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Intracellular residing heat shock proteins (HSPs) with a molecular weight of approxi-
mately 70 and 90 kDa function as molecular chaperones that assist folding/unfolding 
and transport of proteins across membranes and prevent protein aggregation after
environmental stress. In contrast to normal cells, tumor cells have higher cytosolic heat 
shock protein 70 and Hsp90 levels, which contribute to tumor cell propagation, metas-
tasis, and protection against apoptosis. In addition to their intracellular chaperoning
functions, extracellular localized and membrane-bound HSPs have been found to play 
key roles in eliciting antitumor immune responses by acting as carriers for tumor-derived 
immunogenic peptides, as adjuvants for antigen presentation, or as targets for the innate 
immune system. The interaction of HSP–peptide complexes or peptide-free HSPs with 
receptors on antigen-presenting cells promotes the maturation of dendritic cells, results 
in an upregulation of major histocompatibility complex class I and class II molecules, 
induces secretion of pro- and anti-inflammatory cytokines, chemokines, and immune 
modulatory nitric oxides, and thus integrates adaptive and innate immune phenomena. 
Herein, we aim to recapitulate the history and current status of HSP-based immunother-
apies and vaccination strategies in the treatment of cancer.

 

 

Keywords: HSP70 heat shock proteins, HSP90 heat shock proteins, cancer vaccine, innate immunity, adaptive 
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BACKGROUnD

Heat shock proteins (HSPs) with the molecular weights of approximately 70 and 90 kDa have the 
capacity to stimulate antitumor immune responses either as carriers for antigenic peptides, which 
can be cross-presented by major histocompatibility complex (MHC) class I molecules, or as natural 
immunogens (1–3). Depending on the availability of ATP and ADP, members of the heat shock 
protein 70 (HSP70) family have the capacity to release and bind tumor-specific antigens, respectively. 
Following cross-presentation on MHC class I antigens, a CD8+ cytotoxic T cell response is initiated. 
Preclinical models revealed that vaccination with HSP–peptide complexes purified from tumor, but 
not normal cells, are able to mediate specific and protective immunity against autologous tumors. In 
recent years, a large number of receptors, including the alpha-2 macroglobulin receptor CD91 (4), 
lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) (5, 6), scavenger receptor expressed 
by endothelial cells-1 (SREC-1) (7), toll-like receptors-2/4 (TLRs-2/4) (8–10), their cofactors CD14 
(11, 12), fasciclin EGF-like, laminin-type EGF-like and link domain-containing scavenger receptor-1 
(FEEL-1), common lymphatic endothelial and vascular endothelial receptor-1 (Clever-1), stabilin-1 
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(Stab-1), and CD40 (13), have been found to be involved in the 
uptake of HSPs and HSP-chaperoned exogenous peptides into 
antigen-presenting cells (APCs).

Despite their high degree of homology certain HSP sequences 
are not conserved and thus act as immunogenes, which can be 
recognized as foreign by the host’s innate and adaptive immune 
system, especially when they are presented in a tissue/tumor-
specific manner (14). In combination with pro-inflammatory 
cytokines, including interleukin 2 (IL-2), IL-12, or IL-15, the major 
stress-inducible Hsp70 (HSPA1A) or non-conserved sequences 
derived thereof has been found to activate the cytolytic, prolifera-
tive, and migratory capacity of natural killer (NK) cells (15). This 
activation was accompanied by an upregulated expression density 
of activatory C-type lectin receptors CD94/NKG2C and NKG2D 
on NK cells (16). Furthermore, an intra-tumoral infusion of free, 
recombinant Hsp70 has been shown to increase the infiltration of 
NK cells and CD8+ cytotoxic T cells into tumors and the secre-
tion of interferon gamma (IFN-γ) (17, 18).

HSP–PePTiDe COMPLeXeS AS A 
vACCine STRATeGY

In 1986, the group of Old et al. firstly described a glycoprotein 
with a molecular weight of 96 kDa (gp96), which was found to 
act as a tumor rejection antigen. Gp96 was isolated from mouse 
fibrosarcomas that were chemically induced by the carcinogen 
methylcholanthrene A (1). Li and Srivastava (19) characterized 
gp96 as an ER-residing member of the HSP90 family, which 
contains an ATPase activity. In addition to gp96, members of 
the HSP70 family that also possess an ATPase domain appeared 
to be equally immunogenic for the adaptive immune system 
such as gp96 when tumor-specific antigens were bound to them 
(20, 21). Since ATP sepharose columns are widely used for the 
purification of HSP–peptide complexes from tumor cells, there 
is a risk that the immunogenic peptides are dissolved from the 
HSP–peptide complexes during purification due to their ATPase 
activity (22). Therefore, a novel purification method, which was 
based on ADP-affinity chromatography, has been established for 
the isolation of intact HSP–peptide complexes (23).

Immunogenic peptides chaperoned by gp96 and HSP70s were 
not only found to elicit specific immune responses against cancer 
(24, 25) but also against infectious diseases (26, 27), indicating 
the broad applicability of HSP-based vaccines. It was also found 
that following oxidative stress the immunogenicity of HSP-based 
vaccines was found to be increased (28). This finding might be 
explained, on the one hand, by the fact that the amount and the 
repertoire of immunogenic peptides might differ in stressed and 
non-stressed cells. On the other hand, it is possible that stress-
inducible members of HSP families might be better qualified for 
chaperoning immunogenic peptides than their constitutively 
expressed correlates. Since HSP-chaperoned peptides only medi-
ate protective immunity against autologous, but not allogeneic 
tumors (24), and HSP–peptide complexes eluted from healthy 
tissues were found to be inefficient in stimulating T cell-mediated 
immunity and was assumed that HSP-chaperoned peptides are 
tumor cell type specific.

Furthermore, an efficient rejection of tumors in preclinical 
models requires the presence of CD8+ T cells in the priming 
phase and that of CD4+ helper, CD8+ cytotoxic T cells, and 
M1 macrophages in the effector phase (21). Exogenous anti-
gens, which are typically presented by MHC class II antigens, 
can be channeled by HSPs into the endogenous pathway and 
thus can be presented on MHC class I molecules (29). This 
HSP-mediated switch of peptides from the endogenous MHC 
class II to the MHC class I pathway is also termed as antigen 
cross-presentation (29–31).

For a while, the mechanism how exogenous HSP–peptide 
immune complexes are taken up by APCs remained elusive 
because HSP-specific receptors had not been identified and 
characterized. The group of Binder et al. classified the interaction 
of HSP–peptide complexes with APCs as specific and saturable. 
These attributes are typical for a receptor–ligand interaction (32). 
The same group was among the first who identified CD91 as a 
receptor for immunogenic peptides complexed with HSP90 and 
HSP70 families and for calreticulin (33). CD91, which is also 
termed low-density lipoprotein-related protein, was initially 
described as a receptor for alpha-2 macroglobulin (4). Until 
today, a large variety of different receptors, such as LOX-1 (6), 
SREC-1, FEEL-1, Clever-1, Stab-1 (5, 7, 34, 35), TLRs-2/4, and 
their cofactor CD14 (11, 12, 36) and CD40 (13), have been shown 
to be involved in the uptake and signaling of HSP70 and HSP90 
complexes with APCs (37).

It is important to note that the capacity of HSPs or HSP– 
peptide complexes to elicit antitumor-specific immunity is 
highly dependent on the dose. Although low doses of HSP–pep-
tide complexes have been found to be efficient in the stimulation 
of antitumor immune responses, a 5- to 10-fold higher dose 
than the optimal stimulatory dose turned out to be ineffective 
or even immunosuppressive (38). High doses of gp96–peptide 
complexes were found to induce immune tolerance and thus 
were applied to treat autoimmune diabetes and encephalomy-
elitis in preclinical models (39, 40). The mechanisms, which are 
involved in the induction of tolerance by HSP70s, have been 
found to be associated with TLR2 and TLR4. The TLR2/MyD88 
signaling pathway, which is induced after binding of exosomal 
Hsp70 to TLRs, has been found to mediate protection of the 
myocardium against ischemic reperfusion injury (10), and the 
TLR4/ERK1,2/p38/MAPK pathway has been found to initiate 
pStat3-mediated immunosuppressive activity in myeloid-
derived suppressor cells (9).

Based on the knowledge on the molecular characteristics and 
functions of HSPs and HSP–peptide-based vaccines, the stimula-
tion of antitumor immune responses initiated clinical applications 
(41). Between 2000 and 2014, gp96 and HSP70–peptide-based 
vaccines derived from autologous tumor lysates were clinically 
applied in phase I to phase III clinical trials in different tumor 
entities including late stage melanoma (42) either alone or in 
combination with GM-CSF and IFN-γ (43–48), metastatic colon 
carcinoma (49), renal cell carcinoma (50), gastric carcinoma 
(51, 52), pancreatic carcinoma (53), chronic myeloid leukemia 
(54), and glioblastoma (55) (Table  1). The outcome of these 
trials showed the induction of immunological responses in a 
large number of patients treated with HSP–peptide complexes; 
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TABLe 1 | Phase i–iii clinical trials using HSP-based vaccines.

HSP vaccine Tumor entity Study Reference

Gp96 Late stage melanoma Pilot (42)
Gp96 + sPD-1 Malignant melanoma Phase I–III (46–48)
Gp96 + GM-CSF Malignant melanoma Phase I–II (44)
Gp96 + GM-CSF + IFN Malignant melanoma Phase I–II (45)
Hsp70 Malignant melanoma Phase I (44)
Gp96 Metastatic colon carcinoma Phase I (49)
Gp96 Gastric carcinoma Phase I (51, 52)
Gp96 Pancreatic carcinoma Phase I (53)
Gp96 Hodgkin lymphoma Phase I (54)
Hsp70 Chronic lymphatic leukemia Phase I (84)
Hsp70 Advanced solid tumors Pilot (76)
Gp96 Glioblastoma Phase I–II (55)
Hsp70 Glioblastoma Phase I (76)
Hsp70-activated NK 
cells

Colon carcinoma, NSCLC Phase I–II (72, 73)

Hsp70 HIV Phase I (26)
Hsp70 mRNA HCC Phase I (85)
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however, clinical responses (CRs) were observed only in certain 
patient subgroups.

HSP70 in THe STiMULATiOn OF  
innATe iMMUniTY

Heat shock protein 70 has been found to be overexpressed in tumor 
cells. Hsp70 is presented on the cell membrane of a large variety 
of solid tumors, including lung, colorectal, breast, squamous cell 
carcinomas of the head and neck, prostate and pancreatic carcino-
mas, glioblastomas, sarcomas, and hematological malignancies, 
but not on corresponding normal tissues (56, 57). A membrane 
Hsp70+ phenotype has been determined either directly on 
single cell suspensions of freshly isolated tumor biopsies by cell 
surface iodination/biotinylation (58, 59) and flow cytometry 
using cmHsp70.1 monoclonal antibody (60) or indirectly in the 
serum of patients using a novel lipHsp70 ELISA (61). In contrast 
to commercially available ELISA systems, the lipHsp70 ELISA 
specifically detects free and lipid-bound, exosomal Hsp70 which 
is actively released by viable tumor cells. Therefore, it is assumed 
that the quantification of exosomal Hsp70 in the serum serves as a 
measure for viable tumor mass in a patient and thus might provide 
a diagnostic/prognostic biomarker in the future (62). A mem-
brane Hsp70+ tumor phenotype has been found to be associated 
with highly aggressive tumors, causing invasion and metastases 
and resistance to cell death (57, 63, 64). However, NK cells, but 
not T cells, were found to kill membrane Hsp70+ tumor cells 
after preactivation with naturally occurring Hsp70 or an Hsp70– 
peptide (TKD) derived thereof in combination with low dose 
IL-2 (TKD/IL-2) (65). Since the induction of the cytolytic activity 
of NK cells with Hsp70–peptide is dose dependent and saturable, 
it was assumed that the interaction of NK cells with the peptide 
might also be receptor mediated. By antibody and protein/peptide 
blocking assays, the C-type lectin receptor CD94 was identified 
as a potential receptor that mediates the interaction of NK cells 
with Hsp70–peptide. CD94 forms a heterodimer either with the 
coreceptor NKG2A or NKG2C and thus can act as an inhibitory 

or activation receptor complex (66–69). Following incubation 
of NK cells with Hsp70 protein or Hsp70–peptide  +  IL-2, the 
density of CD94 was found to be upregulated concomitant with 
an increased cytolytic and migratory activity against membrane 
Hsp70+ tumor cells (70). In addition, also other activatory NK 
cell receptors, such as NKG2D, and natural cytotoxicity recep-
tors (NCRs), but not inhibitory killer-cell immunoglobulin-like 
receptors (KIRs), were found to be upregulated on NK cells upon 
stimulation with Hsp70–peptide + IL-2.

A summary of major activities of Hsp70 in inducing adap-
tive and innate antitumor immune responses is illustrated 
in Figure  1. On the one hand, Hsp70 either alone or in 
combination with immunogenic peptides is able to induce 
the maturation of dendritic cells (DCs), activate the cytolytic, 
proliferative, and migratory capacity of NK cells, stimulate the 
antigen-dependent T cell activation and IFN-γ secretion, induce 
the release of pro- and anti-inflammatory cytokines, on the 
other hand, membrane-bound Hsp70 acts as a tumor-specific 
antigen, which is recognized by preactivated NK cells. As a 
carrier for HSP-chaperoned tumor-specific antigens members 
of the HSP70 and HSP90 family have been found to support 
antigen uptake, processing, and presentation on MHC class I to 
CD8+ cytotoxic T lymphocytes and on MHC class II molecules 
to CD4+ helper T cells.

The mechanism how Hsp70 preactivated NK cells lyse 
membrane Hsp70+ tumor cells could be identified as granzyme 
B-mediated apoptosis. The cell death-inducing serine protease 
granzyme B has been found to directly interact with membrane 
Hsp70 on tumor cells, as determined by different methods 
including matrix-laser desorption ionization time to flight 
mass peptide finger printing (MALDI-TOF), Western blot, and 
flow cytometry (71). NK cells that have been prestimulated 
with Hsp70–peptide +  IL-2 showed a significantly upregulated 
production of granzyme B, whereas the intracellular levels of 
perforin were found to be upregulated only moderately (16, 70). 
Since tumor cells that lack an Hsp70 membrane expression are 
not lysed by granzyme B, as demonstrated in isogenic tumor cell 
systems that differ in their membrane Hsp70 expression levels, it 
was concluded that Hsp70–peptide + IL-2 preactivated NK cells 
predominantly kill their target cells via granzyme B-mediated 
apoptosis (71).

Safety and tolerability of ex vivo TKD/IL-2 stimulated, 
autologous NK cells have been demonstrated in patients with 
metastasized colorectal and NSCLC in a Phase I clinical trial 
(72). Based on promising clinical results of this Phase I trial, a 
Phase II randomized clinical study was initiated in 2015 (73). 
The primary objective of this multicenter proof-of-concept 
trial is to examine whether an adjuvant treatment of NSCLC 
patients after platinum-based radiochemotherapy (RCT) with 
Hsp70–peptide TKD +  IL-2-activated, autologous NK cells is 
clinically effective. Only membrane Hsp70+ tumor patients 
will be recruited into the trial since membrane Hsp70 was 
identified as the tumor-specific target for Hsp70–peptide + IL-2 
preactivated NK cells. The primary endpoint of this study is 
the progression-free survival that will be compared between 
patients who received RCT or RCT+ an NK cell-based immu-
notherapy. As secondary endpoints overall survival, toxicity, 
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FiGURe 1 | Major immune modulatory functions of heat shock protein 70 (Hsp70) either alone bound to exosomes or in combination with tumor-
derived peptides. Abbreviations: IFN-γ, interferon gamma; IL, interleukin; Mφ, macrophages; MHC, major histocompatibility complex; NK cells, natural killer cell; 
NO, nitric oxide.
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quality-of-life, and biological responses will be determined in 
both study groups.

HSPs AS ADJUvAnTS FOR THe 
STiMULATiOn OF AnTiTUMOR iMMUne 
ReSPOnSeS

Heat shock proteins, especially the major stress-inducible Hsp70, 
can provide cytokine function, which initiate both, innate and 
adaptive immunity (74–77). In parallel, these HSPs can act as 
classical chaperones that facilitate uptake, processing, and pres-
entation of tumor antigens into APCs. Moreover, exogenously 
delivered, purified Hsp70 was shown to sensitize cancer cells to 
lymphocyte-mediated cytotoxicity due to triggering the trans-
location of its intracellular analog to the tumor cell surface and 
due to an increased release of Hsp70 into the extracellular milieu 
(18). For these reasons, the aforementioned immunomodulatory 
activities of Hsp70 have been widely exploited for therapeutic 
approaches in recent years either as single treatment or in com-
bination with other treatment modalities to generate an effective 
antitumor immunity. The intra-tumoral injection of Hsp70 
protein or an upregulation of Hsp70 within the tumor by an 
hsp70.1 gene transfer was shown to have a significant therapeutic 
potential in preclinical studies (18, 78–81). Thus, prolonged 
intra-tumoral delivery of exogenous Hsp70 in a rat glioblastoma 

model caused a significant inhibition of tumor progression, 
which as accompanied by an increased cytotoxic activity of NK 
cells and CD8+ T lymphocytes (82). A comparable therapeutic 
efficacy was previously reported by Rafiee et al. (79) who showed a 
complete tumor eradication following transfection of the hsp70.1 
gene sequence into mouse tumor cells. The systemic antitumor 
immune response was found to be mediated by CD4+ and CD8+ 
T cells (79). Presumably, a combination of Hsp70-based therapies 
with other immunological approaches, such as immune- and T 
cell check-point inhibitors, might further increase the therapeu-
tic efficacy. In another approach, the intra-tumoral injection of 
Hsp70 was combined with mild local hyperthermia and magnet-
ite cationic liposomes (MCLs). This strategy demonstrated great 
potential in the treatment of mouse melanoma (81). With regard 
to these results, our group coupled Hsp70 to nanocarriers such 
as superparamagnetic iron oxide nanoparticles (SPIONs) (83). 
Hsp70-SPIONs were shown to effectively deliver immunogenic 
peptides from tumor lysates to DCs and thus stimulated a tumor-
specific, CD8+ cytotoxic T cell response in experimental glioma 
models (83). Up-to-date several clinical trials clearly demonstrate 
that the application of Hsp70 either as a single treatment regi-
men or in combination with other therapies is feasible and can 
stimulate antitumor immunity in patients (18, 84, 85). Clinical 
efficacy could be demonstrated in patients with brain tumors 
who received surgery and intra-tumoral delivery of recombinant 
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Hsp70. Out of 12 patients with late stage brain tumors, one patient 
showed a complete CR and another patient showed a partial 
response (PR) (18). The CRs were accompanied by an enhanced 
Th1-cell-mediated immune response and a reduction of immu-
nosuppressive Treg cells. In the Phase I clinical trial reported by 
Maeda et al., DCs transfected with Hsp70 mRNA (HSP70-DCs) 
were applied in 12 patients with non-resectable or recurrent 
HCV-related hepatocellular carcinoma (HCC) (85). The authors 
demonstrated that 7 out of 12 patients had either a CR or stable 
disease (SD), suggesting the efficacy of the proposed therapy. In 
another study, an intra-tumoral vaccination with recombinant 
oncolytic type-2 adenovirus that overexpresses Hsp70 was 
found to inhibit primary and metastatic tumors via an enhanced 
oncolytic activity and Hsp70-mediated immune responses (84). 
Presumably, multimodality tumor-directed therapy based on 
HSPs in combination with radio, chemo, and/or hyperthermia 
(86) therapy can be a treatment option for further clinical trials.

SUMMARY

Heat shock proteins and especially members of the HSP70 and 
HSP90 families have been found to elicit protective antitumor 
immunity in preclinical models and in tumor patients either 
alone or in complex with tumor-derived peptides. HSPs and 

HSP–peptide complexes can act as typical tumor-specific foreign 
antigens, chaperokines, and adjuvants that facilitate uptake, 
processing, and presentation for tumor-specific antigens which 
are cross-presented by APCs to CD8+ cytotoxic T lymphocytes. 
Uptake of HSPs and HSP–peptide complexes is mediated by a 
large variety of different receptors. Depending on the dose of the 
HSP-based vaccine either immunosuppressive or immunostimu-
latory activities can be elicited.
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