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Heat Rate Predictions in Humid
Air-Water Heat Exchangers Using
Correlations and Neural Networks
We consider the flow of humid air over fin-tube multi-row multi-column compact
exchangers with possible condensation. Previously published experimental data are
to show that a regression analysis for the best-fit correlation of a prescribed form
not provide an unique answer, and that there are small but significant differences bet
the predictions of the different correlations thus obtained. It is also shown that it is m
accurate to predict the heat rate directly rather than through intermediate quantities
the j-factors. The artificial neural network technique is offered as an alternative te
nique. It is trained with experimental values of the humid-air flow rates, dry-bulb
wet-bulb inlet temperatures, fin spacing, and heat transfer rates. The trained netwo
then used to make predictions of the heat transfer. Comparison of the results de
strates that the neural network is more accurate than conventional correlations.
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1 Introduction
For the design of a thermal system it is often necessary,

selection purposes, to predict the heat transfer rates of hea
changers under specific operating conditions. Heat exchanger
complex devices, the complexity being due both to the geom
and to the physical phenomena involved in the transfer of h
For a heat exchanger operating with humid air, e.g., in refrige
tion and air-conditioning applications, some of the moisture in
air may condense on the fins and tubes. Condensing heat exch
ers have been studied by Jacobi and Goldschmidt@1#, Srinivasan
and Shah@2#, Ramadhyani@3#, and Jang et al.@4#, among others,
using heat and mass transfer coefficients. Physical processe
lated to the latent heat and modification of the flow field by t
water film or droplets increase the computational difficulty of t
problem, and numerical calculations entirely based on first p
ciples are not possible. Experiments must be carried out, usu
by the manufacturers for each of their models, to determine
heat rates as functions of the system parameters like the
rates, inlet temperatures and fin spacing. The experimental in
mation must then be transferred in some way to the user of
information who needs it to predict the heat rates under differ
operating conditions. One way is to provide the heat transfer
efficients. However, these are not constant but vary consider
with operating conditions, and can thus provide only very rou
approximations. A better and more common procedure is to c
press information about the heat transfer coefficients by mean
correlations so that variations with respect to the operating par
eters can be taken into account through standard nondimens
groups. Usually the form of the correlation cannot be totally ju
tified from first principles; it is selected on the basis of simplic
and common usage. Estimated errors in heat rates from cor
tions are normally larger than the experimental error, be
mainly due to the data compression that occurs through the
relation process. Another reason for inaccuracy in prediction
that, for most forms of correlating functions that are used, a le
squares analysis of the error gives multiple sets of values for
constants indicating that a local, rather than a global, optimum
of values may have been found.

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division January
2000; revision received October 3, 2000. Associate Editor: R. Mahajan.
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The problem of accuracy in condensing heat exchangers pre
tions is addressed by an alternative approach using artificial ne
networks~ANNs!. ANNs have been developed in recent years a
used successfully in many application areas, among them the
engineering@5#. Some examples are heat transfer data anal
@6#, manufacturing and materials processing@7,8#, solar receivers
@9#, convective heat transfer coefficients@10#, and HVAC control
@11#. Previous work on the prediction of heat rates in heat
changers without condensation has been reported by Zhao e
@12# and Diaz et al.@13#. The most attractive advantage of th
method is that it allows the modeling of complex systems with
requiring detailed knowledge of the physical processes.

In the present work, we are interested in using ANNs for t
prediction of the performance of heat exchangers with conde
tion. There is a body of published experimental data related to
problem that we will use. First, the procedure for obtaining c
relations using a least-squares regression analysis will be stu
with special regard to the multiplicity of the result. Second, w
will consider the advantages of predicting the heat rate direc
instead of usingj-factors to determine the transfer coefficien
from which the heat rates have to be calculated, as is usually d
Finally, the heat rate will be computed using artificial neu
networks.

2 Published Data and Correlations
Extensive experimental data from five different multiple-ro

multiple-column plate-fin type heat exchangers with stagge
tubes were obtained and published by McQuiston@14,15#. Be-
cause of their importance to applications such as air-condition
and refrigeration these data and the corresponding correlat
have become standards in the field. The fluids used were a
spheric air flowing through the fin passages and water inside
tubes. The conditions were such that, for certain cases, conde
tion would occur on the fins. The nature of the air-side surfa
i.e., whether dry, covered with condensed water droplets, or c
ered with a water film, was determined by direct observations
recorded. All five heat exchangers had a nominal size
127 mm3305 mm, were geometrically similar but with differen
fin spacings. A schematic with the geometrical parameters
dimensions is shown in Fig. 1. It must be noted that, even w
there is no condensation, analysis of the data shows that the
cific humidities at the inlet and outlet vary by as much as 1

2,
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percent. This discrepancy may be due to heat losses betwee
locations at which the temperatures were measured and the
exchanger. The data for dropwise and film condensation co
also have been similarly affected.

McQuiston@15,16# was interested in predicting the air-side he
transfer. He used high Reynolds-number turbulent flow on
water side so that its heat transfer coefficient, which could
estimated from the Dittus-Boelter correlation, was much hig
than that on the air side and thus introduced little error. He defi
the air-side heat transfer coefficients using the log-mean temp
ture difference for the dry surface. A similar procedure was f
Journal of Heat Transfer
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lowed for determining the air-side heat transfer coefficients un
condensing conditions using the enthalpy difference as the driv
potential. The correlations that were obtained are

j s50.001410.2618 ReD
20.4S A

Atb
D 20.15

f s~d! (1)

j t50.001410.2618 ReD
20.4S A

Atb
D 20.15

f t~d!, (2)

where
f s55
1.0 for dry surface

~0.9014.331025 Red
1.25!S d

d2t D
21

for dropwise condensation

0.8414.031025 Red
1.25 for filmwise condensation

(3)

f t55
1.0 for dry surface

~0.8014.031025 Red
1.25!S d

d2t D
4

for dropwise condensation

~0.9514.031025 Red
1.25!S d

d2t D
2

for filmwise condensation

(4)
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where j s is the Colburnj-factor for the sensible heat andj t is that
for the total heat. Of course, in the dry case the two are the sa
The range of validity of the correlation was also given.

Fig. 1 Schematic of a compact fin-tube heat exchanger
me.

Gray and Webb@17# added data from other sources to find
different correlation

j s50.14 ReD
20.328S xb

xa
D 20.502S d2t

D D 0.0312

for dry surface

(7)

with its corresponding range of applicability.

3 Multiplicity of ‘‘Best’’ Correlations
Let us look at a regression analysis to find the best correla

for the dry surface, the procedure for the other cases being sim
The general form of this correlation, as proposed by McQuis
@16#, is

j s5a1b ReD
2cS A

Atb
D 2d

. (8)

In a least-squares method the difference between the meas
and the predicted values ofj s is minimized to determine the con
stantsa, b, c, andd in the above equation. This is done by calc
lating the variance of the error defined as

Sj s
5

1

M1
(
i 51

M1

@~ j s! i
e2~ j s! i

p#2, (9)

where (j s) i
e , for i 51,...,M1 , are the experimental measuremen

and (j s) i
p , for i 51,...,M1 , are the values predicted by Eq.~8!.

Sj s
(C) is a smooth manifold in a five-dimensional space, whe

C5(a,b,c,d) is the vector of unknown constants, and a sea
must findC such thatSj s

(C) is a minimum.
This procedure was carried out for theM1 data sets. It was

found thatSj s
had multiple local minima, the following two being

examples.
APRIL 2001, Vol. 123 Õ 349
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Correlation A: j s520.021810.0606 ReD
20.0778S A

Atb
D 20.0187

(10)

Correlation B: j s520.005710.0562 ReD
20.1507S A

Atb
D 20.0436

(11)

Superficially, the two correlations appear to be quantitatively d
ferent, and are both different from Eq.~1!.

Figure 2 shows a section of theSj s
surface that passes throug

the two minima,A andB. For clarity the location coordinatez is
such thatC5CA(12z)1CBz, where CA5(a,b,c,d)A and CB
5(a,b,c,d)B correspond to the two minima. These two minimu
values ofSj s

are within 17.1 percent of each other and the cor
spondingj s predictions are within 3.7 percent. Thus the error
heat rate prediction would increase somewhat if the higher m
mum is chosen instead of the lower one.

Multiplicity of minima of the error surface comes from th
mathematical form of the correlating function assumed, Eq.~8!,
and the nonlinearity of the functionSj s

, Eq. ~9!, to be minimized.
Faced with this, it is natural to search for the global minimu
among the various local minima ofSj s

which would then bethe
best correlation. One of the ways in which this can be done is
a genetic algorithm@18#. In fact, correlation A above is found to
be the global minimum.

Fig. 2 Section of the surface Sj s
„a,b ,c ,d …; A is the global

minimum; B is a local minimum
n
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The same global search procedure has been followed to find
best correlations for dropwise and film condensation by first fix
the constants found for the dry surface and then searching for
additional constants that Eqs.~3! and~4! have. The results of the
correlations for the dry surface are shown in Table 1 as ‘‘E
~10!,’’ and for the wet surfaces as ‘‘MinimizingSj . ’’ The table
shows the ability of the correlations to predict the same data fr
which they were derived. The errors indicated are the root-me
square~rms! values of the percentage differences between
predicted and experimental data. The results of the correlation
McQuiston@16# for all surfaces and Gray and Webb@17# for dry
surfaces only are also shown; as claimed, the latter is see
perform better than the former. The correlations found here us
the global search technique are much better than the prev
correlations for the dry surface, slightly worse for dropwise a
slightly better for filmwise condensations. Some of the differen
could be due to possible elimination of outliers by previous inv
tigators; none of the published data has been excluded here.

4 Direct Correlation of Heat Rate
Using the method of the previous section to determine the h

rate, which is what the user of the information is usually interes
in, one must find thej-factor first, then the heat transfer coeffi
cient, and finally the heat rate. The procedure gives some ge
ality to the results since different fluids and temperatures can
used. If accuracy is the goal, however, it may be better to corre
the heat rate directly, as will be investigated in this section. T
dry-surface case is discussed in some detail, and for the wet
faces the procedure is similar.

Using the water-side heat transfer coefficient defined on
basis of the log-mean temperature difference@15#, the heat rate is

Table 1 Comparison of percentage errors in j s , j t , and Q̇ pre-
dictions between various correlations and the ANN
Q̇5~Tw
in2Ta

in!
12exp$UA@~ṁwcp,w!212~ṁacp,a!21#%

~ṁacp,a!212~ṁwcp,w!21 exp$UA@~ṁwcp,w!212~ṁacp,a!21#%
, (12)
re-
where

U5S A

Awhw
1

Pra
2/3

hGccp,aj s
D 21

(13)

and j s is given in Eq.~8!. To find the constants in the correlatio
the mean square error of the heat transfer rates
,

SQ̇5
1

M1
(
k51

M1

@Q̇k
e2Q̇k

p#2 (14)

must be minimized. A genetic-algorithm based global search
sults in a correlation, which when converted to aj-factor is
Transactions of the ASME
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j s520.047910.0971 ReD
20.0631S A

Atb
D 20.0137

, (15)

which is different from Eqs.~1!, ~10!, and~11!, all of which have
been obtained from the same data.

The results of using direct correlation of the heat rate are a
shown in Table 1 as ‘‘Eq.~15!.’’ The percentage error is 3.84
percent, which is the same as that given by Eq.~10!. However, if
we compare the absolute, dimensional rms error, direct correla
of heat rate shows an error of only 158.6 W, compared to an e
of 272 W from thej-factor correlation; this is an improvement o
41.7 percent. The global minimization ofSj does not necessarily
imply the global minimization ofSQ̇ . The difference of the pre-
dictions in j s is 14.8 percent between the two methods.

A similar procedure was followed to find the correlations forj t
under wet-surface conditions, and the errors are given in Tab
under ‘‘Minimizing SQ̇’’. The direct correlation of dimensiona
heat rate gives predictions that have 56.9 percent less error c
pared to thej-factor correlation for dropwise condensation a
58.6 percent for film condensation. Thus, predicting the heat
rather than j-factors gives more accurate predictions. This
somewhat expected since thej-factor assumes the existence of t
heat transfer coefficient, whileQ̇ does not.

5 Artificial Neural Networks
ANNs offer an attractive alternative to the correlation meth

discussed in the previous sections to predict the performanc
heat exchangers. Although there are many different types of
ral networks, the feedforward configuration has become the m
widely used in engineering applications@19#. This consists of a
series of layers, each with a number of nodes, the first and
layers being the input and output layers while the remaining
hidden layers. The nodes of each layer are connected only to t
of the layer before and the one after. The connections are as
ated with weights and the nodes with biases. These can be
justed during the training procedure using known data: for a gi
input the actual output is compared with the target output, and
weights and biases are repeatedly adjusted using the backp
gation algorithm@20# until the actual differs little from the targe
output. All variables are normalized to be within the@0.15, 0.85#
range. Further details are in Sen and Yang@5#.

5.1 Separation of Data for Training and Testing. The
ANN structure chosen for the present analysis consists of
layers: the input layer at the left, the output layer at the right a
two hidden layers. This 5-5-3-1 configuration, where the numb
stand for the number of nodes in each layer, is similar to
schematic shown in Fig. 4 which is used in the next section for
heat exchanger analysis, the only difference being that the fo
layer has only one output, the heat rate. The inputs to the netw
correspond to the air-flow Reynolds number ReD , inlet air dry-
bulb temperatureTa,db

in , inlet air wet-bulb temperatureTa,wb
in , in-

let water temperatureTw
in , and fin spacingd. The output is the

total heat rateQ̇. For testing the trained ANN, the variables ReD ,
Ta,db

in , Ta,wb
in , Tw

in , andd are input and the correspondingQ̇p are
predicted.

A total of M5327 experimental runs were reported by M
Quiston@15# for three different surface conditions. The data c
be separated in different ways into training and testing data. D´az
et al. @13#, for example, used 75 percent of the total data s
available for training and the rest for testing. This has two dis
vantages: first, the data set available for training is smaller t
the total amount of information available so that the predictio
are not the best possible, and second, if the training data do
include the extreme values the predictions fall in the extrapola
range and are hence less reliable. The issue of separating
complete data into training and testing sets is further analyze
the following way.
Journal of Heat Transfer
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The M available sets of experimental data are first random
sorted to avoid introducing any bias in the selection process
their order is then fixed. Only the firstMa of these are chosen fo
training and the restMb5M2Ma kept aside for the moment. Th
fraction used for training is thusPs5Ma /M . The rms values of
the relative output errors

SeQ̇
5F 1

Ma
(
i 51

Ma S Q̇i
p2Q̇i

e

Q̇i
e D 2G 1/2

(16)

are calculated at each cycle of the training process in orde
evaluate the performance of the network and to update
weights. Herei 51,...,Ma , whereQ̇p are the predictions, andQ̇e

are the experimental values of the heat rates. A reasonably
level of error, SeQ̇

, in the training process is obtained wit
250,000 cycles, which is the same for the rest of the procedu

After the training is finished, three different data sets are tes
~a! the sameMa data that were used for training are tested,~b! the
Mb data left out of the training process are tested, and~c! the
completeM data sets are tested. In each case the percentage
between the predicted and experimental values are calculated
ing Ea , Eb , andE, respectively. Without reordering theM data
sets the procedure described above is repeated for different va
of the percentage of splitting, i.e.,Ps510 percent, 20 percent,..
90 percent, 95 percent, and 99 percent. The exact shape o
error versusPs curve depends on the initial order of the data se
but some general features can be identified.

To get the overall characteristics of the error, the curves w
calculated ten times and the results averaged to remove the i
ence of the initial random ordering of the data sets. Figure
shows the average error in prediction calculated in the three
ferent ways as a function of the training fractionPs . The error
bars indicate the standard deviations,sa , sb , ands correspond-
ing to Ea , Eb , and E, respectively, that resulted from the te
different curves. From this figure, it can be seen that asPs in-
creases the prediction errors for all three cases asymptote, o
average, to approximately the same values. For anyPs , Ea is
always small since the training and testing data are identical
small values ofPs , Eb , andE are both very large indicating tha
an insufficient fraction of the data has been used for training.
we increaseMa , better predictions are obtained. BeyondPs
560 percent approximately the differences in the prediction err

Fig. 3 ANN prediction errors versus percentage of data used
for training; – Ã– error Ea using training data; – s– error Eb
using data not used for training; – L– error E using complete
data. Error bars indicate standard deviations. The Ea and E
curves have been shifted horizontally by À1 percent and 1 per-
cent, respectively, for clarity.
APRIL 2001, Vol. 123 Õ 351
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for all data sets are small. The same trend is observed for thss
which become smaller asPs→100 percent, indicating that th
prediction is somewhat insensitive to the initial random order
of the data. Near the end, however, atPs599 percent for example
sb becomes large again because nowMb is very small and the
error depends greatly on the data set that is picked for testin

From this exercise one can deduce that, in this case at lea
more than 60 percent of the available data is used for training,
results will be essentially the same. In the rest of the paper we
all of the available data for training, and use the same for test
This gives us the best prediction over the widest parameter ra
For the correlations also, as is commonly done, the entire dat
was used for finding the correlation and testing its predictions

5.2 Heat Exchanger Analysis. From the total ofM5327
experimental runs were reported by McQuiston@15#, M1591 cor-
responded to dry-surface conditions,M25117 corresponded to
dropwise condensation, andM35119 to film condensation. Fig
ure 4 shows a schematic of the feedforward neural network c
figuration used for the present analysis. There are four layer
this configuration. The inputs to the network correspond to
same physical variables described in the previous section.
outputs correspond toj s , j t , and the total heat rateQ̇. Thus, j s ,
j t , and Q̇ are functions of ReD , Ta,db

in , Ta,wb
in , Tw

in , and d. For
testing the trained ANN, the physical variables are input and
correspondingj s

p and j t
p and Q̇p are predicted. Thej-factors are

not necessary for the heat rate predictions, but are calculated
merely for the purpose of comparison with the other methods

As mentioned before, the performance of the network is eva
ated by computing the rms values of the output errors

Se5F 1

Mk
(
i 51

Mk S Oi ,k
p 2Oi ,k

e

Oi ,k
e D 2G 1/2

(17)

at each stage of the training. Nowi 51,...,Mk , k51,2,3, where
Oi ,k

p 5$ j s , j t ,Q̇%p are the set of predictions, andOi ,k
e

5$ j s , j t ,Q̇%e are the experimental output values. Several AN
configurations were tested, as in Dı´az et al. @13#, and the best
results were given by the fully-connected 5-5-3-3 configurat
which was chosen. A number of 800,000 cycles was selected
training to assure a reasonably low level of errorSe .

6 Artificial Neural Network Results
The ANN results are also shown in Table 1 along with those

correlations previously discussed. For all three surfaces, the A
predictions are much better than any of the correlations. It is

Fig. 4 A 5-5-3-3 neural network used
352 Õ Vol. 123, APRIL 2001
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Fig. 5 Experimental versus predicted j s for heat exchanger
with dry surface; ¿ ANN; v McQuiston †16‡; s Gray and Webb
†17‡. Straight line is the perfect prediction.

Fig. 6 Experiments versus predictions for heat exchanger
with dropwise condensation; ¿ ANN; v McQuiston †16‡.
Straight line is the perfect prediction: „a… sensible heat j s ; „b…
total heat j t .
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interest to note that the ANN gives better prediction for dry s
faces than for wet. This is expected since the physical phenom
associated with condensation are more complex.

To determine whether the network based on training data s
rated by some physical condition would perform better than
other trained with the combined data set, the entire set of runM
was combined to train a single ANN. The error, shown in Tabl
under ‘‘Combined,’’ is larger than the ANN predictions for ind
vidual cases, indicating that this ANN has more difficulty in d
ferentiating between the different physics involved. Howev
even then the predictions of the total heat rate have errors o
order of only 2.7 percent.

Comparisons ofj s and j t under dry and wet-surface condition
between the previously published correlations and the ANN
sults are shown in Fig. 5–7. For the dry surface there is only
j-factor, but under condensing conditions bothj s and j t are

Fig. 7 Experiments versus predictions for heat exchanger
with film condensation; ¿ANN; v McQuiston †16‡. Straight line
is the perfect prediction: „a… sensible heat j s ; „b… total heat j t .

Table 2 Percentage of data sets of different surface condi-
tions that fall in different clusters
Journal of Heat Transfer
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shown. In all the figures, the straight lines indicate equality
tween prediction and experiment. The accuracy and precis
given by the ANN is remarkable. There are some data point
Fig. 5–7 that are outliers and can clearly be eliminated to impr
the predictions, if desired.

The experimental measurements reported by McQuiston@15#
were classified according to a visual procedure. For dry surf
conditions this method is relatively reliable, but under wet con
tions it is very difficult to distinguish between different forms o
condensation by simple observation. One can ask if this vis
information is really necessary, or if the data can be separa
using some pattern recognition procedure. One of the simple
numerical clustering using ak-means algorithm@21#. We use this
method to classify the data into three groups, with all variab
normalized in the@0, 1# range.

Table 2 shows the percentage of data sets of all three sur
conditions that belong to a particular cluster I, II, or III. The
results show that cluster I clearly corresponds to dry surface c
ditions, while the situation is less crisp for clusters II and III. T
difference between the dry and wet wall data would have b
sharper if only two clusters~dry and wet wall! had been used
Each of the three clusters is analyzed separately to train t
ANNs using their respective data sets,M I581 for cluster I,M II
566 for cluster II andM III 5180 for cluster III. The total heat rate
errors given by the ANN procedure are 0.866 percent for cluste
1.626 percent for cluster II and 1.242 percent for cluster III wh
are of the same order for data separated by visual observa
Visual information is thus not really necessary and the cluster
technique is a viable alternative that produces equally g
predictions.

7 Conclusions
Correlations found from heat exchanger experimental data

ing a regression procedure are often non-unique. In this ca
global error minimization algorithm, rather than a local procedu
should be used. We have shown that there can be small but
nificant differences between the two. Furthermore, the correla
that is obtained can only be as good as its assumed functi
form. It must also be pointed out that heat transfer coefficients
defined upon the assumption of a characteristic temperature
ference and their usefulness depends on the similarity of the t
perature profiles. In other words, if the temperature distributio
are always identical except for a constant, this constant is the
quantity needed to determine the heat flux at the wall. With pr
erty variations, condensation, laminar and turbulent flows, a
many other phenomena present, this is often not the case.
situation is worse for mass transfer during condensation, sinc
rate is clearly not proportional to the enthalpy difference. Thu
is better to develop correlations to predict the heat rates direc
rather than intermediate quantities like thej-factors that assume
the existence of transfer coefficients. In addition, the user of
information is usually interested only in the overall heat rate a
not in intermediate variables like the heat transfer coefficients

Artificial neural networks do not have the drawbacks of cor
lations, and are an attractive alternative that can be used to a
rately model the thermal behavior of heat exchangers with
need to assume a functional form for the correlation nor an ac
rate mathematical model of the details of the process. We h
shown that they can predict the behavior of heat exchangers u
dry and wet conditions and their predictions are remarkably m
accurate than those from correlations. The network is able to c
the complex physics in a heat exchanger very well. In the end,
error in the predictions of the neural network is probably of t
same order as the uncertainty in the measurements, which is
best that can be expected.

ANNs also have some limitations. They do not provide a
physical insight into the phenomena in which they are used,
then neither do correlations. The training of the network may
computationally expensive though its subsequent use for pre
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tion purposes is not. For users with PCs, which is how most
sign is currently done, it is quick and easy to use. One issue
needs to be looked at in greater detail is the range of validity
the predictions as a function of the range and density of the tr
ing data set. Though research in this and related areas is ong
the neural network technique is currently a viable and accu
alternative to conventional correlations.

Nomenclature

A 5 total air-side heat transfer area@m2#
Atb 5 surface area of tubes without fins@m2#
Aw 5 water-side heat transfer area@m2#

a, b, c, d 5 correlation constants
C 5 vector of unknown constants
cp 5 specific heat@J/kg K#
D 5 tube outer diameter@m#

Dh 5 hydraulic diameter@m#
E 5 error corresponding to procedure~c!

Ea 5 error corresponding to procedure~a!
Eb 5 error corresponding to procedure~b!

f s , f t 5 functions
Gc 5 air mass velocity based in free-flow area@kg/m2 s#

h 5 heat transfer coefficient@W/m2 K#
ht 5 total ~enthalpy! heat transfer coefficient@kg/m2#
j 5 Colburn j-factor

M 5 total number of experimental data sets
Ma 5 number of data sets used for training
Mb 5 number of data sets used not used for training
M1 5 number of data sets with dry surface
M2 5 number of data sets with dropwise condensation
M3 5 number of data sets with film condensation
ṁ 5 mass flow rate@kg/s#

Oi ,k 5 $ j s , j t ,Q̇% for run i
Pr 5 Prandtl number
Ps 5 percentage of splitting@percent#
Q̇ 5 heat transfer rate between fluids@W#

ReD 5 Reynolds number based in the diameter
Red 5 Reynolds number based in the fin spacing
Sc 5 Schmidt number

Se ,SeQ̇ 5 root mean square error
SQ̇ 5 variance of total heat transfer rate error
Sj 5 variance of the Colburnj-factor error
T 5 fluid temperature@C#
t 5 fin thickness@m#

U 5 overall heat transfer coefficient@W/m2 K#
W 5 synaptic weight between nodes
xa 5 tube spacing in the longitudinal direction@m#
xb 5 tube spacing in the transverse direction@m#
z 5 section coordinate inSj s

surface

Greek Symbols

d 5 fin spacing@m#
u 5 bias
h 5 fin effectiveness
m 5 dynamic viscosity of fluid@kg/m s#
s 5 standard deviation in procedure~c!

sa 5 standard deviation in procedure~a!
sb 5 standard deviation in procedure~b!
s f 5 ratio of free-flow cross-sectional area to frontal area

Subscripts and Superscripts

a 5 air side
db 5 dry bulb
354 Õ Vol. 123, APRIL 2001
de-
that
of
in-
ing,
ate

e 5 experimental value
in 5 inlet
p 5 predicted value
s 5 sensible
t 5 total

w 5 water side
wb 5 wet bulb
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