]. By Corollary 4.4 and (5.6) we obtain the following logarithmic
Sobolev inequality∫

f(x)2 ln f(x) dx ≤ εE(f, f) + lnmβ(ε)‖f‖22 + ‖f‖22 ln ‖f‖2 (5.10)

for all non-negative f ∈ F ∩ L1(Rd) ∩ Cb(Rd) and ε > 0. Recall that mβ is given by
(4.4) or (4.5).

We split the jumping kernel n according to the size of jumps. More precisely, for
R ∈ (0, 1) we define

nR1 (x, y) = n(x, y)1{|x−y|≤R}, nR2 (x, y) = n(x, y)1{|x−y|>R} = n(x, y)− nR1 (x, y).

The appropriate R will be chosen later in the proof.
Let Z = (Zt)t≥0 be the jump process with the Lévy density nR1 and denote by

pR(t, x, y) its transition density. Denote by (ER,FR) and ΓR the corresponding Dirichlet
form and carré du champ operator. By Meyer’s construction given in [Mey75] (cf.
Lemma 3.1 in [BGK09]) it follows that

p(t, x, y) ≤ pR(t, x, y) + t‖nR2 ‖∞. (5.11)
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Similarly as in (3.9), for any f ∈ C1
c (Rd) ⊂ F ⊂ FR we get

E(f, f)− ER(f, f) ≤ 4‖f‖22 sup
x∈Rd

∫
|x−y|>R

n(x, y) dy. (5.12)

By (A1), (A2) and Karamata’s theorem (cf. Theorem 2.1 (i)) we get

sup
x∈Rd

∫
|x−y|>R

n(x, y) dy ≤
∫
R<|x−y|≤1

K

|x− y|d+2
(

ln 2
|x−y|

)1+β
dy + sup

x∈Rd

∫
|x−y|>1

n(x, y) dy

≤ c1

R2
(
ln 2

R

)1+β
. (5.13)

Using (5.10), (5.12) and (5.13) we obtain the following logarithmic Sobolev inequality
for Z∫

f(x)2 ln f(x) dx ≤ εER(f, f) +

(
lnmβ(ε) +

c2ε

R2
(
ln 2

R

)1+β

)
‖f‖22 + ‖f‖22 ln ‖f‖2

(5.14)
Let x0, y0 ∈ Rd be such that 0 < |x0 − y0| ≤ 1 and set

R =
|x0 − y0|
3(d+ 2)

. (5.15)

We apply Davies’ method, which is described in Section 5.1, to the process Z. Let
λ > 0 and define

ψ(x) = λ (|x0 − y0| − |x− y0|)+

Since
(ez − 1)2 ≤ z2 e2|z| for all z ∈ R

and
|ψ(x)− ψ(y)| ≤ λ|x− y|,

we have

e−2ψ(x)ΓR(eψ, eψ)(x) =
∫
|x−y|≤R

(
eψ(y)−ψ(x) − 1

)2
n(x, y) dy

≤ λ2e2λR

∫
|x−y|≤R

|y − x|2 n(x, y) dy

≤ K λ2e2λR(
ln 2

R

)β ≤ K e3λR

R2
(
ln 2

R

)β ,
where in the last line we have used (A1) together with Karamata’s theorem. Similarly
we obtain the same bound for e2ψ(x)ΓR(e−ψ, e−ψ)(x) and thus

Λ(ψ)2 = ‖e−2ψΓR(eψ, eψ)‖∞ ∨ ‖e2ψΓR(e−ψ, e−ψ)‖∞ ≤ c3
e3λR

R2
(
ln 2

R

)β . (5.16)
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Suppose

t < R2

(
ln

2
R

)β
. (5.17)

By Corollary 5.3, (5.14), (5.16) and (5.17) we obtain

pR(t, x0, y0) ≤ c2t
−d/2

(
ln

2
t

)βd/2
exp

{
ψ(x0)− ψ(y0) + 72Λ(ψ)2t+

c4t

R2
(
ln 2

R

)1+β

}

≤ c2t
−d/2

(
ln

2
t

)βd/2
exp

{
−ψ(y0) +

c3e
3λR t

R2
(
ln 2

R

)β +
c5

ln 2
R

}
. (5.18)

Let

λ =
1

6R
ln
R2
(
ln 2

R

)2β/(d+2) (ln 2
t

)βd/(d+2)

t
.

By Potter’s theorem we deduce that there is a constant b > 0 such that

ϕ(s) = s1/2

(
ln

2
s

)βd/(2(d+2))

satisfies
ϕ(s1) ≤ b ϕ(s2) for all 0 < s1 < s2 < 1.

Combining this with (5.17) we get

e3λR t

R2
(
ln 2

R

)β =

(
ln 2

R

)β/(d+2)

R
(
ln 2

R

)β ϕ(t) ≤ c6

Therefore, from (5.18) we obtain

pR(t, x, y) ≤ c7t

Rd+2
(
ln 2

R

)β (5.19)

By (A1) and (5.15) we conclude

‖nR2 ‖∞ ≤
K

Rd+2
(
ln 2

R

)1+β
≤ c8

|x0 − y0|d+2
(

ln 2
|x0−y0|

)1+β

and thus from (5.11) and (5.19) we get

p(t, x, y) ≤ c9t

|x0 − y0|d+2
(

ln 2
|x0−y0|

)β +
c10t

|x0 − y0|d+2
(

ln 2
|x0−y0|

)1+β

≤ (c10 + c11)t

|x0 − y0|d+2
(

ln 2
|x0−y0|

)β .
�

Proof of Theorem 1.1
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The theorem now follows directly from Corollary 4.4 and Theorem 5.4. �
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[ŠSV06] H. Šikić, R. Song, and Z. Vondraček, Potential theory of geometric stable
processes, Prob. Theory Related Fields 135 (2006), 547–575.

[SSV10] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein functions: theory and
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