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Abstract
Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-

characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in 

maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, 

allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the 

transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response, mechanism that cells 

use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition 

as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 

inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the 

subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate 

formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in 

neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative 

diseases.

Roles of Hsp90 in neurodegeneration
Hsp90 is a molecular chaperone with important roles in

maintaining the functional stability and viability of cells

under a transforming pressure [1-3]. For neurodegenera-

tive disorders associated with protein aggregation, the

rationale has been that inhibition of Hsp90 activates heat

shock factor-1 (HSF-1) to induce production of Hsp70

and Hsp40, as well as of other chaperones, which in turn,

promote disaggregation and protein degradation [4-6].

However, recent evidence reveals an additional role for

Hsp90 in neurodegeneration. Namely, Hsp90 maintains

the functional stability of neuronal proteins of aberrant

capacity, thus, allowing and sustaining the accumulation

of toxic aggregates [7,8]. Below, we summarize the cur-

rent understanding on these Hsp90 biological roles and

review potential applications of pharmacological Hsp90

inhibition in neurodegenerative diseases.

1. HSF-1 is a master regulator of the heat shock response

Exposed to conditions of stress, cells normally respond by

activation of the heat shock response (HSR) accompanied

by increased synthesis of a number of cytoprotective heat

shock proteins (Hsps) which dampen cytotoxicity, such as

caused by misfolded and denatured proteins [4-6]. The

most prominent part of this transition occurs on the tran-

scriptional level. In mammals, protein-damaging stress is

regulated by activation of HSF-1, which binds to

upstream regulatory sequences in the promoters of heat

shock genes [9]. The activation of HSF-1 proceeds

through a multi-step pathway, involving a monomer-to-

trimer transition, nuclear accumulation and extensive

posttranslational modifications (Fig. (1A)). The function

of HSF-1 is regulated by Hsp90 [10]. Namely, under non-

stressed conditions, Hsp90 binds to HSF-1 and maintains

the transcription factor in a monomeric state. Stress, heat

shock or inhibition of Hsp90 release HSF-1 from the

Hsp90 complex, which results in its trimerization (Fig.

(1B)), activation and translocation to the nucleus where it

initiates a heat shock response, manifested in the produc-

tion of Hsps such as the chaperones Hsp70 and its activa-

tor, Hsp40 (Fig. (1A,C)). Neurons in the differentiated

state, both in vivo and in vitro systems have been

reported to be resistant to Hsp induction following con-

ventional heat shock [5]. In contrast, pharmacologic

induction of Hsp70 upon HSF-1 activation has been doc-

umented, and moreover as described below, demon-
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strated to be protective in neurons against toxicity caused

by multiple types of insults.
1.1. Hsp70 redirects neuronal aggregate formation and 

protects against aggregate toxicity

Frequently, neurodegenerative diseases are characterized

by a gain of toxic function of misfolded proteins. Here,

toxicity may result from an imbalance between normal

chaperone capacity and production of dangerous protein

species. Increased chaperone expression can suppress the

neurotoxicity of these molecules, suggesting possible

therapeutic strategies. Indeed, several studies summa-

rized below, have reported a reduction in cellular toxicity

upon expression of Hsp70 and Hsp40 in neurodegenera-

tive aggregation disease models.

The polyglutamine (polyQ) diseases consist of nine

neurodegenerative diseases in which a polyQ tract expan-

sion leads to protein misfolding and subsequent deposi-

tion of protein aggregates in neurons [11]. Among these

are Huntington's disease (HD), spinal and bulbar muscu-

lar atrophy (SBMA), Dentatorubral-pallidoluysian atro-

phy (DRPLA), and several ataxias (SCA1-3). In HD,

mutant forms of huntingtin (htt) with expanded glu-

tamine repeats form nuclear and cytoplasmic aggregates.

Muchowski et al found that Hsp70 and its cochaperone

Hsp40 suppressed the assembly of htt into spherical and

annular polyglutamine oligomers and thus attenuated the

formation of detergent-insoluble amyloid-like fibrils [12].

Likewise, in a yeast model of HD, expression of Hsp70

and Hsp40 reduced the toxicity associated with expres-

sion of mutant htt by preventing its aberrant interaction

with an essential polyQ-containing transcription factor

[13]. Studies in a mouse model of HD suggested that in

neurons, protection by Hsp70 against the toxic effects of

misfolded htt protein occurred by mechanisms indepen-

dent of the deposition of fibrillar aggregates, namely by

binding monomeric and/or low molecular mass SDS-sol-

Figure 1 Heat shock proteins are induced upon Hsp90 inhibition. (A) Schematic representation of HSF-1 regulation by Hsp90 and its activation 

by Hsp90 inhibitors. (B) Treatment of cells with heat shock or an Hsp90 inhibitor (Hsp90i) results in HSF-1 trimerization [10]. (C) Systemic administration 

of the purine-scaffold Hsp90 inhibitor PU-DZ8 to AD transgenic mice results in Hsp70 induction in the brain [29].
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uble oligomers that are likely off-pathway to fibril forma-

tion, but may be potentially pathogenic [14]. In a

mammalian model of spinocerebellar ataxia (SCA) type 1,

expression of Hsp70 afforded protection against polyQ-

induced neurodegeneration [15]. Pharmacological induc-

tion of heat-shock proteins in spinal and bulbar muscular

atrophy (SBMA)-transgenic mice suppressed nuclear

accumulation of the pathogenic androgen receptor (AR)

protein, resulting in amelioration of polyglutamine-

dependent neuromuscular phenotypes [16].

In amyotrophic lateral sclerosis (ALS), the FDA-

approved drug riluzole was reported to partly act by HSF-

1 activation and amplification of the HSR [17]. In the

Superoxide dismutase 1 (SOD1) mouse model of ALS,

elevation in levels of Hsp70 by another agent, arimoclo-

mol, protected motor-neurons in both acute injury-

induced motor-neuron degeneration as well as progres-

sive motor-neuron degeneration models [18].

In various cellular models of Alzheimer's disease (AD),

increased levels of Hsp70 promoted tau solubility and tau

binding to microtubules [19]. Hsp70 also inhibited the

propensity of Aβ to aggregate [20], and reduced the toxic-

ity of Aβ on neuronal cultures [21]. Moreover, Amyloid

precursor protein (APP) and/or its amyloidogenic deriva-

tive Aβ are targets of chaperone mediated clearance

[22,23]. In Drosophila melanogaster and yeast models of

Parkinson's disease (PD), directed expression of Hsp70 or

pharmacologic Hsp modulation prevented the neuronal

loss caused by α-synuclein [24,25]. Huang et al reported

that these effects of Hsp70 manifested by inhibition of α-

synuclein fibril formation via preventing the formation of

prefibrillar α-synuclein formation [26]. Using α-synuclein

deletion mutants, Luk et al indicated that interactions

between the Hsp70 substrate binding domain and the α-

synuclein core hydrophobic region mediated assembly

inhibition, and that the assembly process was inhibited

prior to the elongation stage [27].

Overall, in the several neurodegenerative disease mod-

els presented above, overexpression of Hsp70 improved

the severities of several disease phenotypes without visi-

bly affecting aggregate formation, suggesting that chaper-

ones do not prevent aggregation per se, but rather

redirect aggregates into amorphous deposits, thereby

sequestering potentially toxic species from bulk solution.
1.2. Expression of Hsp70 and other Hsps are induced upon 

pharmacologic Hsp90 inhibition

As noted above, inhibition of Hsp90 releases HSF-1 from

the Hsp90 complex resulting in subsequent production of

Hsps (Fig. (1)), and induction of Hsp70 by Hsp90 inhibi-

tors is well documented in neurodegenerative disease

models. Geldanamycin (GM) (Fig. (2)), an Hsp90 inhibi-

tor [28], induced a dose-dependent increase of Hsp70 in

an AD cell model, as well as in rat primary cortical neu-

rons [19] and reduced the amount of insoluble tau and

the basal levels of okadaic-acid induced tau phosphoryla-

tion [19]. Treatment of primary cortical neurons with the

purine-scaffold Hsp90 inhibitor PU24FCl, led to a dose-

dependent increase in Hsp70 [29]. Similarly, administra-

tion of two CNS-permeable PU24FCl-derivatives, PU-

DZ8 (Fig. (2)) [29] and EC102 [30], to tau transgenic mice

(htau and JNPL3) resulted in Hsp70 induction in the

brain, effects maintained at 24 h post-administration.

KU32, an Hsp90 inhibitor of distinct chemical nature

(Fig. (2)), induced Hsp70 in SH-SY5Y neuroblastoma cul-

tures and protected them against Aβ-induced toxicity

[31]. GM activated a heat shock response and inhibited

htt aggregation in a cell culture model of HD [32,33] and

induced Hsp70 in a time- and concentration-dependent

manner and prevented α-synuclein aggregation and pro-

tected against toxicity in a cellular α-synuclein aggrega-

tion model [34]. Auluck et al reported that treatment of a

fly model of PD with GM fully protected against α-synu-

clein toxicity [35]. GM also protected against 1-methyl-4-

pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dop-

aminergic neurotoxicity, a mouse model of PD [36]. Pre-

treatment with GM via intracerebral ventricular

injection, prior to MPTP treatment, induced Hsp70 and

increased residual dopamine content and tyrosine

hydroxylase immunoreactivity in the striatum [36].

Hsp70 induction in the spinal cord was noted upon intra-

peritoneal injection of a GM derivative, 17-AAG, in a

mouse model of SBMA [37]. 17-AAG was also effective

against neurodegeneration in other polyQ diseases [38].

Namely, it suppressed compound eye degeneration and

inclusion body formation and rescued the lethality in a

Drosophila model of SCA. It also suppressed neurode-

generation in a HD fly model. Knockdown of HSF-1 abol-

Figure 2 Chemical structures of several representative Hsp90 in-

hibitors. GM = ansamycin class; PU-DZ8 = purine-scaffold class; KU-32 

= novobiocin class.
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ished the induction of molecular chaperones and the

therapeutic effect of 17-AAG on polyQ-induced neuro-

degeneration in the Drosophila models, arguing that the

therapeutic effect of 17-AAG was mainly HSF1-mediated

[38].

In summary, HSF-1 activation by Hsp90 inhibitors was

noted in several in vitro and in vivo models of neurode-

generative disease, suggesting Hsp90 inhibition as a

means to modulate Hsp levels in the diseased brain, with

the goal of protecting against the toxic proteins that arise

during the neurodegenerative process.

2. Inhibition of Hsp90 reduces aberrant neuronal protein 

activity and expression

In addition to regulation of HSF-1, recent evidence sug-

gests an additional role for Hsp90 in maintaining the

functional stability of neuronal proteins of aberrant

capacity (Fig. (3A)).

SBMA is an inherited motor neuron disease caused by

the expansion of a polyglutamine tract within the andro-

gen receptor (AR) [11]. The pathologic features of SBMA

are motor neuron loss in the spinal cord and brainstem

and diffuse nuclear accumulation and nuclear inclusions

of the mutant AR (mAR) in the residual motor neurons

and certain visceral organs. Waza et al demonstrated that

mAR present in SBMA is one of the proteins regulated by

Hsp90 (Fig. (3A)) [37]. Hsp90 formed a molecular com-

plex with mAR to maintain its functional stability. In both

SBMA cell models and transgenic mice, inhibition of

Hsp90 by 17-AAG led to a preferential degradation of the

mAR, mainly by the proteasome machinery. These effects

of 17-AAG were uncoupled from induction of Hsp70, and

resulted from direct destabilization of mAR and its sub-

sequent degradation upon Hsp90 inhibition. In a trans-

genic mouse model of SBMA, 17-AAG ameliorated

motor impairments without detectable toxicity, and

reduced the amounts of monomeric and aggregated mAR

[37]. Similar findings were reported by Thomas et al;

these authors found that pharmacologic Hsp90 inhibition

blocked the development of aggregates of the expanded

glutamine androgen receptor (AR112Q) in HSF1(-/-)

mouse embryonic fibroblasts where Hsp70 and Hsp40

chaperones were not induced [39].

Parkinson disease (PD), the most common neurode-

generative movement disorder, is characterized by a com-

plexity of pathogenic events [40], many of which were

recently linked to Hsp90 (Fig. (3A)). Wang et al have

recently shown that Leucine-rich repeat kinase 2

(LRRK2), a kinase of whose mutated forms is prevalent in

both familial and apparently sporadic cases of PD, formed

a complex with Hsp90 in vivo [41]. Inhibition of Hsp90

function by the purine-scaffold Hsp90 inhibitor PU-H71

disrupted the association of Hsp90 with LRRK2 and led

to elimination of LRRK2 by the proteasome. PU-H71 lim-

ited the mutant LRRK2-elicited toxicity to neurons and

rescued the axon growth retardation defect caused by the

LRRK2 G2019S mutation in neurons [41]. Mutation of

PTEN-induced kinase 1 (PINK1), which encodes a puta-

tive mitochondrial serine/threonine kinase, leads to

PARK6, an autosomal recessive form of familial Parkin-

son's disease [40]. The recessive inheritance of this form

of Parkinson's disease suggests loss of PINK1 function is

closely associated with its pathogenesis. Moriwaki et al

have reported that Hsp90 binds PINK1 to enhance its sta-

bility. In cells treated with the Hsp90 inhibitor GM, levels

of PINK1 were greatly diminished via the ubiquitin-pro-

teasome pathway [42]. α-Synuclein is an intrinsically

unstructured protein that may form fibrils, and is also

involved in PD neurodegeneration [40]. Falsone et al has

recently reported that Hsp90 influences α-synuclein vesi-

cle binding and amyloid fibril formation, two processes

that are tightly coupled to α-synuclein folding [43].

Namely, Hsp90 bound α-synuclein and abolished the

interaction of this polypeptide with small unilamellar ves-

icles. Hsp90 also promoted fibril formation in an ATP-

dependent manner via oligomeric intermediates [43].

Another link between α-synuclein and Hsp90 was pro-

vided by Kabuta et al [44]. Alpha-synuclein is degraded at

least partly by chaperone-mediated autophagy (CMA).

The authors suggested that aberrant interaction of

mutant ubiquitin C-terminal hydrolase L1 (UCH-L1)

with the chaperone-mediated autophagy CMA machin-

ery, at least partly accounted for the pathogenesis of PD

associated with I93M UCH-L1 and the increase in the

amount of α-synuclein [44].

In tauopathies, neurodegenerative diseases character-

ized by tau protein abnormalities, transformation is char-

acterized by abnormalities in the tau protein leading to an

accumulation of hyperphosphorylated and aggregated

tau [45]. In AD, tau hyperphosphorylation is suggested to

be a pathogenic process caused by aberrant activation of

several kinases, in particular cyclin-dependent protein

kinase 5 (CDK5) and glycogen synthase kinase-3 beta

(GSK3β), leading to phosphorylation of tau on patho-

genic sites [46]. Hyperphosphorylated tau in AD is

believed to misfold, undergo net dissociation from micro-

tubules and form toxic tau aggregates. In a cluster of

tauopathies termed "frontotemporal dementia and par-

kinsonism linked to chromosome 17 (FTDP-17)", trans-

formation is caused by several mutations in human tau

isoforms on chromosome 17, that result in and are char-

acterized by the accumulation of aggregated tau similar

to that in AD [47]. Luo et al have reported that the stabil-

ity of p35 and p25, neuronal proteins that activate CDK5

through complex formation leading to aberrant tau phos-

phorylation, and that of mutant but not wild type tau pro-

tein, were maintained in tauopathies by Hsp90 (Fig. (3A))

[29]. Inhibition of Hsp90 in both cellular and mouse
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Figure 3 Hsp90 shelters aberrant neuronal proteins. (A) Aberrant neuronal proteins regulated by Hsp90. To tolerate the accumulation of dysreg-

ulated processes and to allow the development of the disease phenotype, the functional stability of these aberrant processes likely requires a "buff-

ering" mechanism, such as offered by Hsp90. These aberrant neuronal proteins activities develop Hsp90-dependency and promote disease 

progression. (B) Pharmacologic Hsp90 inhibition results in inactivation or degradation of Hsp90-regulated proteins, mainly by a proteasomal pathway.

A

B



Luo et al. Molecular Neurodegeneration 2010, 5:24

http://www.molecularneurodegeneration.com/content/5/1/24

Page 6 of 8

models of tauopathies led to reduction of the pathogenic

activity of these proteins and resulted in a dose- and

time-dependent elimination of aggregated tau [29].

When administered 5xweek for 30 days to JNPL3 trans-

genic (tg) mice, PU-DZ8 (Fig. (2), led to significant reduc-

tion in mutant tau expression and phosphorylation

without toxicity to the mice [29]. Complementarily,

Dickey et al demonstrated that the EC102 Hsp90 inhibi-

tor promoted selective decrease in ptau species in a tg

mouse model of AD independent of HSF-1 activation

(Fig. (3A)) [30]. Both reports identify the proteasomal

pathway as responsible for degradation of the aberrant

tau species following Hsp90 inhibition [29,30]. A link

between Hsp90 and GSK3β was reported by Dou et al

(Fig. (3A)) [48]. Namely, the stability and function of the

GSK3β was found to be maintained by Hsp90, and Hsp90

inhibition by GM and PU24FCl led to a reduction in the

protein level of GSK3β, effect associated with a decrease

in tau phosphorylation at putative GSK3β sites [48]. Fur-

ther, Tortosa et al reported that binding of Hsp90 to tau

facilitates a conformational change in tau that could

result in its phosphorylation by GSK3 and its aggregation

into filamentous structures [49].

Collectively, the above data suggest that at the pheno-

typic level, Hsp90 appears to serve as a biochemical buf-

fer for the numerous aberrant processes that facilitate the

evolution of the neurodegenerative phenotype (Fig. (3A)).

Inhibition of Hsp90 by small molecules results in the

destabilization of the Hsp90/aberrant protein complexes

leading primarily to degradation of these proteins by a

proteasome-mediated pathway (Fig. (3B)).

Conclusion
Collectively, these reports suggest that in neurodegenera-

tive diseases Hsp90 inhibition may offers a dual therapeu-

tic approach. On one hand, its benefits may come from

induction of Hsp70 and other chaperones able of redi-

recting neuronal aggregate formation, and capable of pro-

tective potential against protein toxicity, proposing

Hsp90 inhibition as a pharmacological intervention to

therapeutically increase expression of molecular chaper-

one proteins to treat neurodegenerative diseases where

aggregation is central to the pathogenesis (Fig. (1)). On

the other hand, Hsp90 inhibition may ameliorate protein

hyperphosphorylation and subsequent aggregation by

reduction of aberrant neuronal protein activity (Fig. (3)).

The usefulness of Hsp90 inhibitors as clinical agents in

neurodegenerative diseases will depend on whether their

effects occur at concentrations of drug that are not toxic

and on whether the drugs can be administered chroni-

cally in such a fashion so as to safely achieve these con-

centrations in the brain. While studies in several cellular

models show promise for this class of compounds in

treating a large spectrum of neurodegenerative diseases,

these studies need to be furthered in animal models, with

the goal of testing both Hsp90 inhibitors efficacy in

improving neuro-pathology and their safety under long-

term administration schedules. While several of the stud-

ies have used GM and its derivatives, these agents have

several liabilities that limit their future clinical use [50].

Development for cancers of Hsp90 inhibitors of scaffolds

distinct from that of GM is currently reaching an explo-

sive phase, where several agents are in clinical evaluation,

with many others following behind [50]. It is likely that

the Hsp90 inhibitor classes with best safety profiles will

also move into the neurodegenerative space. It now

remains the goal of medicinal chemistry to deliver CNS-

permeable Hsp90 inhibitors with a good therapeutic

index to fulfill the promise of these agents in the treat-

ment of neurodegenerative diseases.
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