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Prion diseases are fatal, transmissible, neurodegenerative diseases

caused by the misfolding of the prion protein (PrP). At present, the

molecular pathways underlying prion-mediated neurotoxicity are

largely unknown. We hypothesized that the transcriptional regulator

of the stress response, heat shock factor 1 (HSF1), would play an

important role in prion disease. Uninoculated HSF1 knockout (KO)

mice used in our study do not show signs of neurodegeneration as

assessed by survival, motor performance, or histopathology. When

inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO

mice had a dramatically shortened lifespan, succumbing to disease

�20% faster than controls. Surprisingly, both the onset of home-cage

behavioral symptoms and pathological alterations occurred at a

similar time in HSF1 KO and control mice. The accumulation of

proteinase K (PK)-resistant PrP also occurred with similar kinetics and

prion infectivity accrued at an equal or slower rate. Thus, HSF1

provides an important protective function that is specifically manifest

after the onset of behavioral symptoms of prion disease.

neurodegeneration � HSF1 � transmissible spongiform encephalopathy �

PrP � protein misfolding

At present there are few treatments and an incomplete under-
standing of the pathogenic mechanisms at play in neurode-

generative diseases. Prion diseases are a special class of protein-
misfolding disorders, in that they can be transmitted within and
sometimes between species in addition to occurring in sporadic and
inherited forms (1). In prion diseases the host-encoded, normally
folded, prion protein (termed PrPC) is converted into a rogue
self-perpetuating conformation (termed PrPSc) (1, 2). The ongoing
conversion of PrPC to an infectious conformer, PrPSc, is an absolute
requirement for neurotoxicity in prion disease (3, 4), yet beyond this
basic observation little is known about the cellular events leading to
synaptic loss and neuronal death.

Protein-folding homeostasis, or ‘‘proteostasis’’ (5), is maintained
by two evolutionarily conserved pathways: the unfolded protein
response (UPR) and the heat shock response (HSR). The UPR is
induced when the protein-folding machinery within the endoplas-
mic reticulum (ER) is saturated with unfolded or misfolded pro-
teins (6). To relieve the ER protein-folding burden, the UPR
reduces the synthesis of secretory proteins while also up-regulating
ER protein-folding machinery, such as ER chaperones (6).

The second protein-folding homeostatic mechanism is the HSR.
The HSR was first characterized in terms of the organismal
responses to extreme changes in environmental temperatures and
stresses (7–9). It has since been determined that the HSR is the
primary means for cells to cope with misfolded proteins in the
cytosol (10). Under normal conditions, the heat shock transcription
factor (HSF) is sequestered in the cytosol in a complex with
molecular chaperones (11, 12). During conditions that perturb
cytosolic protein-folding homeostasis, the chaperones are diverted
elsewhere. Then HSF trimerizes and enters the nucleus (13, 14),
where it rapidly drives transcription of numerous genes involved in
protein refolding, degradation of misfolded proteins, and other
proteins that regulate stress tolerance (15). In yeast and Caeno-

rhabditis elegans there is only one HSF gene whereas in mammals
there are HSF1, HSF2, and HSF4. Although interplay between
HSFs is complex (16), HSF2 and HSF4 have tissue restricted roles,
such as in spermatogenesis and lens formation (17–20). The general
picture emerging from gene targeting studies in mice defines HSF1
as the critical global responder to stress (21).

The relevance of the HSR and molecular chaperones to diseases
involving protein misfolding is a topic of intense interest (5, 10, 22,
23). Indeed, several animal models of neurodegeneration treated
with heat shock inducing compounds show delayed disease symp-
toms and pathology (24–26). In a prion disease affecting humans,
Creutzfeldt–Jakob disease, a prominent induction of heat shock
proteins was noted in the Purkinje cells of the cerebellum (27). Also,
up-regulation of HSF1 target genes such as polyubiquitins and
Hsp70 genes was observed in a mouse model of infectious prion
disease (28). Because prion diseases are an extreme example of
diseases of protein misfolding, we asked whether HSF1 regulated
prion pathogenesis.

We used mice deficient for HSF1 (21) to address the causality of
the HSF1-mediated HSR in protecting against prion disease. Under
basal conditions, HSF1 knockout (KO) mice in our colony have a
very subtle hypomyelination phenotype but show no signs of
neurodegenerative disease at a neuropathological or behavioral
level. When challenged with prions, however, HSF1 KO mice die
considerably faster than control mice. Surprisingly, the behavioral
changes associated with prion disease are initiated at the same time
in HSF1 KO and control mice, as are neuropathological alterations.
Proteinase K (PK)-resistant PrP accumulates at a similar rate in the
brains of prion-infected HSF1 KO and control mice, and prion
infectivity, as determined by bioassay, is equal or slightly diminished
at several time points after inoculation in HSF1 KO brains. We have
uncovered a protective role for HSF1 in prion pathogenesis and
establish that it is specific to disease progression as distinct from
disease onset.

Results

Characterization of Neurological Parameters in Uninoculated HSF1

Knockouts. Previously, HSF1 KO mice were characterized in terms
of (1) heat shock protein induction in response to high tempera-
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tures, (2) systemic inflammation, (3) neonatal lethality, and (4)
cardiac ischemia. In the present study, we analyzed whether PrP
protein expression was affected by deletion of HSF1, because the
Prnp gene has heat shock elements in its promoter, which may
promote its expression in response to elevated temperature (29).
Western blots of a 2-fold dilution series of whole brain homogenates
(1–0.06%) from HSF1 WT and HSF1 KO show similar steady-state
levels of PrP (Fig. 1A).

It was also reported that HSF1 KO mice have abnormalities in
their brains (16, 30). Santos and colleagues noted that their HSF1
KO brains had enlarged ventricles and astrogliosis, particularly in
white matter regions (30), while Homma and colleagues also
identified diminished myelination in HSF1 KO mice and motor
deficiencies (16). Thus, we conducted detailed neuropathological
analysis of the HSF1 KO mice from our breeding colony, which is
maintained on a mixed 129SV � BALB/c � C57BL/6 background,
to determine whether these phenotypes were present. In brains
taken from HSF1 WT and KO mice that were either uninoculated
or mock inoculated intracranially (IC) with 1% normal brain
homogenate (an inflammatory stimulus) we detected no evidence
of neurodegeneration. We did note a subtle white matter defect in
the cerebellum and sometimes in the corpus callosum of HSF1 KO
brain visualized with hematoxylin and eosin staining, which showed
a variable amount of vacuolation [one representative sample is
shown in supporting information (SI) Fig. S1]. This phenotype was
also present in HSF1 WT mice but at a much lower frequency.
Using the Luxol-Nissl myelin stain there was a slightly weaker
reaction in the HSF1 KO brain sections (Fig. S1 A and B). GFAP
staining, a measure of gliosis, was present to a variable degree in this
region of the cerebellum of HSF1 KO mice although not altogether
absent from HSF1 WT samples (Fig. S1 A and B). Staining for
IBA1, a microglial marker, and CNPase, an enzyme expressed in
myelinating cells, did not show a phenotypic difference in HSF1
WT and KO samples (data not shown and Fig. S1).

To determine the functional significance (if any) of this subtle,
restricted white matter defect, we conducted several experiments.
First, we assessed the survival of HSF1 WT and KO mice inoculated
IC with a 1% normal hamster brain homogenate: 69% of HSF1 WT

mice survived up to 469 days postinoculation (DPI) when the study
was terminated whereas 100% of HSF1 KO mice survived (Fig.
1B). This result suggests that HSF1 KO mice have a normal lifespan
at least beyond the latest time points examined in our study of
prion-infected animals.

Motor performance was assessed on an accelerating treadmill as
conducted previously (31). There were no significant differences
between HSF1 WT and KO mice at 4–6 or 16–17 months of age
(Fig. 1C). Motor coordination was measured on the rotarod
apparatus (32). Surprisingly, HSF1 KO mice showed a trend toward
better performance on rotarod at 4–6 months old, remaining on the
accelerating rotarod for �60 seconds longer than HSF1 WT mice
(P � 0.082. Student’s t test) (Fig. 1D). At a late time point of 16–17
months of age, HSF1 KO mice outperformed HSF1 WT mice on
the rotarod (P � 0.020, Student’s t test). Because the rotarod tests
motor function that relies heavily on cerebellar function and other
phenotypic testing did not show defects in HSF1 KO mice, we
concluded that these mice do not suffer from detectable neurode-
generation under basal conditions. This suggests that previous
reports of degenerative phenotypes in HSF1 KO mice are because
of genetic modifiers used in the backgrounds. Indeed HSF1 KO
mice may provide a means to uncover natural genetic variation that
could contribute to white matter pathologies.

Survival of Prion-Inoculated HSF1 Knockouts. Next HSF1 WT and
KO mice were inoculated with the Rocky Mountain Laboratory
Chandler (RML) strain of murine adapted scrapie prions. When
injected directly into the brain, RML prions (4.5logLD50/30 �l)
caused HSF1 KO mice to die 18% faster than littermate HSF1 WT
controls measured by median survival times. The median survival
time for HSF1 KO mice was 165 DPI (n � 15) and HSF1 WT mice
was 200 DPI (n � 18) (P � 0.0001, log rank test) (Fig. 2A). We
inoculated separate cohorts of mice with a range of doses of RML
prions IC and observed a shortening of disease course at all doses
tested in the HSF1 KO mice compared to HSF1 WT control mice
(Table S1). We also administered prions via an i.p. route to test
whether there was a differential peripheral prion replication or
neuroinvasion phenotype in HSF1 KO mice compared to HSF1

HSF1 WT              HSF1 KO
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PrP

actin

HSF1
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Fig. 1. Characterization of uninfected

HSF1 KO mice. (A) Western blots veryifying

the absence of HSF1 from a whole brain

homogenate from a genotypically HSF1

null mouse. Dilution series of whole brain

homogenates from HSF1 WT (n � 2) and

HSF1 KO (n � 2) show similar steady-state

levels of PrP. Beta-tubulin was used as a

loading control. (B) Assessment of survival

in HSF1 WT and KO mice inoculated with a

1% normal brain homogenate (from ham-

ster): 69% of HSF1 WT mice (n � 18) sur-

vived up to 469 days postinoculation when

the study was terminated whereas 100% of

HSF1 KO mice survived (n � 8) (tick marks

indicate intercurrent deaths or censored

events, such as mice killed because of ex-

treme dermatitis or from fight-related in-

juries). (C ) Motor performance was assessed

on an accelerating treadmill (acceleration: 1

cm/s per 5 seconds). The maximum speed at

which mice could run was recorded at 4–6

months (n � 7 WT and n � 6 HSF1 KO) and

16–17 months (n � 8 for each group); there

were no significant differences between

HSF1 WT and KO mice at either time point.

Error bars represent the SEM. (D) Motor

coordination was measured on the rotarod

apparatus for HSF1 WT (n � 7) and HSF1 KO

(n � 6) at 4–6 months of age and at 16–17 months of age (n � 8 for both HSF1 WT and KO). HSF1 KO mice outperformed HSF1 WT mice at the later time point

(*, P � 0.02, Student’s t test). Error bars represent the SEM.
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WT mice. HSF1 KO mice (n � 7) inoculated with 3.5logLD50 RML
IP succumbed to disease faster than HSF1 WT control mice (n �

13) by 44 days (Fig. 2B and Table S1) (P � 0.0001, log rank test).
Because the difference between IP and IC inoculations with
3.5logLD50 RML prions was quite similar (�16% enhancement of
disease in IP inoculated mice and �18% enhancement in IC
inoculated mice), there is unlikely to be a change in peripheral prion
replication or neuroinvasion in HSF1 KO mice compared to HSF1
WT mice. We also noted that homozygous wild-type (HSF1�/�)
and heterozygote HSF1 knockouts (HSF1�/�) had identical disease
progression. We therefore combine HSF1�/� and HSF1�/� mice
as ‘‘HSF1 WT’’ in this study.

Onset of Prion Disease Behavioral Symptoms in HSF1 Knockouts. To
determine at what stage HSF1 exerts its protective effect, we first
investigated the alterations in home-cage behaviors of a cohort of
RML-infected HSF1 WT and KO mice. We used video-based
automated behavioral analysis technology, which robustly discrim-
inated between mock-inoculated control mice and RML prion-
infected mice at the earliest onset of disease (33). This system was
able to distinguish subtle differences in prion-induced behavioral
symptoms in another study (34). We followed the behavioral
changes in RML prion-inoculated HSF1 WT (n � 20) and HSF1
KO (n � 15) mice (from survival plot shown in Fig. 1) beginning
at 1 month postinoculation (MPI) until death.

Given that the HSF1 KO mice died �1 month faster than control
mice, we expected to observe a commensurate quickening in the
onset and spectrum of behavioral signs of neurological disease.
Surprisingly, the onset of behavioral symptoms was quite similar or
only slightly accelerated in HSF1 KO mice compared to littermate
HSF1 WT mice (Fig. 3).

One of the most obvious phenotypes that results from RML
prion disease is a dramatic increase in activity, which is reflected in
the lateral distance traveled in the home cage (33). The distance
traveled in a 24-hour recording period began to increase in HSF1
WT and KO mice at 4 MPI and became much more pronounced
by 4.5 and 5 MPI (Fig. 3A). Although the HSF1 KO mice show a
trend toward increasing distance traveled at 4 and 4.5 MPI, there
were no significant differences from HSF1 WT mice. Another
phenotype of prion disease, increased rearing, shows a similar
increase in HSF1 KO and control mice except for the last recording
time point of HSF1 KO mice, 5 MPI. Here the HSF1 KOs rear less
than HSF1 WT controls (P � 0.01, Wilcoxon rank sum for all
home-cage behavioral statistical tests) (Fig. 3B). A decrease in
hanging vertically or upside down from the wire food rack of the
home cage, a complex motor behavior, is characteristic of RML
prion disease (33). This decrease in hanging showed a similar
progressive decline in both HSF1 WT and KO mice. At one early
time point, 2.5 MPI, HSF1 KO mice actually exhibited a significant
increase in hanging (P � 0.05) and at the last recording of HSF1 KO
mice, 5 MPI, there was a significant decrease in the hanging
behavior (P � 0.05) (Fig. 3C). Decreased grooming is another
feature of RML prion infection (33). This progressive decline in
grooming behavior was slightly more severe in HSF1 KO mice than
in HSF1 WT mice (P � 0.05 at 4.5 and P � 0.01 at 5 MPI) (Fig. 2D).

Analysis of several other behaviors of HSF1 WT and KO mice,
including jumping, resting, stretching, and drinking were indistin-
guishable with the exception of eating, which was significantly
decreased at many time points in HSF1 KO mice (data not shown).
Thus, our analysis suggests that the onset of RML prion-induced
behavioral signs of neurological disease occurs at a similar time
point (�4–4.5 MPI) in HSF1 KO mice compared to control mice.
However, the clinical course—the length of time from the onset of
disease phenotypes until death—is drastically reduced in HSF1 KO
mice, hence their absence from the later behavioral time points.

Neuropathological Features of Prion Disease in HSF1 Knockouts.

Neuropathological analysis of brain samples taken from IC prion-
inoculated HSF1 KO and control mice were conducted at several
time points: 3.5, 4, 4.5 MPI and at endpoint. Hematoxylin and eosin
(H&E) stained sections were assessed for spongiform changes in
prion-inoculated samples. At 3.5 MPI there was little to no spon-
giosis. At 4 and 4.5 MPI, and in terminal samples, vacuolation was
evident in both prion-inoculated HSF1 WT and KO brain samples
(Fig. 4). The rate of progression, extent, or regional distribution of
vacuolation did not differ between HSF1 WT and KO samples.

The amount of gliosis, an established marker for neurodegen-
eration, was assessed by staining brain sections with an antibody
against the astrocyte antigen, glial fibrillary acidic protein (GFAP).
Abundant anti-GFAP staining was evident in all prion-inoculated
samples by 4–4.5 MPI. As with H&E staining observations, we did
not note any differences in the regional distribution, strength, or
kinetics of the glial response (Fig. 4). We stained for PrP aggregates
by treating brain samples with formic acid to diminish the normal
endogenous PrP, leaving only disease-associated aggregated PrP
deposits. There were no differences in PrP aggregate accumulation
in the brains of HSF1 KO and control samples (Fig. 4).

Accumulation of Proteinase K-resistant PrP and Prion Infectivity.

Because immunohistochemical staining for PrP aggregation is not
quantitative, we used PK digestion to assay the amount of aggre-
gated PrP and to distinguish disease-associated PrP from normal
PrP, which is sensitive to digestion with PK. We measured the
amount of PK-resistant PrP in whole brain homogenates from
prion-inoculated HSF1 WT and HSF1 KO mice killed at 3.5 MPI
and also in samples taken from terminally ill mice. At 3.5 MPI, PK
treatment (50 �g/ml for 1 h at 37°C) digested away almost all of PrP,
but a faint amount of PK-resistant PrP was visible in almost all
samples, irrespective of the HSF1 genotype (Fig. 5A). In terminal

Fig. 2. HSF1 KO mice die faster than HSF1 WT control mice from prion

disease. (A) Survival of HSF1 WT (n � 18) and KO (n � 15) mice inoculated

intracranially with 4.5logLD50 RML prions (P � 0.0001, log rank test) (note:

x-axis is broken to begin at 125 days postinoculation). (B) i.p. infection of HSF1

WT (n � 13) and KO (n � 7) mice with 3.5logLD50 RML prions (P � 0.0001, log

rank test) (note: x-axis is broken to begin at 175 days postinoculation).
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samples there was considerably more accumulation of PK-resistant
PrP in all HSF1 WT and HSF1 KO samples (Fig. 5B).

Because PK-resistance does not always predict prion infectivity
(35, 36), we determined prion titers using a bioassay (37). We
inoculated a 10-fold dilution series of HSF1 WT and HSF1 KO
brains from 2, 3, 4, and 5 MPI into ‘‘Tga20’’ trangenic mice
overexpressing WT mouse PrP (38) and monitored their survival.
We also assayed prion infectivity in terminal brain samples from
prion-inoculated HSF1 WT and HSF1 KO samples using CD1 mice
as recipients. Unexpectedly, we observed a similar or even dimin-
ished development of prion infectivity in HSF1 KO mice relative to
HSF1 WT mice (Fig. 5C, Table S2). At 2 MPI, there was a small
but nonetheless statistically significant decrease in titer (P � 0.019,
P-value from bootstrap resampling) and in terminal samples there
was also a small but significant decrease in prion titer (P � 0.016)
(Fig. 5C, Table S2). There were no statistically significant differ-
ences in prion titers between HSF1 KO and HSF1 WT mice at the
other time points tested (3, 4, and 5 MPI).

Discussion

We have demonstrated that HSF1 is a key regulator of lifespan in
prion disease. Importantly, the other major features of prion
disease—the onset of behavioral symptoms, neuropathological
changes, and aggregation of PrP—show similar timing in HSF1 KO

and control mice. The disease symptoms of RML prion inoculation
occur �4 MPI in both the HSF1 WT and KO mice, with some
subtle changes, such as decreased grooming, happening only slightly
earlier in the HSF1 KO mice. The accumulation of PK-resistant PrP
was observed first at 3.5 MPI in both the HSF1 WT and KO brain
samples and prion titers showed a parallel increase over the course
of disease. Thus HSF1 KO mice have a much shorter postsymp-
tomatic phase of disease than WT mice, defining a critical protec-
tive activity by HSF1 as operating after disease phenotypes first
arise.

How might HSF1 function to prolong the survival of prion-
infected mice? There are two major arms in the cellular response
to protein-folding stress. Whereas the UPR responds primarily to
protein-folding stress in the secretory pathway (6), the HSF1-
mediated HSR responds to protein-folding stress in the cytosol and
nucleus (10). Interestingly, the cytosol has been implicated as a key
compartment for PrP toxicity by cell culture and in vivo experiments
(39). It may be that in the absence of the HSF1 transcriptome,
neurons cannot protect themselves against the accumulation of PrP
in the cytosol during prion infection.

HSF1 also functions as a transcriptional repressor for another set
of target genes and some studies directly link this repressor activity
to apoptosis (40, 41). At present there is conflicting evidence on the
importance of apoptotic pathways in prion diseases (34, 42, 43).

HSF1 WT

HSF1 KO

A B

C D

Fig. 3. Behavioral alterations in home-cage behaviors occur at a similar time in prion-infected HSF1 WT and KO mice (for HSF1 WT mice n � 20 at all time points

except at 6.5 MPI where n � 19 and for HSF1 KO mice n � 15 at all time points except at 5 MPI where n � 14). (A) The increase in distance traveled, which measures

lateral movement (meters), shows a similar onset in HSF1 WT and KO mice infected with RML prions. (B) Another phenotype of prion disease, increased rearing,

shows a similar increase in HSF1 KO and control mice except for the last recording time point of HSF1 KO mice, 5 MPI, where the HSF1 WT mice showed an increased

rearing (P � 0.01, Wilcoxon rank sum). (C) The decrease in hanging from the wire food rack was similar between HSF1 WT and KO mice (at one early time point,

2.5 MPI, HSF1 KO mice had a significant increase in hanging P � 0.05, Wilcoxon rank sum test) and at the last recording of HSF1 KO mice, 5 MPI, there was a

significant decrease in the hanging behavior of HSF1 KO mice (P � 0.05, Wilcoxon rank sum). (D) The decrease in grooming behavior was slightly more severe

in HSF1 KO mice, which showed less grooming at 4.5 (P � 0.05) and 5 MPI (P � 0.01, Wilcoxon rank sum test). HSF1 KO mice were not video recorded beyond

5 MPI because many had already died. Error bars represent the SEM.
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HSF1 may well respond differently to thermal elevation (15, 44) and
the stresses induced by the misfolding of PrP. Transcriptional
profiling of microdissected regions of the brain subject to degen-
eration in RML prion disease would reveal which genes are up- or
down-regulated in HSF1 KO mice during disease states.

Despite many attempts, few genetic pathways have been dem-
onstrated to moderate the course of prion neurotoxicity. We do not,
therefore, expect that deletion of HSF1 alters prion disease in a
nonspecific manner. Indeed the deletion of a different stress
responsive transcription factor involved in induction of the UPR,
XBP-1, did not alter any aspect of prion pathogenesis in another
similar mouse model of prion disease (45). Also deletion of
Caspase-12, which may directly activate apoptotic caspase cascades
in response to ER stress, did not observably alter RML prion
disease (42). Mouse genetic approaches to determine genes that
accelerate or delay prion pathogenesis have been fruitful for

understanding the components of peripheral prion transport (3).
On the other hand, these same approaches have uncovered very few
genes that alter prion toxicity in the central nervous system, lending
support to the hypothesis that HSF1 may be specifically involved in
protecting against prion toxicity.

There is evidence linking HSF1 and its target proteins to
neurodegenerative diseases in several experimental systems (46,
47). Here we have taken advantage of the HSF1 KO to directly
establish the role of the HSF1-mediated HSR in protecting against
prion toxicity. Our results provide strong experimental evidence
that HSF1 is causally involved in protection against neurodegen-
eration in vivo, and this system may prove to be of broader interest.
The main advantage of studying infectious prion-mediated neuro-
degeneration rather than transgenic models of neurodegeneration,
such as Huntington’s or Alzheimer’s disease, is that prion disease
can be induced by direct inoculation—obviating cumbersome ge-

i ii iii iv

v vi vii viii

ix x xi xii

Fig. 4. Similar neuropathological changes in HSF1 KO

and control mice brains. Spongiform changes were

visualized with H&E staining. Representative images of

hippocampi taken at 5 MPI from RML prion-inoculated

HSF1 WT and KO mice are shown at low magnification

in i and iii and at higher power in ii and iv. The glial

response was assessed by staining with an antibody

against the astrocyte antigen GFAP. Dramatic astrocy-

tosis was observed in hiccocampi from both HSF1 WT

and KO samples shown at low magnification in v and vii

and at higher power in vi and viii. Immunohistochem-

istry specifically against disease-associated PrP showed

equivalent staining in HSF1 WT and KO samples shown

at low magnification in ix and xi and at higher power

in x and xii. (Scale bars: first and third columns, 500 �m;

second and fourth columns, 100 �m.)

HSF1:   WT1     WT2     WT3     WT4      WT 5    WT6          KO1       KO2       KO3      KO4       KO5      KO6    
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PK:
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HSF1:   WT1     WT2     WT3     WT4      WT 5    WT6          KO1       KO2       KO3      KO4     KO5      KO6    
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Fig. 5. Measurement of proteinase K (PK)-

resistant PrP and prion titers. (A–B) The amount of

PK-resistant PrP was measured by immunoblotting

PK-treated brain homogenates at 3.5 months (A)

postinoculation and in terminal samples (B) (n � 6

HSF1 WT and KO). (C) The titer of prion infectivity

was bioassayed using recipient Tga20 transgenic

PrP overexpression mice by pooling HSF1 WT (n �

2) and HSF1 KO (n � 2) brains at 60, 90, 120, and

150, and the terminal samples were bioassayed

using recipient mice with brain samples pooled

from HSF1 WT (n � 4) and HSF1 KO (n � 4).

Bootstrapped P-values from a simulation (see Ma-

terials and Methods) are shown above each set of

bars to compare HSF1 WT and HSF1 KO at each

time point. Error bars represent 95% confidence

intervals.
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netically defined crossing of transgenic lines. Numerous reports
have noted up-regulation of particular chaperones that correlate
with neuroprotection (48–50), but by taking a genetic approach we
were able to demonstrate that HSF1 is required for maintaining
viability during the clinical phase of prion infection. Indeed, boost-
ing the HSR during prion disease may be an effective therapeutic
strategy. Previous studies demonstrated that prion-infected neuro-
blastoma cells present a defective heat shock response (51). Al-
though the mechanism of this effect remains unclear, it was later
shown that geldanamycin, a potent heat shock-inducing drug,
restores this defective heat shock response in cultured cells infected
with prions (52). Activation of HSF1 might provide a promising
therapeutic strategy for ameliorating prion or other protein-
misfolding diseases. However, there are good reasons to be cautious
about induction of the HSR because HSF1 has diverse target genes
that are involved in many cellular processes (15) such as mainte-
nance of circadian rhythms (53) and promoting tumor cell main-
tenance (22). Therefore, the design of therapeutics with a high
specificity for induction of the HSR in neurons accumulating
misfolded proteins may be an important avenue for treating pro-
tein-misfolding disorders.

Materials and Methods
Mouse Strains. All mouse experiments were approved by the Massachusetts

Institute of Technology Committee on Animal Care. Food and water were pro-

vided ad libitum and mice were singly housed for the duration of the study while

being maintained on a 12:12 light–dark cycle. The construction of the HSF1

deletion (54) and characterization of the knockout mice (21) were previously

described. Mice were obtained on a mixed 129SvEv � BALB/c strain background

and were crossed once to C57BL/6J and maintained by intercrossing mice het-

erozygous for the HSF1 deletion allele. The titering of the infectivity of samples

used Tga20 recipient mice that had been backcrossed to C57BL/6J for 5–6 gen-

erations and bred onto a WT PrP genome (55).

The detailed methods of prion inoculations and titer calculation, statistical

analysis, Western blotting, behavioral analysis, and neuropathological analysis

are described in SI Methods.
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