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ABSTRACT 

The time scales for sawtooth repetition and heat pulse propagation are 

much longer (10's of msec) in the large tokamak TFTR than in previous, smaller 

tokamaks. This extended time scale coupled with more detailed diagnostics has 

led us to revisit the analysis of the heat pulse propagation as a method to 

determine the electron heat diffusivity, x e ) in the plasma. A combination of 

analytic and computer solutions of the electron heat diffusion equation are 

used to clarify previous work and develop new methods for determining xe-

Direct comparison of the predicted heat pulses with soft X-ray and ECE data 

indicates that the space-time evolution is diffusive. However, the x e 

determined from heat pulse propagation usually exceeds that determined from 

background plasma power balance considerations by a factor ranging from 2 to 

10, Some hypotheses for resolving this discrepancy are discussed. 

University of Wisconsin, Madison, Wisconsin. 
20ak Ridge National Laboratory, Oak Ridge, Tennessee. fm 
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I. INTRODUCTION 

The dominant energy loss mechanism in large tokamaks such as TFTR [1] is 

generally thought to be due to anomalous electron heat conduction, and is 

usually characterized by scaling laws for the global energy confinement time 

T E. However, few methods have been available to measure directly the local 

electron heat conduction. Work in this area started in 1975, in the FM-1 

Spherator [2]; application to tokamaks using the naturally occurring sawtooth 

oscillations in ORMAK as the source of heat pulses was first discussed by 

Callen and Jahns [3]. More detailed analyses of the "small signal response" 

heat pulse propagation problem [4] were used to obtain values of the electron, 

heat diffusivity x e in ORMAK which were in reasonable agreement with those 

obtained through power balance, or global energy confinement calculations. A 

number of new methods for determining % from sawtooth-induced electron heat 

redistributions were discussed in a paper by Soler and Callen [5]. This paper 

explains in detail many useful techniques for inferring x e from experimental 

observations of the space-time evolution of the electron temperature 

perturbations and serves as the starting point for this paper. The most 

comprehensive use of the heat pulse propagation technique to date was that by 

Bell et̂  al. [6] who showed that in ISX-B the x e increases as the neutral beam 

heating power is increased, in reasonable accord with the observed L-mode 

degradation in T E [7]. Reference 6 also includes, for the first time, the 

soft X-ray chord-averaging effects, at least numerically. Recently, pulsed 

electron cyclotron heating has been used in D-III to induce heat pulses whose 

propagation is followed by a new temporal Fourier analysis technique [8], a 

variation of which will he discussed below. 

In ohmic-heated and neutral-beam-heated TFTR discharges the 

characteristic time scales for sawtooth oscillations have been found to be 



3 

much longer than in previous, smaller tokamaks, with the sawtooth periods 

extending up to 50 msec [1J- In addition, the time scale for the peak of the 

outwardly propagating heat pulse to reach the plasma edge ranges up to about 

30 msec. These greatly extended time scales, and the availability of fast 

time scale local electron cyclotron emission (ECE) measurements of T as well 

as an extensive soft X-ray imaging system have led us to revisit and 

substantially extend the previous work [3-6] on determining x e from the 

propagation of the sawtooth-induced heat pulse. 

In Sec. II of this paper we review previously developed methods for 

determining x from heat pulse propagation, rectify some previous errors, and 

introduce some new methods for determining x e- Throughout this section TFTR 

experimental data are utilized to demonstrate the different analysis 

technique. Next, in Sec. Ill we investigate with computational models the 

sensitivity of the various types of analysis to the simplifying assumptions 

used in Sec. II (delta functior. source, density and x e radial profiles, chord 

averaging, etc.). In Sec. IV we discuss the x e results obtained under a 

variety of experimental conditions in TFTR and compare these results with 

those obtained from power balance considerations. Since the x 's determined 

from heat pulse propagation substantially exceed those determined from the 

power balance for the background plasma, in Sec. V we discuss some hypotheses 

for resolving this discrepancy. 

II. HEAT PULSE PROPAGATION ANALYSIS 

Following the work of Soler and Callen [5], a mathematical description 

of the heat pulse propagation problem is provided beginning from the general 

electron heat balance equation: 
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3T (r,t) 1 3 3T (r,t) 

I V r > " V " a F IF K ( r ) *e(r) " V ~ I + ZQ < (1) 

where IQ represents all electron heat sources and sinks such as ohmic heating, 

collisional heat transfer to ions, convection, radiation, auxiliary heating, 

etc. A small, sawtooth-induced electron temperature perturbation T(r,t) of a 

near-equilibrium situation is governed by the equation: 

This equation is derived by perturbing Eq. (1) and neglecting the additional 

term T 3 (EQ)/3T - - n T/T^ because the equilibrium evolution implied by this 

term is slow and broadly distributed relative to the highly localized (in 

space and time) perturbations T{r,t) induced by the sawteeth. (Additional 

electron heat sources which arise from the residual kinetic energy in plasma 

flows and magnetic fluctuations just after a sawtooth "crash" .are discussed in 

Appendix A and shown to be negligible.) 

The physical situation we wish to model is illustrated in Fig. 1. An 

analytic solution of Eq. (2) for T{r,t) with a temperature perturbation 

initial condition given by the sum of two opposing delta functions ("dipole" 

heat source) was obtained oy Soler and Callen [5] through a Green's function 

solution of the basic heat diffusion equation: 

A 2r r T -A2r2/4t -A2r 2/4t A2rr„ -A2r 2/4t A2rr, 
T ( r , t ) = _ l _ 3 _ o e [ e 2 x^—Sj.e 1 I^-gJ-JI 

(3) 
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where t is the time measured from the sawtooth crash time t , A 2 = 3/2xe, r 
is the inversion (q = 1) radius, r (< /2 r ) is the reconneetion radius and 
r 1 (o < r 1 < r s) and r, (r < r, < r ) are the positions of the assumed 
negative and positive delta function temperature perturbations of magnitude 
T Q. (For no net heat input but only energy redistribution from the sawtooth 
crash phase ue must have J" rdr T(r,t = o) = o, which indicates that - r ^ . = 
TpTp = r.T..) A long time (small Bessel function argument), asymptotic 
expansion of Eq. (3) obtained in Ref. 5 can be written as T(r,t) - (r2/t^) 
exp(-A r /4t), which indicates the maximum temperature perturbation at a given 
radius r occurs at the time t_ = ft r/12 z r /8x e with a magnitude T(r,c_) 
falling off as r . While these results are physically appealing (i.e., t -

r', consistent with a diffusion process), they do not represent a self-
consistent solution in that the argument of the Bessel functions (- 6r /r > 1) 
is large, not small at the time t - t . (The range of r/r , which is of 

p 5 
interest, is 2 <r/rs < 5 since for r/r < 2 the heat pulse shapes can depend 
too critically upon the initial conditions, while for r/r > 5 the temperature 
perturbations become negligible in amplitude because of the r"^ magnitude 
scaling.) 

To develop an approximate formula for T(r,t) from Eq. (3) that is valid 
around the temporal peak in T, we make a large argument expansion of the 
Bessel functions using I D(z) - ez//2~itz . Then, expanding { r ^ p g ) 1 ^ = 1 -
(r £ - r1)/l}rs+... , and assuming A 2r(r 2 - r )/2t <:< 1 and A 2r(r s - r.,)/2t << 1, 
we find to lowest order 

- A 3rr,(r,-r t] - " ^ - r ^ / O t 
0 4/TI r.r, ] t6'2 A2:-r 

1 1 2' s 
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The primary assumptions under which this equation was derived and which are 
tested numerically below are: 

1) That the initial temperature perturbation can be described by the 
sum of an outar (r = r^) positive delta function and an inner (r -

r.) negative delta function, the volume integral of which gives no 
heat input. 

2) That the density n and electron heat diffusivity x e
 a r e constant in 

radius. 

Setting the time derivative of Eq. (H) to zero, we find the time t at 
which the peak of T(t) occurs is given, to lowest order, by 

A2(r - r f 3(r - r f/2 %a t « 2 „ 2 e _ _ ( 5 ) 
p 6 + (r - r 1 /rr 6 + fr - r 1 /rr v s' s l s' s 

At the time t - t the argument of the Bessel functions is larger than unity 
for the range of r/r values of interest, so this solution is 
self-consistent. While the scaling of t with r is not so obvious from Eq. 
(5), the derivative dt /dr 2 is equal to A2/13.5 to within 1% for 1.7 < r/rs < 

5, which covers the radial range of interest. Thus, we expect the change in 
t as r increases to be given by 

2 2 
.. flr ar , c, 
A f co = 2 = 9^T • ( 6 ) 

p 13.5 PT y x e 
Hence, if a plot is made of t p versus r 2 the data should fall on a straight 
line whose slope is 1/9x=- This was the original technique used [3-5] to 
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infer x e from heat pulse propagation data, although historically the 

coefficient of 1/8 obtained in Ref. 5 has been used. Since the coefficient 

differs by only about 10$, we will also use V8x e for simplicity ii the 

remainder of this paper. 

Two examples of experimental data from TFTH that are utilized to 

determine x from heat pulse oropagation are shown in Figs. 2 and 3. Figure 2 

shows the propagation of a heat pulse from the crash of a typical sawtooth. 

Figure 3 shows the much slower propagation of a heat pulse that is sometimes 

seen resulting from the first sawtooth crash (the "event") during a 

discharge. A plot of t versus r 2 for this data is shown in Fig. 4, from 

which it is readily apparent that t increases roughly linearly with r , 

consistent with Eq. (6). The difference in the heat pulse propagation between 

the "event" and typical sawteeth will be discussed in Sec. V. 

As a check on the diffusive nature of the heat pulse propagation, we can 

also compare the pulse shapes in time with the time-dependent part of Eq. (4) 

which, neglecting the small t/{A2rr3) term, can be written in a normalized 

form as 

I I' 

Since this temporal behavior could be modified by the chord-averaging effects 

of the soft X-ray diagnostics, we use the electron cyclotron emission (ECE) 

spectn-neter measurement of the electron temperature (-5 cm radial and 

azimuthal resolution) for comparison with this theoretical prediction. An 

example of such a comparison is shown in Fig. 5> which indicates the pulse 

shape is reasonably close to that predicted. Note also that if, from other 

information, we know the singular or inversion radius r s, then we can estimate 

f ( t ) - T(r,t_)_ . gxp_ [* JP~ _t\ 
"T(r,tJ " ^ V ^ 



x e
H P from Eq. (5) using the t which gives the best fit of Eq. (7) to the 

HP il 2 

temporal pulse shape. For the case shown we find x e - 2.3 « 10 em /sec. 
Since f(t) is only a function of t/t , we would expect the times 

required for the decay of the pulses from tr.eir maxima T(r.t ) to fractional 
values thereof to just be some multiple of t . This behavior is illustrated 
in Fig. 6. EKperimentally, the peak of the heat pulse is often very difficult 
to measure because of the short time delays involved, precursor oscillations, 
and finite sawtooth crash times. Thus, it is often useful to measure, say, 
the time for the pulse to decay to half maximum (to ,-) and use this to 
estimate x e- An example of this procedure is shown in Fig. 7, which also 
shows that the ECE and soft X-ray data give approximately the same results. 
However, this method can be subject to inaccuracies due to soft X-ray chord-
averaging effects and multiple pulses (discussed in Sec. Ill) since then the 
temporal pulse shapes can become distorted by a sort of pulse pileup effect. 
Generally speaking, since T (r,t) for any given pulse decays for large c as 
(t / t ) J , as lor.g as t is less than one quarter of the sawtooth repetition 

H ]•* 

time t s a w , the multiple pulse distortions of a given pulse by all of the 
preceding pulses are less than 15% in magnitude. 

ft further check on the diffusive character of the heat pulses is the 
rate of decrease with radius r of the maximum of the temperature 
perturbation. That is, the scaling of T{r,t.i evaluated at t = t : 

- [r,(r, - rj/r^j 
T(r,t ) = T — — - ' - ?.,. Rfr/r ) fft/t } v p J o ,. - r .2*1/4 v s ; *• p J 

4Vn lr,r /r I r 

*• 1 s s' 

in which 

exp [ - I fr - r )2/rr J 
R{r/r ) = - J § - — . (8) 

(r/r ) ((r - r )"Vrr )/(6 • (r - r )2/rr } \ 3 / 2 
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While the radial dependence of R(r/r ) is quite complicated, over the radial 
range of interest (2 < r/rs < 5) -t is given approximately (to within 255) by 
26o/(r/r2>^ = r , which has the same scaling with r as that indicated by the 
wortc in Ref. 5 [see discussion after Eq. (3) above]. A comparison between the 
predicted r scaling and experimental data from ECE measurements of T (r,t ) 
is shown in Fig. 8. The agreement seems reasonable everi though most of the 
available data are fairly close to the inversion radius (r/r3 < 2). 

For plasmas with sawtooth oscillations that are periodic in time with a 
well-defined repetition time (the sawtooth period, t ), the problems of 
pulse pileup and exact source function can be avoided through a phase shift 
analysis of the pulses based upon a Fourier analysis ir time (of. reference 
8). In this approach we return to Eq. (2) and expand T in the Fourier series 
T(r,t) = r ? n( r) e x P (inuit) with u = 2TT/T S . The Fourier harmonics T n(r) are 
governed by the differential equation (for n g, x e assumed constant) 

[r2 s f i a (2±B!S) P2j f ( r ) = _ ( q ) 
1
 3 r 2 r 3r *• 2x e' J n 

Solutions of this equation are zero-order Kelvin (Dessel) functions of 
argument x = (3nu/2xe) r. Eliminating the solutions which are singular at r 

= o and taking a large r (or z) limit, we find 

T (r) = CJ (xe 3 l I T / 4) = C(ber(x) + i bei(x)] = M £x) e L 

in which the phase t|>(r) is given to lowest order by 

3nu -,1/2 Vtfl'"' 
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This phase increases linearly with r with slope dipn/dr = (3n<u/1xe) as long 

as r > (x e/3nw) 1 / 2, which since empirically x g a w - tE/5 - a 2/20x e becomes 

r > a/20/n, with a being the limiter radius. A second condition is that c > 

rQ, as the behavior within the reconnecfcion region is not strictly 

diffusive. In this limit the cylindrical geometry has. effectively been 

reduced to a slab geometry and the x e
 c a n b e estimated from 

v 3 ? ^ ) • ( 1 0 ) 

This method of analyzing heat pulse data can be readily automated, is 

independent of any spec ""ic model for the origin of the heat pulse, and 

automatically includes any distortions related to multiple heat pulses. (In 

contrast, the time to peak and pulse shape analysis can be affected by a pulse 

pileup type of effect with multiple pulses.) To obtain x e between any two 

points in radius one determines the phase shift T for the heat pulses between 

the two radii and uses this result in Eq. (10). An illustration of this 

approach for TFTR heat pulses measured with the soft X-ray array is shown in 

Figs. 9 and 10. Since this technique is to some degree sensitive to the shape 

of the heat pulse, chord averaging effects could be important; and when used 

with soft X-ray arrays, there is the question of whether the soft X-ray signal 

is a close representation of the electron temperature. In this regard it is 

encouraging to note that the higher harmonic components (which are more 

sensitive to the pulse shapes) shown in Fig. 11 yield approximately the same 

xe- Also, on TFTR comparison of the soft X-ray time to peak analysis with 

that obtained from the temperature pulses measured with the ECE spectrometer 

shows good agreement. The major drawback of this approach is the dependence 
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of x e on the square of the slope of the phase shift. Of lesser importance is 

the necessity to analyze similar heat pulsus in a nearly metronomic sequence 

to justify the Fourier analysis in time, 

III. SENSITIVITY ANALYSIS 

In order to study the sensitivity of the procedures developed in the 

preceding section to the assumptions used to derive them, we want to develop 

more general solutions of Eq. (2) for varying n_, xe> and initial 

conditions. Closed form analytic solutions for this general one-dimensional 

diffusion equation with variable coefficients are difficult to obtain [9]. 

However, numerical solutions are readily obtainable. For our numerical 

algorithm we integrate Eq. (2) using a fully implicit finite difference scheme 

which is first order accurate with respect to at and second order accurate 

with respect to iir; 

T 1+1 Tl T 1+1 T 1-1 Tl+1 T 1-1 
J " J 1 j + 1 i J j-1 

I n s {(rnx) ( ; ) - (rnx) ( )} 
J at r.ir j+1/2 &r j-1/2 flr 

where 

( r n X ) . ± 1 ^ ^(rjnjxj + r J ± 1 n J ± 1 x J ± 1 ) • 

For each case reported below, convergence studies have been performed whereby 

fir and it are independently reduced until there are no discernible changes in 

the solution. While such limits vary from case to case, typically 5 * 10"^ > 

Ar/a > 10"3, 10"4 > flt/(3a2/2x0) > 5 * lO"^ in which a is the plasma- radius 

and x 0 Is the electron heat diffusivity at the plasma center. Numerical 

effects are filtered out of the data presented below. As expected, for 
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regions r Q < r < 0.7a sufficiently far from the boundaries, the solutions were 
independent of the boundary conditions chosen. For simplicity, alJ of the 
numerical results presented below were carried out with r0/a = 0.2 and 
Dirichlet boundary conditions. 

We now utilize these numerical solutions to explore the sensitivity of 
the heat pulse characterizations given in Eqs. (3) - (8) to the assumptions 
used to derive them. First, we investigate the effects of different initial 
conditions. An experimental estimate obtained from ECE data is shown in Fig. 
12. Taking n and x to be constant in radius, but using various initial 
conditions, we find some modest variation of the numerically calculated t„ 
with r*, as indicated irj Fig. 13. As could be anticipate, the effects of the 
varying initial conditions (mm . beyond the range of experimentally expected 
possibilities) are small and only important in the "near-field" region r' < 
2r . x The asymptotic region (r ) /2r ) is not significantly affected by 
these variations. The saturation of t with r^ for r^ > O.Ta^ is due to 
"reflection" of the heat pulses from the boundary at r - a. 

Next, we consider the effects of spatially varying n and x e profiles. 
The sensitivities here can be exhibited by writing Eq. (2) in the form: 

1 ll _ 1 3_ 3T falnni 3T , . n 

2 St r sr "e Jr + l !r ' x e )r " 

Thus, because of both the strong radial localization of the perturbations and 
the "weak" logarithmic dependence on n(r), particularly for n decreasing as r 
increases, the solutions should depend only weakly on the density profile 
n(r). The weakness of this profile effect is illustrated in Fig. I1) where t 
is plotted versus r 2 for some physically reasonable density profiles. 
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However, as can be anticipated from the form of Eq. (11), variations in 

the x e profile can have significant effects. These are illustrated in 

Fig. 15. Here, we see that while t_ still varies roughly linearly with r-2 

over the radial range of interest (0.22 < r 2/a 2 < 0.8 2), the slope does vary 

somewhat. A decreasing x(r) has the clearly observable effect of causing t 

to increase faster than r . Conversely, the normally expected case with a x s 

increasing with radius decreases the slope of t versus r , and causes t to 

increase less rapidly than r 2 for r2/a^> 0.6 . The decrease in the slope just 

indicates that the average x e over the important range (0.2 < r 2/a 2 < 0.6 ) 

is higher than the value of x e at r : 0, as indicated in Table I. As can be 

seen, the average x e values inferred from the t. versus r 2 data agree 

reasonably well with the simple cylindrical volume average of xe(r) defined by 

3 P-1 r 
X = (r| - r*) J r 2rdr xe(r) . 

Thus, variations in the magnitude of x e with plasma parameters should be 

discernable from experimental plots of t versus v*. Deviations of t Q from a 

linear scaling with r 2 for 0.62 < r 2/a 2 < 0.82 in Fig. 15 indicate whether 

Xe(r) increases or decreases with r. However, these deviations are relatively 

small and so it is difficult to extract directly the radial profile of x e from 

experimental t D versus r £ d^ta, particularly considering the likely 

experimental uncertainties. 

As another check on the theoretical predictions, we have also used the 

code developed in Ref. 6 to investigate the variation of t with r, including 

pulse "pileup." The pulse pileup effects are shown in Fig. 16 where the t 

versus r curves are shown for the first and subsequent pulses for a case in 

which x e = 3 * 10^ cur/sec and the sawtooth period is relatively short ( T S = 
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25 msec). In this relatively extreme case the x e determined from Eq. (6) 

increases by only about a factor of 2 in going from the first to the time 

asymptotic pulse. The variation becomes even smaller if we restrict the data 

to values of t„ less than T „ „ / 2 . p saw 
The sawtooth-induced heat pulses are often observed on TFTR through soft 

X-ray arrays which measure the radiation emitted above some cutoff energy 

(typically - 3 keV in TFTR). However, these arrays observe the emission 

integrated (or averaged) over chords through the plasma. Also, the soft X-ray 

emission per unit volume by photons with energies above the cutoff is not 
2 a. 

simply a measure of T . It can be written in the form Cn eT e, where a is a 

coefficient which is typically 2.0 but can be as large as 5-10 near tne low 

temperature {< 100 eV) edge of the plasma. To calculate the line-integrated 

emission and fluctuations in it due to the sawteeth, we need detailed 

temperature, density, and impurity profiles. This was done for ISX-B data in 

Ref. 6, but has not been done for TFTR data. To avoid possible problems due 

to the chord-averaging and detector response effects, we restrict our 

attention to the heat pulse shapes around their peaks, which are not strongly 

sensitive to these effects. Also, as indicated in Fig. 7, we often 

cross-check the results with the ECE-raeasured electron temperature 

fluctuations which are not influenced by these effects. 

Finally, we note that while most of the preceding sensitivity analysis 

has concentrated on the t_ versus r £ method of determining yB, the general 

conclusions derived also mostly apply to the phase shift ?nalysis [cf. Eq. 

(10)J. This is because the phase shift type analysis also relies upon the 

diffusive nature of the heat pulse propagation over the radial range of 

interest. Thus, we can also expect the phase shift analysis to be relatively 

insensitive to density profile and cnord-averaging effects (at least for low 
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harmonics of the basic frequency), and to be independent of pulse piieup 

effects and initial conditions (for the reasons stated previously). It will 

be sensitive to a x e varying with radius. In fact, if the experimental data 

is of high enough quality (low signal-to-noise ratio, metronomically 

repetitive, etc.), it may be possible to infer the radial dependence of x a 

from the use of Eq. (10) between successive radii in the plasma (c.f. Fig. 

10). 

IV. EXPERIMENTAL RESULTS FOR ELECTRON HEAT DIFFUSIVITY x e 

In the preceding two sections we have shown that the sawtooth-induced 

heat pulse propagation can be described quite well by formulae derived from a 

diffusion equation for the electron heat diffusivity and that the x e so 

determined is not sensitively dependent on our simplifying assumptions. 

Analysis of experimental data by the various methods described in Sec. II have 

yielded electron heat diffusivity coefficients substantially larger than those 

obtained from power balance analysis (c.f. Figs. 2-5, 7, 9, 10). 

In Fig. 17 the x e determined for a wide range of plasma parameters is 

plotted against the x e determined from a power balance analysis. The data 

were analyzed using the phase shift method on small or simple (not compound) 

sawteeth. Since the discrepancy between the xe's is so large, a natural 

question which arises is: under what conditions do they become closer and do 

they ever become the same. In looking over the experimental data base, as 

exemplified by the data presented so far, the cases which come the closest are 

those due to the first sawtooth crash (the "event") as indicated in Figs. 

2-3. However, even there x e
H P' /)( e

P B =• 1.5. Further, in Fig. 18 we show the 

evolution of the heat pulses as time progresses and successive sawteeth 

occur. As can be seen, while the "event," which occurs a£ about 1.75 seconds, 
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has a relatively slowly diffusing heat pulse, successive sawteeth, witn 

increasing radii for the q = 1 surface, get progressively faster with shorter 

time delays, until the x_ increases by a factor of 4 or more for the 4 t h and 

successive heat pulses. Mote from Fig. 16 that multiple-pulse effects can be 

at most a factor of 2. Thus, it appears that x e increases substantially 

between 1.7 and 2.0 seconds in this TFTR discharge. 

V. DISCUSSION AND CONCLUSION 

In this paper we have shown that the electron heat pulses induced by the 

sawtooth crashes in TFTR propagate in a way that can be described by a 

diffusion equation [Eq. (2)]. Thus, while we cannot exclude otner, more 

complex behavior, we can describe the heat pulse behavior as diffusive. Both 

ECE (local) and soft X-ray (chord-average) diagnostics have beer, utilized. 

The heat pulses have been shown to be diffusive on scale lengths of the order 

of the detector array spacings (~ 5 cm) through their: 1) diffusive 

propagation (t » r 2 in Figs. 4, 7, 14, 16); 2) pulse shapes in time (Fig. 4'i; 

and 3) decreasing magnitude with increasing radius (Fig. 7). However, the 
up 

Xe characterizing this electron heat transport process in TFTR usually 

exceeds the xe' for the background plasma determined from power balance 

considerations. Most fundamentally, the heat pulses seem to diffuse much 

faster through the plasma than would be anticipated given the energy 

confinement time of these TFTR ohmic discharges ( T £ - 100 - 400 msec). 

As a comprehensive test to try to resolve this discrepancy ir. the 

magnitude of xei we have simulated the sawteeth and concomitant heat pulses 

with the BALDUR transport simulation code. This code simulates sawteeth by 

flattening T^ and n g, and changing J according to a Kadamtsev type flux 

reconnection model at fined time intervals. Some example heat pulses obtained 
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from this transport simulation are shown in Fig. 19. Analyzing the t versus 

r characteristics and other properties of these transport simulation neat 

pulses, we find that the x e we determine is within a factor of about 1.5 of 

the v=lue of x e put into the cade. Thus, even this check indicates that the 

heat pulses diffuse much more rapidly than would be expected on the basis of 

the (anomalous) background electron heat transport. 

For a brief review of heat pulse propagation studies in other, smaller 

tokamaks, we note that x Q
H P was of order x =

P B in ORMAK"' 5 and ISX-B.5 

However, in the somewhat larger D-III experiment a repetitively pulsed 
p. Up PD 

electron cyclotron heating experiment found x e 'X e - 2-4. Also, in 

unpublished work, some other tokamak experiments have often measured heat 

pulses that seemed to propagate quite quickly. In addition to these comments, 
HP ii 

we should note that x e has always been found to be in the range above 10 
P PR 

cm /sec. In the previous, smaller experiments x e was also usually larger 
than 10 cnr/see so the two could agree. However, in TFTR the x a values can 
go down to 3 < 10^ cm /sec or lower, but the x e values seem to remain above 
U P PR HP 

10 n cnr/sec, thus leading to the discrepancies we find between x e and x e • 

In trying to reconcile this discrepancy we have identified two different 

hypotheses for understanding why x e
H P >> :'>PB: 

1) The electron heat diffusivity x e varies during the time the heat 

pulses pass through the plasma. That is, we would have x e = x G + 
- ~ pp 

X„ where x e would only have to be a factor of 2-3 larger than x e » 

but would vary rapidly in time. Note that with this form of x e the 

perturbed electron heat transport equation now includes a term of 

the form 1/r 3/3r (r n g x e
 d T

e o / ' d l : ' ) - The x e operates on the 

background electron temperature gradient and this can create an 
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effect similar to a heat pulse. As this hypothetical J e
 c^n change 

arbitrarily fast, the resulting "heat pulse" may also propagate at 

any chosen speed. A problem is that for an arbitrarily chosen 

x (r,t), the resulting "heat pulse" will not look diffusive. The 

form of the additional terra in the heat equation, however, suggests 

a xe(r,t) which will result in a "diffusive" heat pulse, that is 

that x_(r,t) is proportional to the gradient of the electron 

temperature, xe(r,t> ~ [UT e/3r)/<aT e o/lr)] B or with a small 

perturbation expansion >ie - 6 (3T e/3r)/UT e o/3r). Then 8 -

( x e
H t W e

P B > - ', which is of order 2 - 1 0 for most TFTR data. Of 

course other forms of >L(r,t) might yield "heat pulses" similar 

enough to those expected from a purely diffusive process so that 

they would be experimentally indistinguishable. 

(2) ft "heat pinch" [101. Here we suppose that x e - x e
H P» but that 

there is an inward pinch term so that the electron heat transport 

equation has the form 

Q dT . , „p dT _ 

I ne dT = ? h r t n e *e dT + I VeW1 + l Q 

Then Vpi n ch * s chosen to nearly cancel the outuard heat 

diffusivity, i.e., V p i n o h = - 2/5 ( x e
H P - x e

P B ) dUn Teo)/dr. For 

typical TFTR parameters "ninch ~ ~ 1 0 0 0 r ^ a cm/sec, A problem is 

that in the perturbed heat equation the heat pinch term is still 

important, being smaller than the diffusive term oniy by the factor 

(d In Teo/dr)/(d lnTe/dr) ~ 0.3. Thus, the heat pulses could look 

somewhat different than purely diffusive ones. This example is 
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mathematically equivalent to the previous example wh=re x - a 

(3Te/3r)/(3Teo/3r). 

ft question that arises is that of the origin of the hypothesized 

xe(r,t). It might be expected that x e is caused by enhanced magnetic or 

electrostatic fluctuations associated with a mode which is destabilized by the 

i-Tash of the sawtooth. Unfortunately, there are no diagnostics on TFTR at 

present which have looked for electrostatic fluctuations of this type. Th* 

Mirnov loops, which have the time resolution to see magnetic fluctuations at 

the edge of the plasma have occasionally seen low level (< 0.2 Gauss), 

coherent fluctuations {- 6 kHz) persisting for one to two milliseconds 

following the crash of a sawtooth. As xe should have a strong radial 

dependence, approaching zero at the wall, internal measurements of turbulence 

levels where x e is largest are necessary to address this question. 

In summary, we have shown that sawtooth-induced ele-,';;'on temperature 

perturbations diffuse through the TFTR plasma at a rate which is faster than 

that expected from the overall equilibrium electron heat transport (i.e., 

x e >>xe )• While we have shown conclusively that the heat pulse propagation 

is diffusive [i.e., describable by Eq. (2) and not ballistic], we do not have 

a viable model to explain why x_ >>xe • Resolution of this discref 

could shed considerable light on the anomalous transport mechanisms operative 

in large fcokamak plasmas such as TFTfl. 
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APPEKDIX ft 

In the analysis leading to the fundamental heat pulse evolution 

equation, Eq. (2), it is assumed that the sawtooth phenomenon just 

redistributes the electron temperature profile; i.e., there is no net electron 

heat input because of the sawtooth. However, there can be heat input from the 

sawtooth "crash" phase due to the conve on of magnetic energy into thermal 

energy in the magnetic reconnection phase. In this appendix we show that this 

extra heat input is usually small, and hence can be neglected. 

The total energy in the poloidal magnetic field inside the reconnection 

radius is given by (q = rB T/RB 0) 

ro , B 2 B2 r 2 
EM = J" d X IT " 2T ( 2 n R ) 2 J" 2 w d r ^ U- 1 ) 

o o o R o q 

where r Q is the reconnection radius. 

However, not all of this energy is available for conversion to kinetic 

energy during the reconneetion process. Defining the helical flux for the m = 

1 modes by 4) with 

d* , 
5F - ^ - '> . (A.2) 

we can write 
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Utilizing this in Eq. (A.l) we can identify the amount of magnetic energy 
available from reconnection as that due to rearrangement cf the helical flux, 
hence, the magnetic energy available is given by 

2 r 2 
B * ro dm " 

EA = 27" ( 2 n R ) 2 J" 2 " r d r ^> • ( A - 4 ) 

v o S o 

Note that E^ is an upper bound on the energy released during a reconnection, 
assuming that •]> is conserved and following Kadomtsev the actual energy 
released is of order half of E«. 

The ratio of this energy to the kinetic energy of the electron plasma 
component inside the radius r Q is (assuming for simplicity that n and T are 
nearly constant in radius) 

r o 
E»/E^u = E « / (2iH 1 2Ttrdr n T ) ft th A l J , e e ' 

1 i r ° dn>2 l* 

~- r —* J" 2 » r d r fdT-J 3 r - ( f l - 5 ) 

P T 0 O P 

in which e p s n eT e/(B^/2v 0) the plasma poloidal B at the position r = r Q, and 
the dimensionless integral I* is defined by 

, ro d* 2 

o o 

In order :o evaluate this we need a specific model for q(r). Taking the 
analytically convenient profile 
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q (r> = q fl + {r/r ) d p) 

we find for r/r = 0.4 and q (wall) = 2.8 the values indicated in Table A.l 

below. 

Table A.1 

Approximate values of the dimensionless integral 

I* for various values of q Q 

% 0.6 0.8 0.9 0.93 

p 0.9 1.4 2 3.4 

I * 0.033 0.01 0.005 0.0004 

From numerical simulations of the very slow resistive diffusion of the current 

profile on axis after a sawtooth "crash" one typically finds q 0 = 0.93 

-0.999. Thus, we would expect I» < 10"^ and hence for typical values of s. -

0.3i the kinetic energy added to the plasma through magnetic reconnection 

would typically be a few percent or less, and hence be negligible. 
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Table I 

Average values of x„(r) from t versus r in Fig. 10 

Case 

r 2/a 2 fitted 0.1/0.6 0.1/0.4 0.1/0.4 0.1/0.4 0.1/0.31 0.1/0.34 

2.7 0.B3 

x HP s (r2-r2)/8tn 1 2.9 2.7 2.5 2.1 
e 2 1 P 
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FIGURE CAPTI0K3 

FIG. 1. Schematic illustration of soft X-ray diagnostic chords and the 

electron temperature perturbation evolu.ion T(r,t) as a function of 

time. The signals below indicate the temporal variation of the 

soft X-ray signals from the various chords (1-5). At later times 

tn > t. > t the sawtooth-induced heat pulse diffuses radially 

outward from the radius r to which reconnection {flattening of T ) 

takes place. 

FIG. 2. Soft X-ray signals from lower chords illustrating the sawtooth 

crash in the center and the propagation of the heat pulse 

outwards. The various signals are labeled by the minimum tangency 

radius. (Typical sawtooth, I = 1.0 MA, n = 1.2 x lO^/cm^, a = 83 

cm, q a = 3.6, x e
P B = 0.9 • 10 4 cm2/sec.) 

FIG. 3- Soft X-ray signals from selected chords illustrating the sawtooth 

crash in the center and slow outward propagation of the "inverted 

sawtooth" heat pulse. The various signals are labeled by the 

minimum tangency radius (> 0 above midplane, < 0 below midplane) of 

the soft X-ray chord. {Event sawtooth, I = 1.1 MA, n = 2.1 x 

1013/cm3, a = 83 cm, q a = 3.2, 500 Hz sampling rate.) 

FIG. H. Illustrative plot of t versus r 2 to determine xe- [Normal (solid) 

and event (dashed) sawteeth, same parameters as Figs. 2 and 3, soft 

X-rays.] 
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FIG. 5. Comparison of temperature perturbation measured from ECE 

spectrometer at r = 47 era (R = 208 era) with the predicted temporal 

behavior from Eq. (7). (I = 1.4 MA, fi = 3 * 1Q 1 3/cm 3, a - 83 cm, 

q. = 2.6, r s = 35 cm. t = 5 msec, x e
H P = 2.3 * 101* cm2/sec, x e

P B =' 

1.1-10^ cm2/sec, 4 msec sampling time interval.) 

FIG. 6. Definition of the times for the electron temperature heat pulse to 

reach its maximum, 0.75, 0.5, and 0.25 fractions of the peak 

temperature perturbation. 

FIG. 7. Illustrative plot of t Q ,- versus r 2 to determine x e from soft X-ray 

and ECE data. (Same parameters as Fig. 5.) 

FIG. 8. Comparison of maximum (in time) temperature perturbation due to 

heat pulse propagation with the theoretically predicted scaling of 

r . (Same parameters as Fig. 5, ECE measurement of T .) 

FIG. 9. Example of the radial increase of the phase shift of the first 

Fourier harmonic of the heat pulses, from which an electron heat 

diffusivity x e
H P = 4-1CT enr/sec can be inferred. (Same parameters 

as Fig. 2.) 

HP FIG. 10. x e versus minor radius determined from data in Fig. 9. The error 

bars are determined by analysing subsets of the data. 
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FIG. 11. Example of the radial increase of the phase shifts of the first 

three Fourier harmonics of the heat pulses from which the electron 

heat diffusivity x e
H P is inferred to be 4.1, 4.0, and 4.3-104 

cm2/sec, respectively, x e = 0.7-10 emVsec. TFTR. n indicates 

the harmonic number of the basic frequency u = 2n/t . 

FIG. 12. Estimate of initial condition ATe(r) derived from change in ECE 

measured electron temperature profile from before to after the 

sawtooth "crash." The scale length &r indicates the radial 

uncertainty in the data brought about by the finite radial heac 

transport occurring during the roughly 1.2 msec crash phase of the 

sawtooth (Ar - /4xSt). Also, it should be noted that the ECE 

profile data are obtained with a 4 ms sweep time, and the sawtooth 

crash occurs during one sweep. (Same parameters as Fig. 5.) 

FIG. 13- Slight variation of the numerically calculated time of the peak of 

the heat pulse versus r for various initial conditions (n = 

constant, x e = constant). Here, and in Figs. 14 and 15, fir2 is 

defined as r £ - r' where r is the reco;:nection radius. 

FIG. 14. Slight variation of the numerically calculated time of the peak of 

the heat pulse versus r 2 for various density profiles (x e = 

constant). 

FIG. 15. Variation of the numerically calculated arrival time of the peak of 
p the heat pulse versus r* for various n(r) and xe(r) profiles. 
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FIG. 16, Calculation of the arrival time of the peak of the heat pulse 

versus r 2 from the HEATX code6 for multiple pulses (0 - 6 -•=). For 

these calculations x e = 8 * 1CW cm /see, * s a w = 25 msec. 

FIG. 17. Comparison of xe's determined by phase shift analysis of heat pulse 

propagation with those determined from power balance. 

FIG. 18. Example of increasing propagation speed of heat pulses from the 

event through successive sawteeth in TFTR. (I = 1.4 MA, n = 3.1 x 

I0 1 3/cm 3, a = 33 cm, q g = 3.6.) 

FIG. 19. TFTR heat pulses simulated with BALDUR transport code. (R0 = 

2.55 in, a = 0.8 m, B = 4 T, I = 1.4 MA, r g = 25 cm, r Q = 33 cm, r- = 

35 cm, T = 60 msec, x e - 5 * 1CP cm2/sec.) 
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