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Abstract The pathologic lesions of Alzheimer’s disease
(AD) are characterized by accumulation of protein aggregates
consisting of intracellular or extracellular misfolded proteins.
The amyloid-β (Aβ) protein accumulates extracellularly in
senile plaques and cerebral amyloid angiopathy, whereas the
hyperphosphorylated tau protein accumulates intracellularly
as neurofibrillary tangles. “Professional chaperones”, such as
the heat shock protein family, have a function in the prevention
of protein misfolding and subsequent aggregation. “Amateur”
chaperones, such as apolipoproteins and heparan sulfate
proteoglycans, bind amyloidogenic proteins and may affect
their aggregation process. Professional and amateur chaper-
ones not only colocalize with the pathological lesions of AD,
but may also be involved in conformational changes of Aβ,
and in the clearance of Aβ from the brain via phagocytosis or
active transport across the blood–brain barrier. Thus, both
professional and amateur chaperones may be involved in the
aggregation, accumulation, persistence, and clearance of Aβ
and tau and in other Aβ-associated reactions such as
inflammation associated with AD lesions, and may, therefore,
serve as potential targets for therapeutic intervention.
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Introduction

Pathological lesions consisting of intra- and/or extracellular
accumulations of misfolded proteins are characteristic for
neurodegenerative diseases such as Alzheimer’s disease
(AD). AD is characterized by three distinct pathological
lesions: senile plaques (SPs), neurofibrillary tangles
(NFTs), and cerebrovascular amyloid angiopathy (CAA)
[1]. Both SPs and CAA are formed by extracellular
deposition of aggregated amyloid-beta protein (Aβ),
whereas NFTs consist of intracellular aggregates of hyper-
phosphorylated tau protein in the cytoplasm of neurons [2,
3]. The Aβ protein is a 4-kDa proteolytic cleavage product
[2] of the transmembrane amyloid-β precursor protein
(APP). The two major forms of Aβ in human brain are
Aβ1-40 and Aβ1-42, differing from each other only by two
amino acids. Cerebral production of Aβ is balanced by
clearance from the brain either via active transport across
the blood–brain barrier (BBB) or via uptake and degrada-
tion of Aβ by microglial cells and astrocytes [4–6]. Active
transport of Aβ is mediated by Aβ receptors that are
capable of transporting Aβ, or Aβ in complex with other
proteins, across the BBB [7]. In contrast to normal brain,
the cerebral Aβ balance is disturbed in AD brains, resulting
in accumulation and aggregation of Aβ.

Aβ aggregation includes the formation of Aβ oligomers,
protofibrils, and eventually, mature fibrils. Both Aβ
oligomers and protofibrils are considered the most toxic
forms of Aβ that initiate degeneration of neurons and of cells
within the vasculature, such as smooth muscle cells and
pericytes [8, 9]. Aβ aggregates do not clear from the brain as
efficiently as soluble Aβ, and thus, directly lead to increased
levels of Aβ in the brain [10]. Furthermore, deposition of Aβ
in SPs is accompanied by attraction and activation of both
microglial cells and astrocytes [11–13]. Activation of these
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cell types results in increased secretion of pro-inflammatory
cytokines as part of a neuro-inflammatory reaction.

Chaperones can be defined as proteins that: (1) have a
role in the intracellular handling of misfolded proteins, (2)
induce conformational changes of proteins, (3) act as
transporter of proteins. “Professional” chaperones, such as
the heat shock protein family (Hsp), are defined as proteins
that have a specific function in facilitating normal folding
of proteins and intracellular handling of misfolded proteins.
Members of the Hsp family recognize misfolded proteins
and transport them to the proteasome for degradation.
Therefore, this protein family acts as the first line of
defense against toxicity induced by misfolded proteins such
as Aβ and tau. In contrast to professional chaperones,
“amateur” chaperones can be defined as proteins that bind
to other proteins and induce conformational changes or,
alternatively, serve as transporter proteins. Examples of
putative amateur chaperones are apolipoprotein E (ApoE),
heparan sulfate proteoglycans (HSPGs), and complement
factors such as C1q. They have, in contrast to the
professional chaperones, primarly an extracellular function.
In this paper, we will review the role of both amateur and
professional chaperones in the pathogenesis of AD.

Aβ-Binding Proteins in Extracellular Interaction with Aβ

Apolipoproteins

The apolipoprotein family consists of proteins that conju-
gate with lipids to form different classes of lipoprotein
particles. In human brain, several members of this protein
family are expressed, such as apolipoprotein E (ApoE),
apolipoprotein J (ApoJ), and apolipoprotein D (apoD).

ApoE is a major determinant of lipid transport and
metabolism and is expressed in brain by astrocytes, micro-
glia, pericytes, and smooth muscle cells [14–18]. In human,
three common isoforms are expressed: apoE2, apoE3, and
apoE4 which are all products of alleles at a single gene
locus [19, 20].

The ɛ4 allele of ApoE is the major genetic risk factor for
AD, whereas the ɛ2 allele appears to be protective against
AD [21–24]. As ApoE immunoreactivity was found in
extracellular amyloid deposits in subjects with AD, it has
been suggested that it affects amyloidogenesis [25, 26]. In
vitro studies provided evidence for a direct interaction of
ApoE with Aβ and the formation of stable complexes [27,
28]. Binding of ApoE to Aβ is, however, ApoE isoform-
dependent (ɛ2>ɛ3>>ɛ4) [29, 30] and depends on the degree
of lipidation [29]. Lipidation of ApoE also seems a major
factor in its effect on Aβ-mediated cellular toxicity [18]. In
addition, ApoE4 promotes the conversion of soluble Aβ
into β-sheet-rich amyloid more than ApoE3 [31–33].

In contrast to its effect on Aβ in vitro where a consistent
accelerating effect of ApoE on Aβ aggregation is observed,
the effect of ApoE on Aβ deposition in transgenic (Tg)
mice studies is less equivocal. In early studies, both Aβ
immunoreactivity and amyloid formation were reduced in
ApoE knockout mice [31, 32]. In addition, CAA and
associated microhemorrhages were also suppressed in
ApoE knockout mice [34]. This effect might be due to the
absence of ApoE/Aβ complexes [35]. In contrast to the
effects of murine ApoE in the early studies, both human
ApoE3 and ApoE4 suppressed Aβ deposition in Tg mice
[36]. In addition, when these mice aged, ApoE4 induced a
tenfold higher deposition of fibrillar Aβ than ApoE3 [37].
Consistent with these latter results, human ApoE4 acceler-
ated Aβ deposition in APPSwe Tg mice relative to human
ApoE3 [38]. In addition, when human ApoE3 or ApoE4
were knocked in in Tg mice, Aβ deposition was reduced
compared to mice carrying endogenous ApoE at 9 months,
and at 15 months, substantial CAA was observed in mice
with human ApoE4, but not with human ApoE3, and, in
either case, parenchymal Aβ was sparse [39]. Thus
isoform- and species-specific differences in ApoE direct
the aggregation or clearance of Aβ. Furthermore, it is
suggested that the presence of ApoE facilitates internaliza-
tion and degradation of Aβ from brain parenchyma by
astrocytes [40] and human ApoE may reduce Aβ deposi-
tion in mouse brain by facilitating Aβ transport across the
BBB [36]. Although these Tg mice studies seem contra-
dictional, ApoE clearly affects conformational changes of
Aβ and functions as an Aβ-transporter protein.

Besides colocalization of ApoE with Aβ in AD brains,
ApoE is also found within neurons containing NFTs [25]
where it is able to interact directly with tau protein [41].
Furthermore, ApoE has an isoform-dependent effect on tau
phosphorylation, as ApoE3 binds to tau in vitro, whereas
ApoE4 fails to bind tau [42]. In addition, an ApoE4-
dependent increase in phosphorylated tau has been observed
[43–45].

Neuroinflammation in AD comprises both activation of
microglial cells and astrocytes and activation of the
complement system. Aβ deposits in brain are associated
with activated microglia and astrocytes, but also with
elevated levels of complement [5, 6, 46]. ApoE may have
an anti-inflammatory effect by suppressing microglial and
astrocytic activation [47–50]. ApoE-deficient mice demon-
strate increased levels of IL-6 and TNFα after LPS
stimulation, suggesting a role of ApoE in inflammatory
gene regulation [51]. In addition, ApoE isoform-dependent
(ɛ2<ɛ3<ɛ4) differences in nitric oxide (NO) levels have
been observed in microglia cells [52]. Transgenic mice
expressing the ApoE4 protein isoform show a greater NO
production than mice expressing the ApoE3 protein iso-
form. These data indicate that ApoE4 has a less efficient
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anti-inflammatory affect, and thus, may accelerate the
development of AD.

Apolipoprotein J, also known as clusterin or SP-40/40, is
a highly conserved heterodimeric secreted glycoprotein
expressed in brain by epithelial and neuronal cells [53].
ApoJ colocalizes with fibrillar Aβ deposits, and it is
suggested that it prevents misfolding and aggregation of
soluble Aβ [54–56]. ApoD is a glycoprotein associated
with high-density lipoproteins in human plasma and also
has a high expression level in human brain [57], but neither
its physiological role nor its ligand has been identified.
ApoD levels are increased in the hippocampus of AD
patients and in ApoE-deficient mice [58, 59].

In conclusion, ApoE and ApoJ can be regarded as amateur
chaperones that regulate Aβ aggregation in vitro. By
accelerating the Aβ aggregation process towards mature fibril
formation, (human) ApoE prevents formation of toxic Aβ
intermediates such as oligomers and protofibrils, and thus,
may have a protective function towards development of AD.
Moreover, ApoE protects against the development of AD by
suppressing the inflammatory reactions associated with AD
lesions. Besides its role in inducing conformational changes in
Aβ, ApoE facilitates Aβ clearance from brain by serving as a
transporter molecule of Aβ, which will be discussed in
paragraph 4.

Heparan Sulfate Proteoglycans

Proteoglycans are members of a large family of macro-
molecules with a wide variety of functions ranging from
simple physical support to various effects on cell adhesion,
motility, proliferation, differentiation, and even tissue
morphogenesis. They are composed of linear sulfated
polysaccharides (glycosaminoglycans, GAGs), consisting
of disaccharide units, covalently bound to a core protein.
One of the members of this superfamily is the heparan
sulfate proteoglycan (HSPG) family characterized by
polymers of repeating disaccharides, N-acetylglucosamine
and glucuronic acid, which can be subsequently modified
by sulfatation [60, 61]. HSPGs can be subdivided into a
family of extracellular matrix proteins, including perlecan,
agrin, and collagen XVIII, and a family of cell surface
proteins, including syndecans and glypicans [60, 62].

Ever since GAGs were demonstrated in amyloid deposits,
the proteoglycans became of interest in amyloidogenesis. The
presence of HSPGs in SPs, CAA, and NFTs in AD brains was
already demonstrated in the late 1980s [63–65]. Only when
antibodies became available that could identify the various
individual HSPG species was it described that perlecan
colocalized with all three lesions characteristic of AD brains
[65–67]. However, we were not able to confirm these findings
[68, 69]. Furthermore, it was shown that in both diffuse and
classic SPs, several other HSPGs were found, such as agrin,

glypican 1, and syndecan 1-3, whereas collagen XVIII is only
present in classic SPs and CAA [69–72].

These data suggest that HSPGs interact with Aβ, thereby
contributing to development or persistence of SPs or CAA.
HSPGs isolated from Engelbreth–Holm–Swarm tumor
prevented proteolytic breakdown of aggregated Aβ [73].
In addition, both agrin and perlecan directly interacted with
Aβ and promoted conversion of non-fibrillar Aβ into
fibrillar Aβ [70, 74–76]. Although the interaction between
HSPGs and Aβ is likely mediated predominantly by the
sulfate moieties of the GAGs, a role for the protein
backbone in Aβ aggregation could not be excluded [77,
78]. As sulfated GAGs were also demonstrated in NFTs in
AD brains [79], these macromolecules may also play a role
in tangle development. Indeed, sulfated GAGs may induce
the formation of paired helical filaments by stimulating tau
phosphorylation [80].

As heparan sulfates bind to Aβ and interfere with its
fibrillogenesis, they are interesting candidates for therapeutic
intervention [81]. GAG mimetics are able to inhibit this
binding and may block the formation of β-pleated sheets and
adherence of Aβ to the cell surface [82]. The use of GAG
mimetics has already been explored in mouse models where
they reduced progression of inflammation-associated amy-
loidosis [83]. The efficacy of one of these compounds is
currently being tested in a human phase III trial.

As exemplified by ApoE, Aβ-binding proteins may play a
role in the inflammatory reactions in AD brains. Recently, it
was demonstrated that the semi-synthetic proteoglycan
analogue dextran sulfate blocks activation of the complement
cascade [84]. In addition, chondroitin sulfate proteoglycans
are also known to bind to C1q and prevent the formation of
the C1 complex in vitro [85]. By doing so, chondroitin
sulfate proteoglycans inhibit normal complement function.
Furthermore, heparin has long been regarded as a potential
complement inhibitor [86].

In conclusion, HSPGs do not only colocalize with Aβ
and tau, but they also contribute to the development of
these lesions. The role of HSPGs in Aβ aggregation might
even be a protective one. HSPGs prevent the persistence of
toxic Aβ forms, e.g., oligomers or protofibrils, and
transform them into more harmless aggregates, i.e., the
classic senile plaques containing mature Aβ fibrils that are
less toxic than the intermediate aggregates. In addition,
HSPGs might play a role in the development of AD lesions
by inhibiting complement activation. According to the
definitions, HSPGs can therefore be regarded as amateur
chaperones. Their ability to recognize a variety of proteins
may originate from the heterogeneous structure of the
heparan sulfate chains. The negatively charged HS chains
are structurally heterogeneous and bind a diverse repertoire
of proteins, such as amyloid A, protease-resistant prion
protein, α-synuclein, and tau, providing HSPGs with the
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ability to interact with a wide range of intracellular and
extracellular amyloidogenic proteins [61].

Complement Factors

The complement system is an ancient host defense mecha-
nism which is involved in boosting antibody activity. The
system consists of a group of soluble serum proteins C1–C9
and is activated either by immunoglobulin M or G bound to a
foreign particle or directly by microorganisms. Proteins such
as Hageman factor, C4 binding protein, CDS46, CD59, and
C1 inhibitor regulate the complement system. In AD, the
complement system is overexpressed and activated [46]. The
Aβ protein itself activates this system, and complement
factor concentrations are increased in AD brains [87–89].
Aβ induces C3 and C4 in AD, and elevated levels of the
membrane attack complex (MAC) composed of C5–C9 have
been observed [90, 91]. In addition, factors such as Hageman
factor, C1q, C3, and C5–9 are commonly found in SPs and
NFTs [87, 92, 93]. C1q is associated with Aβ deposits and
directly binds fibrillar Aβ which activates the complement
cascade [94]. In contrast, the complement inhibitor (C1 INH)
is downregulated in AD [95, 96]. Thus, an activated
complement system is a general feature observed in AD.
However, the contribution of complement to the pathogen-
esis of AD is controversial.

On the one hand, it is suggested that complement
activation protects against Aβ-induced toxicity and even
contributes to reducing the accumulation of Aβ in SPs [97].
Transgenic mice expressing complement inhibitors develop
increased AD-pathology, whereas increased complement
C3 production was associated with a reduction of Aβ
deposition [97]. Thus, the complement activation in the
brain may be beneficial in AD and possibly also other
neurodegenerative diseases [98–100].

However, complement activation may lead to accelerated
neurodegeneration as well. Activation of complement in an
antibody-independent fashion is achieved by binding of
aggregated, but not soluble, Aβ to C1q [12, 90, 101, 102].
This latter finding suggests that in AD, aggregated Aβ
induces chronic complement activation. Thus, C1 binding
to fibrillar Aβ deposits may precede microglial activation.
Both Aβ and pro-inflammatory stimuli are able to activate
microglia, which results in increased Aβ and cytokine
production [103]. Furthermore, cultured human microglial
cells show an increase in cytokine production after co-
stimulation of Aβ with C1q and serum amyloid P (SAP)
[104]. This suggests that microglia may get triggered by
both Aβ- and SP-associated factors such as C1q, which
results in the secretion of pro-inflammatory cytokines and
Aβ, both accelerating neurodegeneration.

Although none of the complement factors directly
regulate conformational changes of Aβ, complement

activation as a whole plays a role in the Aβ aggregation in
vivo. Therefore, complement factors might act as amateur
chaperones, although their exact role in Aβ aggregation
remains to be elucidated.

Professional Chaperones

Heat shock proteins (Hsp) are professional chaperones.
They are highly conserved proteins constitutively expressed
in most cells under normal conditions where they play a
role in cellular metabolism and help normal folding
processes [105]. In addition, during cell stress, they bind
unfolded proteins to keep them in their native state [105].
Heat shock proteins can be divided into two different
families based on size and function: classic Hsps such as
Hsp100, Hsp90, Hsp70, Hsp60, and the small heat shock
proteins (sHsps). Hsps with a molecular weight of 60 kD or
more possess an ATP-binding site and are actively involved
in the process of refolding of misfolded proteins [106].
Small Hsps, with a molecular weight of 40 kD or less, lack
this ATP-binding site and assist the Hsps in their refolding
function [107]. The role of Hsps in misfolded protein
recognition and refolding is illustrated in Fig. 1.

Small Heat Shock Proteins

Small Hsps function as molecular chaperones that can
prevent proteins from adopting an incorrect conformation
[108]. The sHsp family is characterized by the presence of
an α-crystallin domain, a stretch of 80–100 amino acids in
the C terminal half of the proteins [109]. So far, the sHsp
family comprises ten sHsps, including αB-crystallin, Hsp27,
Hsp20, HspB8, and HspB2/B3 [110]. Although sHsps are

Fig. 1 The role of heat shock proteins (Hsp) and small heat shock
proteins (sHsps) in recognition and refolding of unfolded and
misfolded proteins. Unfolded or misfolded proteins are recognized
by Hsps and sHsps. Together with these unfolded or misfolded
proteins, Hsps and sHsps form a complex. In addition, Hsps recover
unfolded or misfolded proteins back to their native form using ATP. If
unfolded or misfolded protein are not recognized by the Hsp/sHsps,
these unfolded or misfolded proteins are capable of forming
aggregates
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predominantly expressed in muscle cells, several family
members are also found in human brain.

In AD, αB-crystallin and Hsp27 are upregulated and
expressed by astrocytes surrounding SPs and NFTs [111–
114], whereas Hsp20, HspB2, and HspB8 colocalize with
Aβ in SPs and CAA [115, 116]. Although αB-crystallin or
Hsp27 do not colocalize with Aβ in SPs, direct interaction
between Aβ and these sHsps in addition to Hsp20 and
HspB8 has been demonstrated [111, 117–119]. In addition,
high-affinity binding of αB-crystallin and Aβ has been
observed in eye lenses from AD patients [120]. Further-
more, αB-crystallin is able to prevent mature Aβ fibril
formation, retaining it in a non-fibrillar, but likely a
protofibrillar state, which is highly toxic to neurons [121].
Recently, we demonstrated that αB-crystallin, Hsp20, and
HspB8 inhibit Aβ-mediated toxicity towards cerebrovascu-
lar cells probably by preventing aggregation of Aβ at the
cell surface [116, 117]. Others showed that Hsp27 directly
binds to hyperphosphorylated tau, thereby protecting
against cell death [122].

Hsps are involved in the formation and persistence of
misfolded protein aggregates. They are upregulated in several
neurodegenerative diseases, such as AD, Creutzfeldt–
Jakob disease, and Parkinson’s disease probably as a reaction
to the formation of misfolded proteins [113, 123–126].
However, despite of increased intracellular levels, they are
unable to prevent accumulation of Aβ in AD possibly
because of decreased chaperone activity. In aged rats, this
was illustrated by a significant decrease of Hsp90 function
[127], resulting in diminished hepatic chaperone capacity.
Furthermore, the increasing amount of damaged or mis-
folded proteins as a result of defects in protein degradation
might lead to a total decrease in chaperone activity in aged
cells [128]. Thus, the state of misfolded protein recognition
and repair systems, such as the (s)Hsp system, might be of
great importance in the development of neurodegenerative
diseases.

Miscellaneous Proteins

Apart from the above-described proteins, several other
molecules are also associated with the pathological lesions
of AD, and some of these can be regarded as amateur
chaperones. Acute phase proteins, such as α1-antichymo-
trypsin (ACT), α2-macroglobulin (α2M), and SAP, are all
associated with Aβ deposition [129–132]. ACT is a serine
protease inhibitor of the serpin family, and in AD, ACT
levels are upregulated, and binding of ACT with Aβ
induces Aβ fibrillogenesis [133–135]. Furthermore, when
ACT is overexpressed in transgenic mice, an increased
plaque load in the brains of these mice and impaired spatial
learning is observed [134, 135]. α2M also binds Aβ,
although in contrast to ACT, this binding prevents Aβ fibril

formation and fibril-associated neurotoxicity [136, 137].
α2M promotes the protease-mediated degradation of α2M/
Aβ complexes and contributes to clearance of Aβ from the
brain (discussed in paragraph 4) [138, 139]. The glycopro-
tein SAP belongs to the pentraxin family and is a common
component of all known types of amyloid fibrils. SAP is
upregulated in AD and protects amyloid fibrils from
proteolysis in vitro [140, 141]. SAP not only colocalizes
with SPs and interacts with aggregated Aβ; SAP oligomers
also bind and activate C1 [142]. Both C1 and SAP may
bind to fibrillar Aβ deposits in vivo and induce microglial
activation, as cultured human microglial cells show an
increase in cytokine production after co-stimulation of Aβ
with C1q and SAP [104]. These observations further
strengthen the above-noted suggestion that not only Aβ,
but also several Aβ-binding proteins, are capable of
activating the complement system, and thus, contribute to
neuroinflammation in AD. In addition, both α2M and ACT,
in contrast to SAP, can be regarded as amateur chaperones,
as they regulate conformational changes of Aβ.

Tissue-type plasminogen activator (tPA) regulates acti-
vation of plasminogen into plasmin and is expressed in
various regions of the brain especially in the hippocampus
[143]. Several reports suggested an important role for
tPA in AD, as the tPA system is involved in Aβ turnover
[144, 145]. Fibrillar forms of Aβ stimulate tPA activity in
vitro, whereas in AD patients, a reduction of tPA activity
is observed in the affected areas [144, 146]. Although tPA
has no effect on conformational changes of Aβ, it might
play a role in the clearance of Aβ from the brain
(paragraph 4].

The actin-regulatory protein gelsolin is found both
intracellularly and in plasma [147, 148]. Plasma gelsolin
can be considered an amateur chaperone, as it binds Aβ
and not only inhibits its Aβ fibrillization but is also capable
of degrading preformed Aβ fibrils [149, 150]. Furthermore,
gelsolin inhibits Aβ-mediated neurotoxicity [151].

One of the major gangliosides in the brain is GM1.
Soluble Aβ binds GM1 and the formed complexes accelerate
Aβ fibrillogenesis by acting as a seed for Aβ [152]. In the
presence of GM1, Aβ is more neurotoxic than Aβ alone,
and cholesterol-rich membranes demonstrate accelerated
Aβ binding due to the formation of GM1 clusters [153,
154]. As GM1 is a major component of lipid rafts and
recent studies suggest that Aβ accumulation in these lipid
rafts is an early event in AD development, GM1 might play
an important role in the early steps in AD pathogenesis
[155, 156].

In summary, several proteins are associated with Aβ
aggregates in the AD brain and contribute to the aggrega-
tion of Aβ and should, therefore, be considered as amateur
chaperones. In addition, they might play a role in triggering
inflammation.
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Aβ-Binding Proteins and Intracellular Interactions
with Aβ

Intracellular accumulation of Aβ already starts in the ER or
in the Golgi apparatus of the cell [157–159]. Intracellular
Aβ is associated with neuronal damage [160, 161], and
intraneuronal accumulation of Aβ in transgenic mice was
correlated with impairments in synaptic plasticity [162].
Intraneuronal accumulation of Aβ in those brain areas
affected earliest in AD suggests a possible relation between
intracellular Aβ and development of AD [160].

A few proteins that interact with intracellular Aβ and
affect its intracellular fate have been identified. The
endoplasmic reticulum amyloid beta-peptide-binding pro-
tein binds intracellular Aβ and mediates neurotoxicity in
neuronal cells by forming an intracellular target for Aβ
[163]. In addition, the mitochondrial enzyme amyloid-β
alcohol dehydrogenase also binds Aβ inside neurons,
resulting in the production of free radicals [164]. However,
whether these intracellular Aβ-binding proteins affect
aggregation of Aβ within the cells remains unknown.
Therefore, both these proteins cannot, for the time being, be
defined as amateur chaperones of Aβ.

The first lines of defense against misfolded and aggregat-
ed proteins are the professional chaperones, which counter-
act these processes and are able to stimulate clearance of
misfolded proteins by proteosomal degradation. Newly
synthesized proteins are folded by several other proteins,
such as immunoglobulin-binding protein (BiP)/glucose-
regulated protein (GRP78), and calnexin. GRP78 is a
member of the Hsp70 protein family and interacts with
intracellular APP. GRP78 regulates APP and Aβ secretion
by intervening between APP and β-/γ-secretases within the
cell [165].

It is not surprising that in AD, where misfolded protein
molecules accumulate, both Hsp90 and Hsp70 synthesis is
increased. Several members of the Hsp family directly
interact with intracellular Aβ, but only recently, Hsp70 was
identified as a protector against intracellular Aβ accumu-
lation [166, 167]. Besides, immunoreactivity of both
Hsp90, 70, and Hsp60 is found in SPs [132], which
suggests that these professional chaperones may not only
interact with misfolded protein in the cell interior [168–
171]. In addition, it has also been postulated that up-
regulation of Hsp90 and Hsp70 may suppress the formation
of NFTs by partitioning tau into a productive folding
pathway and thereby preventing its aggregation [172].
Recently, it was demonstrated that the chaperone CHIP–
Hsc70 complex conjugates ubiquitin to hyperphosphory-
lated tau, which enhances cell survival by elimination of
soluble hyperphosphorylated tau [173]. These data suggest
that the cell increases production of the Hsps to cope with
the presence of misfolded proteins such as hyperphos-

phorylated tau and accumulating Aβ. At some point, this
protective mechanism seems to fail, however. In line with
this hypothesis, it was shown that the actin and tubulin
specific chaperone Hsp60 is decreased in AD, resulting in a
decrease of cytoskeletal proteins in AD-affected neurons
[174]. Thus, both production and function of Hsps seems to
be disturbed in AD, which might result in the accumulation
of misfolded proteins. The role of other Hsps in regulating
intracellular Aβ or tau folding remains to be investigated
(Table 1).

Aβ-Binding Proteins and Aβ Clearance

Aβ-binding proteins, amateur chaperones, play a role in the
clearance of Aβ from brain by functioning as a transporter
molecule. Two major pathways govern Aβ clearance. By the
first pathway, Aβ is removed from brain to blood via active
transport across the BBB. This active transport is performed by
specialized transporters, so-called “Aβ-receptors”, expressed
by endothelial cells. Second, Aβ is removed from brain via
phagocytosis by both microglial cells and astrocytes. In both
pathways, interaction of Aβ with cell surface Aβ-receptors is
crucial; therefore, the expression levels of Aβ-binding proteins
might contribute to Aβ clearance by regulating its bindingwith
Aβ receptors.

The low-density lipoprotein receptor-related protein-1
(LRP-1) binds Aβ in a complex with ApoE at the abluminal
side of the endothelium and internalizes these ApoE/Aβ
complexes followed by degradation in lysosomes or transport
into the plasma [4, 175]. However, LRP-1 also mediates
transport of free Aβ across the BBB [10]. In contrast to
LRP-1, the receptor for advanced glycation end products
(RAGE) transports Aβ from the circulation into the central
nervous system [176]. Similar to RAGE, the Aβ receptor
megalin is also involved in the transport of Aβ from blood
to brain, although megalin probably plays only a minor role
in Aβ transport. Furthermore, megalin binds Aβ/ApoE
complexes rather than free Aβ [177, 178]. Clearance of
Aβ/ApoE complexes from brain might be ApoE isoform-
dependent. ApoE4 forms less stable complexes with Aβ
than ApoE3 or ApoE2; therefore, ApoE4 reduces Aβ
transport efficiency across the BBB. Additionally, as
described above (paragraph 2), ApoE4 enhances Aβ
aggregation more efficiently than ApoE3, which also inhibits
clearance. On the other hand, the LDL receptor shows a
marked preference for the ApoE3 and ApoE4 isoforms and
binds the ApoE2 isoform poorly [179]. Given the similarity
between the LDL receptor family, other LDL receptors, such
as the LRP-1 receptor, might display similar specificities
towards the ApoE isoforms, but this has not been reported
yet. Moreover, lipidation of ApoE also affects clearance of
ApoE and ApoE/Aβ complexes from brain, as LRP
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preferentially binds lipid-rich forms of ApoE [179]. These
data indicate that Aβ-binding proteins, especially ApoE, and
possibly, ApoJ, play an important role in transport of Aβ
across the BBB and that both the ApoE isoform and the ApoE
lipidation state affect Aβ clearance. In addition to ApoE and
ApoJ, the Aβ-binding protein α2M also forms complexes
with Aβ. As α2M is a ligand for LRP-1, these α2M/Aβ
complexes might undergo LRP-1-mediated endocytosis and
degradation or translocation into the plasma [7, 139].

Stimulation of the transport of Aβ across the BBB
demonstrated to be an effective therapeutic approach in
AD, as several studies demonstrated elevated levels of Aβ
in the plasma of mice after passive immunization with anti-
Aβ antibodies or Fab fragments [180–182], and decline in
cognitive performance was arrested in patients that received
vaccination [183]. However, the occurrence of severe
meningoencephalitis in human patients after active immu-

nization with Aβ hampered widespread application of this
type of therapy. Administration of Aβ-binding proteins that
demonstrate similar positive effects, but possibly, without
the severe immune reactions associated with antibody
therapy, might provide an alternative strategy. An interest-
ing example of such an Aβ-binding protein is gelsolin. This
protein has high affinity for Aβ and reduces Aβ levels in a
transgenic mouse model of AD [184]. Furthermore,
administration of gelsolin or GM1 in PS/APP mice resulted
in decreased Aβ aggregation in the brains [184]. Both
gelsolin and GM1 act as a “peripheral sink” for Aβ.
Although both compounds did not enter the brain, they
lowered soluble Aβ concentrations in the blood, shifted the
balance between blood and cerebral Aβ concentrations, and
accordingly, stimulated Aβ transport over the BBB.
Therefore, other Aβ-binding proteins administered in the
circulation might also act as “peripheral sinks” [181, 184].

Table 1 Summary of the expression of chaperones in AD brains and their interaction and effects on Aβ and tau

SP/CAA NFT Direct interaction Effects on Aβ or tau in general

Apolipoproteins
ApoE + + Aβ/tau ↑ Fibrillar Aβ /↓ hyperph. Tau
ApoJ + ? Aβ ↓ Aβ aggregation
HSPGs
Perlecan ± ± Aβ HSPGs:
Agrin + − Aβ ↓ Proteolytic breakdown Aβ
Glypican 1 + − ? ↑ Non-fibrillar → fibrillar Aβ
Syndecan 1–3 + − ? ↑ Phosphorylation tau
Collagen XVIII + − ?
GAGs + + Aβ/tau
Complement factors
Hageman Factor + + ? Aβ activates complement in AD
C1q + + Aβ C3 ↓ Aβ deposition
C3/C4 + + Aβ
C5-9 + + ?
Heat shock proteins
Hsp90 + ? Tau ↓ Tau aggregation
Hsp70 + ? Aβ/tau ↓ Tau aggregation
Small Hsps
αB-crystallin − − Aβ ↓ Aβ fibril formation
Hsp27 − ± Aβ/tau ↓ Aβ fibril formation
Hsp20 + − Aβ ↓ Aβ fibril formation
HspB2/B3 + + – No effect
HspB8 + − Aβ ↓ Aβ fibril formation
Acute phase proteins
α1-antichymotrypsin + − Aβ ↑ Aβ fibrillization
α2-macroglobulin + − Aβ
serum amyloid P + + Aβ ↑ Aβ fibrillization
Miscellaneous compounds
tPA − − Aβ ↓ Aβ fibril formation
Gelsolin − − Aβ ↑ Aβ fibrillization

Expression of chaperones in a specific lesion is illustrated as follows: present (+), by conflicting reports (±), absence (−), and unknown (?); ↓ =
inhibition or down-regulation, ↑ = induction or up-regulation
SP Senile plaques, CAA cerebral amyloid angiopathy, NFT neurofibrillary tangles, HSPGs heparan sulphate proteoglycans, Aβ amyloid-beta, Hsp
heat shock proteins, Apo apolipoproteins, SAP serum amyloid P, tPA tissue-type plasminogen activator, GAGs glycosaminoglycans, LDLR low-
density lipoprotein receptor, LRP-1 LDL receptor protein-1, BBB blood–brain barrier
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Both activated microglial cells and activated astrocytes
are associated with Aβ deposition and may internalize Aβ
fragments via phagocytosis [185–187]. Activation of the
complement system is, among others, achieved by Hsps
such as Hsp60 and Hsp70, which are able to induce
phagocytosis by microglia, and thus, clearance of Aβ [132,
188, 189]. In addition, the absence of ApoE reduces
internalization and degradation of Aβ by astrocytes in the
brain, demonstrating that ApoE is directly involved in the
clearance of Aβ from brain via phagocytosis by microglial
cells and astrocytes [40]. tPA might also contribute to
clearance of Aβ, as it accelerates Aβ clearance from
transgenic mouse brains [146]. Thus, as Aβ-chaperones
contribute to activation of the complement system or
activation of microglial cells and astrocytes, these proteins
might contribute to the clearance of Aβ from the brain via
phagocytosis.

Concluding Remarks

Professional chaperones, such as the heat shock protein
family, and amateur chaperones, such as apolipoproteins
and HSPGs and several other proteins, have a role in the
intracellular handling of misfolded proteins, induce confor-
mational changes of proteins, or act as transporter of
proteins (Fig. 2). This suggests that these chaperones form
interesting therapeutic targets in the prevention and treat-
ment of neurodegenerative diseases.

In the process of clearance of Aβ from the brain, Aβ-
binding partners might play important roles by acting as
Aβ transporter proteins in both the receptor-mediated
clearance of Aβ across the BBB but also as a “peripheral
sink” for Aβ. Both ApoE isotype and local concentrations
in the brain might regulate Aβ transport across the BBB,
but as this transport is receptor-mediated, other Aβ-binding

Fig. 2 The putative role of
chaperones in amyloid-β (Aβ)
fibril formation, proteolytic
breakdown, and clearance
from the brain. In Alzheimer’s
disease, soluble Aβ, predomi-
nantly produced in neurons, is
converted into β-sheet rich
protofibrils and eventually forms
mature Aβ fibrils. The conver-
sion from soluble Aβ to proto-
fibrils and fibrils, which
accumulate in senile plaques and
cerebral amyloid angiopathy, is
enhanced by chaperones as
apolipoprotein E (ApoE),
Gelsolin, α1-antichymotrypsin
(ACT) and several heparan
sulphate proteoglycans
(HSPGs), which function as
catalysts. In contrast, the heat
shock protein family, tissue-type
plasminogen activator (tPA) and
complement factors prevent the
transition of soluble Aβ into
protofibrils and mature fibrils.
Furthermore, heat shock pro-
teins and tPA stimulate the
proteolytic breakdown of (proto)
fibrils, whereas HSPGs prevent
this breakdown. Finally, the
clearance of Aβ from the brain
across the blood–brain barrier is
stimulated by ApoE, ApoJ, and
α2-macroglobulin (α2M),
whereas complement factors
stimulate phagocytosis-mediated
clearance of Aβ by activated
microglia and astrocytes
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proteins might also fulfill such a role. In addition, transport
of aggregated Aβ across the BBB is less efficient than
soluble Aβ. Thus, by preventing self-aggregation of Aβ,
Aβ-binding proteins contribute to the clearance of Aβ from
the brain. As a therapeutic strategy, Aβ-binding proteins
serving as a “peripheral sink”, such as gelsolin, seem
promising [184].

Overexpression of professional chaperones, such as the
Hsps, to prevent aggregation of misfolded proteins will have
to be evaluated carefully, as they also interact with other
chaperones and are dependent on this interaction to fulfill
some of their functions. This strategy may therefore result in
instability of the cell-stress mechanism, which may cause the
system to collapse. A solution may be found in the over-
expression of several chaperones, which may be required to
achieve an impact on the progression of the disease.

Another pitfall in the use of professional chaperones as
therapeutic agents is their ability to bind misfolded proteins
and keep them in an intermediate conformation. This type of
conformation might even be more toxic than the aggregated
state. As an example, co-incubations of αB-cystallin with Aβ
are more toxic to neurons than Aβ alone [121]. Furthermore,
Hsps are most likely to be involved in early development of
neurodegenerative diseases, given their natural function. Yet,
the role of this protein family in maturation of the
neurodegenerative lesions remains to be elucidated.

In conclusion, studying the role of chaperones, both
professional and amateur, in the pathophysiology of AD
will provide us with a better understanding of the
mechanisms underlying the formation and accumulation
of toxic aggregates in AD, which, eventually, will lead to
the design of more effective therapeutic strategies.
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